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Abstract

This paper defines Lebesgue measure preserving Thompson’s monoid, denoted by G, which is
modeled on Thompson’s group F except that the elements of G are non-invertible. Moreover, it is
required that the elements of G preserve Lebesgue measure. Monoid G exhibits very different properties
from Thompson’s group F. The paper studies a number of algebraic (group-theoretic) and dynamical
properties of G including approximation, mixing, periodicity, entropy, decomposition, generators, and
topological conjugacy.

1 Introduction

In this paper we define Lebesgue measure preserving Thompson’s monoid and study its algebraic
and dynamical properties. This study is at an intersection of two subjects of research.

The first subject is concerned with Lebesgue measure preserving interval maps of [0, 1] onto itself,
which studies dynamical properties such as transitivity, mixing, periodic points and metric entropy and
finds important applications in the abstract formulation of dynamical systems, chaos theory and ergodic
theory [1, 2]. The author in [1] motivates the study of interval maps by stating that the “most interesting”
part of some higher-dimensional systems can be of lower dimensions, which allows, in some cases, to boil
down to systems in dimension one. In particular, a recent paper [3] studies a special form of interval
maps, namely, piecewise affine maps.

The second subject is concerned with Thompson’s group F [4, 5], which is the group of piecewise
affine maps from [0, 1] onto itself whose derivatives are integer powers of 2 and points at which the
derivatives are discontinuous are dyadic numbers. As the derivatives are always positive, the orientation
of maps is preserved. Thompson group F has a collection of unusual algebraic properties that make it
appealing in many different and diverse areas of mathematics such as group theory, combinatorics [6] and
cryptography [7].

Except for the identity map, any Thompson’s group F map does not preserve Lebesgue measure
and any Lebesgue measure preserving interval map does not preserve orientation and thus not belong
to Thompson’s group F. Thus these two subjects do not naturally intersect. We intend to build on
Thompson’s group F by making important changes to preserve Lebesgue measure. More precisely, we
define Lebesgue measure preserving Thompson’s monoid, denoted by G. Monoid G is similar to F except
that the derivatives of piecewise affine maps can be negative. As a result, the maps in G are non-invertible
except for some trivial maps and exhibit very different properties from those in F.

To the best of our knowledge, Lebesgue measure preserving Thompson’s monoid has not been
proposed or studied in the literature. Unless explicitly mentioned, all the results presented and proved in
this paper are original.
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The goal of this paper is to study unique properties of G. The main results of this paper are
summarized as follows.

• We show that any continuous measure preserving map can be approximated by a map in G with any
required precision. Moreover, we show that the approximating map in G can be locally eventually
onto (LEO) and achieve any target value of entropy that is at least 2.

• We show that for any element of G, topological mixing (TM) is equivalent to LEO and every dyadic
point is preperiodic. Thus, any map in G is Markov. We show that for maps in a subset of G there
exist periodic points with period of 3, an essential feature of chaotic maps. We characterize periods
of periodic points of other maps in G.

• We show that unlike F, G is not finitely generated. We define equivalence classes for maps in G and
construct a monoid by sets of equivalence classes such that the monoid is finitely generated and any
map in G is an element of an equivalence class in the monoid.

• We derive sufficient conditions for a continuous map to be topologically conjugate to a measure
preserving piecewise affine continuous map and in particular a map in G.

The main results of this paper improve several results of [3]. For example, we show that G that is
both LEO and Markov is dense in the set of continuous measure preserving maps. Because G is a subset
of piecewise affine continuous measure preserving maps, this result is stronger than [3, Proposition. 7],
which shows that piecewise affine continuous measure preserving maps that are both LEO and Markov is
dense in the set of continuous measure preserving maps.

At an intersection of these two subjects of research, the paper demonstrates an interesting interplay
between algebraic (group-theoretic) and dynamical settings. For example, in general, LEO implies TM
and the converse does not hold; however, we show that for any element of G, TM is equivalent to LEO
and any map in G is Markov. As another example, we show that the algebraic structure of G leads to a
simple characterization of periods of periodic points of maps in G and allows the use of Markov partition
to study measure preserving topological conjugate maps.

The remainder of the paper is organized as follows. Section 2 reviews the basic properties of measure
preserving interval maps and Thompson’s group F and defines measure preserving Thompson’s monoid
G. Section 3 shows that a map in G can approximate any continuous measure preserving map with any
required precision. While locally eventually onto (LEO) implies topological mixing (TM) for any maps,
Section 4 shows that TM is equivalent to LEO for any element of G and that a map in G that is LEO
can approximate any continuous measure preserving map with any required precision. Section 5 shows
a salient feature of G that every dyadic point is preperiodic. As a result, any map in G is Markov.
Section 5 furthermore characterizes the periods of periodic points of maps in G. Section 6 investigates
the entropy properties of G and shows that any entropy greater than or equal to 2 can be achieved by
G. Section 7 shows that any map in G can be expressed as a composition of a finite number of basic
maps in G and the generators in F. Section 8 shows that unlike F, G is not finitely generated. Section 8
defines the notions of equivalence classes and sets of equivalence classes, constructs a monoid of sets of
equivalence classes and shows that the monoid has a finite number of generators and that any map in
G is an element of an equivalence class in the monoid. Section 8 furthermore introduces a metric to
characterize equivalence classes. Section 9 studies topological conjugacy under the measure preservation
constraint and uses Markov partition to characterize continuous maps that are conjugate to measure
preserving maps. Finally, Section 10 proposes a few areas for future study.
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2 Basic Definitions and Properties

2.1 Notations

Consider continuous interval maps from [0, 1] to [0, 1]. Let h1 and h2 be two maps. Denote by h1 ◦h2

the composition of h1 and h2 where h1 ◦ h2(x) = h1(h2(x)). The composition of more than two maps can
be recursively defined with this definition. For any y ∈ [0, 1], define h−1(y) = {x ∈ [0, 1] : h(x) = y}.

Interval map h defines a topological dynamical system whose evolution is given by successive iterations
of the map. For any positive integer n, hn = h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸

n times

. By convention, h0 is the identity map. Point

x is preperiodic if positive integers n > m exist such that hn(x) = hm(x). If m = 0, then x is periodic.

Define trivial maps g0,+(x) = x and g0,−(x) = 1− x for x ∈ [0, 1].

Let A be a point in the plane of [0, 1] × [0, 1]. Denote by Ax and Ay the x- and y-coordinates of
point A, respectively. If A is on the graph of map h, Ay = h(Ax).

Let I be a interval in [0, 1]. Let I◦ represent the interior of I. The left and right endpoints of I
are denoted by I0, I1, respectively. If I is closed, then I = [I0, I1]. Let |I| represent the measure of the
interval: |I| = I1 − I0. For two distinct intervals I1 and I2, I1 < I2 if x1 ≤ x2, ∀x1 ∈ I1, x2 ∈ I2.

Let I,J be two closed intervals of [0, 1] and f1, f2 be two maps. Let f1(I) ' f2(J ) if f2 can be
linearly transformed from f1. That is, if x1 = I0 + α(I1 − I0), and x2 = J 0 + α(J 1 − J 0) for some
α ∈ [0, 1], then f1(x1) = f2(x2). When f2 is a trivial map, f1(I) ' J if f1 is an affine map.

A set of distinct closed intervals {I1, . . . , In} is a partition of [0, 1] if I◦i ∩ I◦j = ∅ for any i 6= j and⋃n
i=1 Ii = [0, 1]. If I1 < · · · < In, then {|Ii|} completely determines {Ii}. A subset of {Ii} may be a

single point, i.e., I0
j = I1

j where some j.

Denote by 〈a, b〉 interval [a, b] if a ≤ b and interval [b, a] if b < a.

2.2 λ-Preserving Interval Maps

Denote by λ the Lebesgue measure on [0, 1] and B all Borel sets on [0, 1].
Definition 1 (λ-Preserving Interval Maps). Continuous interval map h is λ-preserving if ∀A ∈ B, λ(A) =
λ(h−1(A)).
Remark. Definition 1 does not imply λ(A) = λ(h(A)) for λ-preserving h. In fact, one can easily show
that if h is λ-preserving, λ(A) ≤ λ(h(A)) for any A ∈ B. Except for the trivial maps of g0,+ and g0,−, h
is not invertible and ∃A ∈ B such that λ(A) < λ(h(A)).

For simplicity, λ(A) is also written as |A|.

Let C(λ) be the set of all continuous λ-preserving interval maps. For each map h ∈ C(λ), the set
of periodic points is dense on [0, 1] because of the Poincaré Recurrence Theorem and the fact that the
closures of recurrent points and periodic points coincide [3].

Let PA(λ) be the subset of C(λ) consisting of all piecewise affine maps.

2.3 Thompson’s Group F

Thompson’s group F has a few different representations such as group presentations, rectangle
diagrams and piecewise linear homeomorphisms. The following focuses on the representation of piecewise
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linear homeomorphisms because it is closely related to λ-preserving Thompson’s monoid to be introduced
in the next section.
Definition 2 (Thompson’s Group F). A homeomorphism f from [0, 1] onto [0, 1] is an element of
Thompson’s group F if

• f is piecewise affine;

• f is differentiable except at finitely many points;

• The x-coordinate of each of these points of non-differentiability is a dyadic number, i.e., a rational
number whose denominator is an integer power of 2;

• On the intervals where f is differentiable, the derivatives are integer powers of 2.

In the remainder of this paper, f is referred to an element in Thompson’s group F.
Remark. It is easily to see that f(0) = 0, f(1) = 1 and f is strictly increasing on [0, 1] and is thus
invertible. Except for the trivial map of f = g0,+, f is not λ-preserving.
Example 1. Define the following two maps in F.

fA(x) =


x
2 , 0 ≤ x ≤ 1

2 ,
x− 1

4 ,
1
2 ≤ x ≤

3
4 ,

2x− 1, 3
4 ≤ x ≤ 1,

fB(x) =


x, 0 ≤ x ≤ 1

2 ,
x
2 + 1

4 ,
1
2 ≤ x ≤

3
4 ,

x− 1
8 ,

3
4 ≤ x ≤

7
8 ,

2x− 1, 7
8 ≤ x ≤ 1.

(1)

The significance of fA and fB is that Thompson’s group F is generated by the two maps. That is,
any f ∈ F can be represented by a composition of possibly multiple fA and fB in certain order [4].

2.4 λ-Preserving Thompson’s Monoid G

Definition 3 (λ-Preserving Thompson’s Monoid G). Continuous interval map g from [0, 1] onto [0, 1] is
an element of λ-preserving Thompson’s monoid G if

• g is λ-preserving;

• g is piecewise affine;

• g is differentiable except at finitely many points;

• The x-coordinate of each of these points of non-differentiability is a dyadic number;

• On an interval where g is differentiable, the derivative is positive or negative and the absolute value
of the derivative is an integer power of 2.

Remark. The difference between G and F is that the derivatives can be negative in the maps of G, which
makes it possible for them to be λ-preserving.
Remark. It is easy to see that if g1, g2, g3 ∈ G, then g1 ◦ g2 ∈ G and (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3). Trivial
map g0,+ is the identity element of G. However, an inverse may not always exist for any given g ∈ G.
This is the reason that the set of maps satisfying these conditions is a monoid.
Remark. G ⊂ PA(λ). From Section 2.2, the set of periodic points of g ∈ G is dense on [0, 1].

In the remainder of this paper, g is referred to an element in λ-preserving Thompson’s monoid G.
When g is an affine segment on an interval, for simplicity, refer the derivative of g on the interval to as
the slope of the affine segment.
Definition 4 (Breakpoints). Let g ∈ G. A breakpoint of g is either an endpoint at x = 0 or x = 1 or a
point at which the derivative of g is discontinuous. A breakpoint that is not an endpoint is referred to

Page 4 of 50



PRIMES-USA 2020 Research Report William Li

Figure 1: Illustration of the definitions of legs (a), affine legs (b) and window perturbation (c). m = 3 in
the figure.

as interior breakpoint. An interior breakpoint is further categorized into type I and type II. At a type I
breakpoint, the left and right derivatives are of the same sign. At a type II breakpoint, the left and right
derivatives are of the opposite signs.

Point (x, y) is said to be dyadic if both x and y are dyadic.
Lemma 1. For any point (x, y) of g ∈ G, y is dyadic if and only if x is dyadic.

Proof. Let (x0, y0) be a breakpoint of g. By definition, x0 is dyadic. If y0 = 1, then (x0, y0) is already
dyadic. Otherwise, let c ∈ g−1(1). Suppose c > x0. (The case of c < x0 can be proven analogously.)
Let x0 < x1 < · · · < xn = c be the set of breakpoints between x0 and c and the slope of the affine
segment on [xi−1, xi] be (−1)pi2ki , with pi equal to 0 or 1 and ki an integer, for i = 1, . . . , n. Thus,
g(xn)− g(x0) = 1− y0 =

∑n
i=1(−1)pi2ki(xi − xi−1), which is a dyadic number. Hence, (x0, y0) is dyadic.

Therefore, any breakpoint of g is dyadic. The lemma follows immediately because both endpints of an
affine segment are dyadic and the derivative is in the form of ±2k with integer k.

Lemma 2. For y ∈ [0, 1], suppose that g−1(y) = {x1, . . . , xn} and none of x1, . . . , xn are breakpoints.
Map g is λ-preserving if and only if

n∑
i=1

1

|g′(xi)|
=

n∑
i=1

2−ki = 1, (2)

where ki is integer and |g′(xi)| = 2ki is the absolute value of the slope of the affine segment on which xi
resides.

Proof. Let Y = [y − δ, y + δ] for δ > 0. For a sufficiently small δ, g−1(Y) =
⋃n
i=1 Ii, where intervals Ii

are disjoint, xi ∈ Ii, and g(Ii) = Y for i = 1, . . . , n. λ(Y) = λ
(
g(Ii)

)
= |g′(xi)|λ(Ii) as δ → 0. By

λ-preservation and because Ii are disjoint, λ(Y) = λ
(
g−1(Y)

)
=
∑n

i=1 λ(Ii). (2) follows immediately.

To satisfy (2), ki must be non-negative for any i. In contrast, for f , a derivative can be a negative
integer power of 2. Moreover, if n > 1, g′(xi) has alternating signs: g′(xi)g

′(xi+1) < 0 for i = 1, . . . , n−1.
Unlike f , g is not orientation-preserving except for the trivial maps.
Definition 5 (Legs and Affine Legs). Let interval Y ⊂ [0, 1]. If except for a finite number, ∀y ∈ Y,
set g−1(y) has m elements, then g−1(Y) is said to have m legs. When g−1(Y) has m legs, m intervals
I1, . . . , Im with mutually disjoint interiors exist such that g−1(Y) =

⋃m
i=1 Ii, and g is monotone on every

Ii and Y = g(Ii) for any i. The graph of g on Ii is referred to as the i-th leg. If g is affine on every Ii,
then g−1(Y) is said to have m affine legs.
Definition 6 (Window Perturbation). When g−1(Y) has m affine legs for interval Y, if

⋃m
i=1 Ii is an

interval I, g is said to be an m-fold window perturbation on I.

Figure 1 illustrates the definitions of legs, affine legs and window perturbation.
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3 Approximation

Define metric ρ by ρ(h1, h2) = supx∈[0,1] |h1(x)−h2(x)| for any two continuous interval maps h1 and
h2. This section will show that G has rich approximation capability in the sense that any λ-preserving
continuous map h can be approximated by a map g ∈ G within any ε > 0 neighborhood, i.e., ρ(h, g) < ε.
Lemma 3. Let (x1, y1) and (x2, y2) be two dyadic points where x1 < x2 and y1 < y2. Suppose that
y2 − y1 ≥ x2 − x1. If y2−y1

x2−x1 6= 2k for any integer k, then a dyadic point (x3, y3) exists with x1 < x3 < x2,
y1 < y3 < y2 such that the slopes between (x1, y1), (x3, y3) and between (x2, y2), (x3, y3) are both in the
form of 2k for non-negative integer k.

Proof. Let
y3 − y1

x3 − x1
= 2k1 ,

y3 − y2

x3 − x2
= 2k2 .

Then

x3 = x1 +
2−k2(y2 − y1)− (x2 − x1)

2k1−k2 − 1
.

Two integer solutions are given by k2 =
⌊
log2

y2−y1
x2−x1

⌋
k1 = k2 + 1,

and

 k2 =
⌈
log2

y2−y1
x2−x1

⌉
k1 = k2 − 1,

It is easy to verify that in either solution, (x3, y3) is dyadic and x1 < x3 < x2 and y1 < y3 < y2.

Point (x3, y3) in Lemma 3 is referred to as a partition point between points (x1, y1) and (x2, y2).
Proposition 4. For any increasing continuous map a : [0, 1] → [0, 1] and any ε > 0, map f ∈ F exists
such that ρ(a, f) < ε.

Proof. Because the set of dyadic points is dense and map a is increasing, a set of dyadic points (xi, yi), for
i = 0, 1, . . . , n, exist such that x0 = 0, xn = 1, xi < xj and yi < yj if i < j, and a(xi) − a(xi−1) < ε

3 and
|yi − a(xi)| < ε

3 for all i. Connect point (xi−1, yi−1) and point (xi, yi) directly if the slope between them
is in the form of 2k for integer k or otherwise via a partition point between them defined in Lemma 3.
The resultant map is f ∈ F. For x ∈ [xi−1, xi],

|a(x)− f(x)| ≤ max(a(xi), yi)−min(a(xi−1), yi−1)

≤ |a(xi)− yi|+ |a(xi−1)− yi−1|+ |a(xi)− a(xi−1)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Hence, ρ(a, f) < ε.

Theorem 5. G is dense in C(λ). That is, for any b ∈ C(λ) and ε > 0, map g ∈ G exists such that
ρ(b, g) < ε.

Proof. Given b ∈ C(λ) and ε > 0, it has been shown in [8] that h ∈ PA(λ) exists such that ρ(b, h) < ε/2.
In this proof, let g = h initially and then perturb g in the following three steps such that ρ(gold, gnew) < ε/6
in each step, where gold and gnew represent map g before and after each step of perturbation, respectively,
and eventually make g an element of G.

Let {(x0, y0), (x1, y1), . . . , (xn, yn)} be the set of breakpoints of g, where x0 = 0, xn = 1. Points
(x0, y0) and (xn, yn) are the two endpoints. Not all xi, yi are dyadic. The first step is to eliminate (xi, yi)

Page 6 of 50



PRIMES-USA 2020 Research Report William Li

Figure 2: Step 1 of the proof of Theorem 5: eliminate any breakpoint whose y-coordinate is not dyadic.
In the figure, the thin and thick segments represent the graph of g before and after the replacement
respectively. In (a), type II breakpoint (xi, yi) is replaced by point F while segment ZA is replaced by
ZB and BA to preserve λ. In (b), endpoint (x0, y0) is replaced by point F while segment ZA is replaced
by ZB and BA. In (c), type I breakpoints (xi, yi), (xj1 , yi), (xj2 , yi) are eliminated by directly connecting
AB,CD,EF .

if yi is not dyadic. The second step is to eliminate (xi, yi) if xi is not dyadic. The third step is to eliminate
segments whose slopes are not in the form of ±2k with integer k. Measure is preserved in each step.

Step 1. First, suppose that point (xi, yi) is a type II breakpoint and yi is not dyadic. Figure 2(a)
shows how (xi, yi) is eliminated. Because g is continuous and onto [0, 1], there exists another point Z on
g such that Zy = yi and the left side and right side derivatives of Z are of the same sign. Point Z is
not necessarily a breakpoint itself. Without loss of generality, suppose that the right side derivative of
(xi, yi) is negative. Let line 2 be a horizontal line y = ŷi where ŷi is dyadic, 0 < ŷi < yi and yi − ŷi < ε

12 .
Choose ŷi sufficiently close to yi such that no breakpoint exists whose y-coordinate falls in (ŷi, yi). Let
line 1 be a horizontal line y = ỹi where ỹi is dyadic, ŷi < ỹi < yi. Let D and E be the two points
where the left and right side affine segments of g connecting (xi, yi) intersect line 1, and G and H be the
two points where they intersect line 2. Let C and A be the two points where g connecting Z intersects
lines 1 and 2 respectively. Choose ỹi sufficiently close to yi such that |Cx − Zx|+ Ex −Dx < |Ax − Zx|.
Such a ỹi exists because Cx − Zx → 0 and Ex − Dx → 0 as ỹi → yi. Let F be any point on line 1
with Dx < Fx < Ex. Let point B be on line 1 where BC = DE and |Zx − Bx| > |Zx − Cx|. Replace
(xi, yi) with F by connecting G,F and H,F . Replace the portion of g between Z and A with segments
ZB and BA. Because BC = DE, measure is preserved between the horizontal line y = yi and line
1 and between line 1 and line 2. Therefore, a type II breakpoint (xi, yi) is eliminated while six new
breakpoints are added: A,B, F,G,H all have dyadic y-coordinate and Z is a type I breakpoint with
non-dyadic y-coordinate. ρ(gold, gnew) < ε

12 . Repeat the preceding procedure, one can eliminate all type
II breakpoints with non-dyadic y-coordinates.

Endpoints (x0, y0) and (xn, yn) where y0 or yn is not dyadic can be eliminated analogously as shown
Figure 2(b).

After the preceding procedure, the only remaining breakpoints that have non-dyadic y-coordinates
are of type I. If (xi, yi) is one such breakpoint, then there exists at least another breakpoint (xj , yi) where
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Figure 3: Step 2 of the proof of Theorem 5: eliminate any breakpoint whose x-coordinate is not dyadic.
In the figure, the thin and thick segments represent the graph of g before and after the replacement
respectively. In (a), point A, which is not dyadic, is replaced by dyadic point A′. In (b), C1, D,C2, H are
not dyadic and are replaced by dyadic points C ′1, D

′, C ′2, H
′ respectively.

xj 6= xi. Figure 2(c) illustrates an example where two such breakpoints (xj1 , yi) and (xj2 , yi) exist. It is
possible that points with y-coordinate equal to yi exist and are not a breakpoint, such as (xj3 , yi) in the
figure. Let line 1 and line 2 be horizontal lines y = ŷi and y = ỹi, respectively, where ŷi and ỹi are both
dyadic, ŷi < yi < ỹi and ỹi − ŷi < ε

12 . Let ŷi and ỹi be sufficiently close to yi that no breakpoint exists
whose y-coordinate is not equal to yi and falls in (ŷi, ỹi). Let A,C,E be the points where g intersects
line 1 and B,D,F be the points where g intersects line 2. Replace the portion g between A and B with
segment AB, between C and D with segment CD, and between E and F with segment EF . Measure
is preserved between line 1 and line 2 after the replacement, because measure is preserved before the
replacement between line 1 and the horizontal line y = yi and between line 2 and the horizontal line
y = yi. Therefore, the three type I breakpoints (xi, yi), (xj1 , yi), (xj2 , yi) are eliminated while six new
breakpoints are added: A,B,C,D,E, F all have dyadic y-coordinates. ρ(gold, gnew) < ε

12 . Repeat the
preceding procedure, one can eliminate all type I breakpoints with non-dyadic y-coordinates.

In step 1, g(x) for any x is perturbed at most twice. For example, in Figure 2(a) x close to and greater
than Zx is perturbed once and will be perturbed again when type I breakpoint Z is to be eliminated as
in Figure 2(c). On the other hand, point (xi, yi) is perturbed only once shown in Figure 2(a). Hence, at
the end of step 1, ρ(g, h) < ε

12 + ε
12 = ε

6 .

Step 2. Eliminate (xi, yi) if xi is not dyadic. Because g is piecewise affine on [0, 1], g satisfies a
Lipschitz condition, i.e., |g(x1) − g(x2)| < K|x1 − x2| for some fixed number K and any x1, x2 ∈ [0, 1].
Consider a set of horizontal equally-spaced dyadic lines, y = i ·2−M for i = 0, 1, . . . , 2M , where the spacing
between any adjacent dyadic lines is equal to ∆y = 2−M . Let 2−M < ε

6 and is sufficiently small that all
the breakpoints of g are on the lines. The lines are referred to as lines 1, 2, 3 and so on, as shown in
Figure 3.

Because g is onto [0, 1], one or multiple points of g exist on line 1. Figure 3(a) shows two such points
A,B. IfAx is not dyadic, then replace it with sufficiently close dyadic numberA′x, i.e., with |Ax−A′x| < ε

6K .
Because Ax is not dyadic, A cannot be an endpoint and thus must be a type II breakpoint and connect
to two points of the graph of g on line 2, one to the left, C1, and one to the right, D. Replace the original
affine segments C1A,DA with C1A

′, DA′. Because Dx−A′x +A′x−C1,x = Dx−Ax +Ax−C1,x, measure
is preserved between line 1 and line 2 after the replacement. Therefore, all the points on line 1 are now
dyadic.

Now consider the set of points of the graph of g on line 2 that are not dyadic. If a point is a type II
breakpoint, e.g., D and H shown in Figure 3(b), it can be replaced like A on line 1. Otherwise, it must
connect to one point of g on line 1 and another point of g on line 3, one to the left and one to the right.
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Figure 4: Step 3 of the proof of Theorem 5: connect breakpoints on adjacent horizontal dyadic lines.
In the figure, the thin and thick segments represent the graph of g before and after the replacement
respectively. The slopes of the thin segments are not in the form of ±2k for integer k. The slopes of the
thick segments are in the form of ±2k for integer k.

Let C1, C2, . . . be these points. Figure 3(b) shows C1, C2 on line 2. Point C1 connects to the right to A
on line 1 and to the left to F on line 3. Point C2 connects to the left to B on line 1 and to the right
to G on line 3. Let sgnCi

= 1 (or respectively, sgnCi
= −1) if Ci connects to the left (or respectively,

right) on line 1. In Figure 3(b), sgnC1
= −1 and sgnC2

= 1. If any Ci,x are not dyadic, then replace
them with sufficiently close dyadic numbers C ′i,x, i.e., with |Ci,x − C ′i,x| < ε

6K , such that sgnC′i = sgnCi

and
∑

i sgnC′i C
′
i,x =

∑
i sgnCi

Ci,x. Such dyadic numbers C ′i,x exist because of λ-preservation and because

∆y = 2−M and all points on line 1 are dyadic, and therefore
∑

i sgnCi
Ci,x must be dyadic even though

individual Ci,x are not dyadic. Measure is thus preserved between line 1 and line 2 and between line 2
and line 3 after the replacement. Therefore, all the points on line 2 are now dyadic.

Repeat the same procedure for all the 2M + 1 lines. Therefore all the breakpoints are now dyadic.
In step 2, a breakpoint is perturbed horizontally at most by ε

6K . Hence, at the end of step 2, ρ(g, h) <
ε
6 +K · ε

6K = ε
3 .

Step 3. The final step of the proof is to connect these breakpoints between adjacent horizontal
dyadic lines with piecewise affine segments whose slopes are in the form of ±2k for integer k. Let Y be
the interval between two adjacent horizontal dyadic lines. Because no breakpoint exists on Y◦, g−1(Y)
can be written as

⋃
i Ii, where {Ii} have mutually disjoint interiors, g(Ii) = Y for all i, and g is affine on

all Ii. From step 2, the endpoints of any Ii are dyadic. Let |Ii| = li · 2−Ni for integers li and Ni where li
is an odd number. Because of λ-preservation, |Y| =

∑
i |Ii|, i.e., 2−M =

∑
i li · 2−Ni . Thus, Ni ≥M .

Replace the affine segment of g on Ii with a window perturbation, as illustrated in Figure 4. The
window perturbation is li-fold where each leg has slope of ±2Ni−M and covers the same interval as the
original affine segment. Therefore measure is preserved after the replacement.

In step 3, the maximum vertical perturbation cannot exceed the spacing between any adjacent dyadic
lines, which is 2−M < ε

6 .

Hence, at the end of step 3, the resultant g is an element of G and ρ(h, g) < ε
3 + ε

6 = ε
2 . ρ(b, g) ≤

ρ(b, h) + ρ(h, g) < ε. This completes the proof.

4 Mixing

Topological transitivity and mixing properties of dynamical systems are widely studied in the literature.
There are several different versions of such properties, including topological transitivity (TT), strong
transitivity (ST), exact transitivity (ET), weak mixing (WM), topological mixing (TM), and locally
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Figure 5: Examples of g ∈ G. Map g is not TM or LEO in (a) and (b) and is TM and LEO in (c). In (a)
g(J1) = J1 and g(J2) = J2. In (b) g(J1) = J2 and g(J2) = J1.

eventually onto (LEO). It is shown in [9] that many of these versions, such as TT, ET, WM, and TM, are
implied by LEO but not the other way around. Thus, LEO is the strongest version among them. This
section focuses on LEO and TM.
Definition 7 (Topological Mixing (TM)). An interval map h is TM if for all nonempty open sets U, V
in [0, 1], there exists an integer N ≥ 0 such that ∀n ≥ N , fn(U) ∩ V 6= ∅.
Definition 8 (Locally Eventually Onto (LEO)). An interval map h is LEO if for every nonempty open
set U in [0, 1] there is an integer N such that hN (U) = [0, 1].
Remark. It can be shown ([1, Proposition. 2.8]) that h is TM if and only if ∀ε > 0 and open U ⊂ [0, 1],
there is an integer N such that hn(U) ⊃ [ε, 1 − ε] for any n ≥ N . However, it is not necessary that
hn(U) = [0, 1]. Clearly, LEO implies TM. The difference between LEO and TM lies at two endpoints.
Remark. If h is LEO or TM, then its trajectory is sensitive to initial conditions in the sense that two
arbitrarily close initial conditions x1 and x2 lead to divergent trajectories as hn(x1) and hn(x2) eventually
spread over the entire interval (0, 1) for n ≥ 0.
Lemma 6 (Barge and Martin, 1985, [10]). If a continuous interval map h has a dense set of periodic
points, then a collection of intervals {J1,J2, . . .} of [0, 1] exist with mutually disjoint interiors such that
for each i, h2(Ji) = Ji, h(Ji) = Jj for some j ≥ 1, h−1(h(Ji)) = Ji, and h2(x) = x on [0, 1] \

⋃
i≥1 J ◦i .

If |{J1,J2, . . .}| > 1, then there can only be two cases. In the first case, h(Ji) = Ji for all i and h(x) = x
on [0, 1] \

⋃
i≥1 J ◦i . In the second case, h(Ji) > h(Jj), ∀Ji < Jj, h(Ji) = Ji for at most one i and

h(x) = 1− x on [0, 1] \
⋃
i≥1 J ◦i .

Recall from Section 2.4 that for each map g ∈ G, the set of periodic points is dense on [0, 1]. A
collection of {J1,J2, . . .} of g exist to have the properties stated in Lemma 6.

The two cases of Lemma 6 are illustrated in Figure 5(a) and (b). Set {J1,J2, . . .} is not unique when
[0, 1] \

⋃
i≥1 J ◦i 6= ∅. For example, in Figure 5(a) g is an affine segment with slope 1 on interval [J 1

1 ,J 0
2 ].

Let J ′1 = [J 0
1 ,J 1

1 + δ1] and J ′2 = [J 0
2 − δ2,J 1

2 ] with δ1, δ2 > 0 and δ1 + δ2 ≤ J 0
2 − J 1

1 . In Figure 5(b)
g is an affine segment with slope −1 on interval [J 1

1 ,J 0
2 ]. Let J ′1 = [J 0

1 ,J 1
1 + δ] and J ′2 = [J 0

2 − δ,J 1
2 ]

with 0 < δ ≤ J
0
2 −J 1

1
2 . In either case, {J ′1,J ′2} has the same properties as {J1,J2} as far as Lemma 6 is

concerned. Intervals J ′1,J ′2 can shrink in length to become J1,J2. More precisely, a collection of intervals
{J1,J2, . . .} in Lemma 6 is said to be of minimum length if there does not exist a distinct collection
{J ′1,J ′2, . . .}, also satisfying Lemma 6, such that J ′i ⊆ Ji for i = 1, 2, . . ..
Lemma 7. Let g ∈ G. Suppose that {J1,J2, . . .} is a collection of g in Lemma 6. If {J1,J2, . . .} is of
minimum length, then the endpoints of each Ji are dyadic.
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Proof. First suppose that |{J1,J2, . . .}| = 1. That is, {J1,J2, . . .} = {J1}. If J1 = [0, 1], then the proof
is already done. If J 0

1 > 0 and J 1
1 = 1, then by Lemma 6 g(x) = x on [0,J 0

1 ]. A type II breakpoint
(x0, y0) must exist such that y0 = J 0

1 , for otherwise δ > 0 exists such that the set g−1(y) consists of
only one element for y ∈ [J 0

1 ,J 0
1 + δ] and because of λ-preservation, g(x) = x on [J 0

1 ,J 0
1 + δ]. Thus,

J1 can shrink to [J 0
1 + δ,J 1

1 ]. Therefore, J 0
1 is dyadic by Lemma 1. Similarly, if J 0

1 = 0 and J 1
1 < 1,

then J 1
1 can be shown to be dyadic. Now suppose J 0

1 > 0 and J 1
1 < 1. By Lemma 6 there can only be

two cases. In the first case, g(x) = x on [0, 1] \ J ◦1 . Type II breakpoints (x0, y0) and (x1, y1) must exist
such that y0 = J 0

1 and y1 = J 1
1 . Therefore, J 0

1 and J 1
1 are both dyadic by Lemma 1. In the second

case, g(x) = 1− x on [0, 1] \ J ◦1 . A type II breakpoint (x0, y0) must exist such that y0 = J 0
1 or y0 = J 1

1 ,
for otherwise δ > 0 exists such that the set g−1(y) consists of only one element for y ∈ [J 0

1 ,J 0
1 + δ] and

y ∈ [J 1
1 − δ,J 1

1 ] and thus J1 can shrink to [J 0
1 + δ,J 1

1 − δ]. Therefore, at least one of J 0
1 and J 1

1 are
dyadic. By Lemma 1, both of them are dyadic because g(J 0

1 ) = J 1
1 and g(J 1

1 ) = J 0
1 .

Next suppose that |{J1,J2, . . .}| > 1. Consider the two cases of Lemma 6. In the first case, g(x) = x
on [0, 1]\

⋃
i≥1 J ◦i . Type II breakpoints (x0, y0) and (x1, y1) must exist such that y0 = J 0

i and y1 = J 1
i for

each i, for otherwise Ji can shrink similar to what is shown above. Numbers J 0
i and J 1

i are both dyadic.
In the second case, g(x) = 1− x on [0, 1] \

⋃
i≥1 J ◦i . For each i, h(Ji) = Jj . If j = i, type II breakpoint

(x0, y0) must exist such that y0 = J 0
i or y0 = J 1

i , for otherwise Ji can shrink similar to what is shown
above. Numbers J 0

i and J 1
i are both dyadic. Now consider j 6= i. Without loss of generality, suppose

that Jj < Ji. Thus, g(J 0
i ) = J 1

j . A type II breakpoints (x0, y0) must exist such that y0 = J 0
i or y0 = J 1

j ,

for otherwise δ > 0 exists such that the set g−1(y) consists of only one element for y ∈ [J 0
i ,J 0

i + δ] and
y ∈ [J 1

j − δ,J 1
j ] and thus Ji can shrink to [J 0

i + δ,J 1
i ] and Jj can shrink to [J 0

j ,J 1
j − δ]. Thus, at least

one of J 0
i and J 1

j are dyadic. By Lemma 1, both of them are dyadic because g(J 0
i ) = J 1

j . Analogously,

both J 1
i and J 0

j can be shown to be dyadic.

Lemma 8 (Bobok and Troubetzkoy, 2019, [3, Lemma. 5]). In Lemma 6, h is TM if and only if the
collection of intervals satisfy {J1,J2, . . .} = {[0, 1]}, and h is LEO if and only if in addition both of the
sets h−2(0) ∩ (0, 1) and h−2(1) ∩ (0, 1) are non-empty.

Figure 5 provides three examples of g ∈ G, two of which are not TM or LEO and the third one is
LEO. In (a) and (b), J1 ∪ J2 ⊂ [0, 1] with J ◦1 ∩ J ◦2 = ∅ and g2(Ji) = (Ji) for i = 1, 2. As a result, if
U ⊂ Ji, then given n, gn(U) ⊂ Jj for either j = 1 or j = 2 but it is impossible that gn(U) = [0, 1].
Therefore, g in (a) and (b) is not TM or LEO. In (c), such a partition of separate J1 and J2 does not
exist and {J1,J2, . . .} = {[0, 1]}. Thus, g in (c) is TM by Lemma 8. In addition, because 1

2 ∈ g
−2(0) and

1
2 ∈ g

−2(1), g in (c) is LEO.

As remarked, in general, LEO implies TM and the converse does not hold. However, the two are
equivalent for g ∈ G as stated in the following theorem.
Theorem 9. If g ∈ G is TM, then g is LEO.

Proof. We will prove the theorem by contradiction. Assume that g−2(0)∩(0, 1) = ∅. First we will show by
contradiction that g−1(0) ∩ (0, 1) = ∅. Assume that c ∈ g−1(0) and 0 < c < 1. Because g−1(c) ⊆ g−2(0),
g−1(c)∩ (0, 1) = ∅, which is impossible because g is continuous and onto [0, 1]. Therefore, g−1(0) ⊆ {0, 1}.

If g−1(0) = {0}, then g(x) is an affine segment with slope 1 on [0, δ] for some sufficiently small δ > 0.
Thus g(x) is not TM because gn

(
(0, δ)

)
= (0, δ) for any n and does not mix with (δ, 1). Contradiction

with the hypothesis.

If g−1(0) = {1}, then g(x) is an affine segment with slope −1 on [1− δ1, 1] for some sufficiently small
δ1 > 0. Moreover, for g−2(0) ∩ (0, 1) = ∅, it follows that g−1(1) = {0}. The graph of g(x) is an affine
segment with slope −1 on [0, δ2] for some sufficiently small δ2 > 0. Let δ = min(δ1, δ2). gn

(
(0, δ)

)
= (0, δ)

for even n and gn
(
(0, δ)

)
= (1 − δ, 1) for odd n. Thus g(x) is not TM because gn

(
(0, δ)

)
for any n and
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Figure 6: Perturbation in the proof of Theorem 10. (a) Add new J ′3,J ′4,J ′5 such that [0, 1] =
⋃
i≥1 J ′i .

(b) Merge Ji and Ji+1 into one interval by replacing the thin segments AB,BC with thick segments
AB1, B1C1, C1B2, B2A1, A1B1, B1C.

does not mix with (δ, 1− δ). Contradiction with the hypothesis.

If g−1(0) = {0, 1}, then g−1(1) ⊂ (0, 1). Therefore, g−2(0) ∩ (0, 1) 6= ∅. Contradiction with the
assumption.

Hence, g−2(0) ∩ (0, 1) 6= ∅. We can analogously show that g−2(1) ∩ (0, 1) 6= ∅. By Lemma 8, g is
LEO.

Theorem 10. Denote by GLEO the subset of G whose elements are LEO. GLEO is dense in C(λ).

Proof. The idea is to further perturb g obtained in the proof of Theorem 5 to meet the conditions required
in Lemma 8, thereby making g LEO. Specifically, map g obtained in the proof of Theorem 5 is an element
of G, and thus the set of periodic points of g is dense on [0, 1] from Section 2.4. A collection of intervals
{J1,J2, . . .} of [0, 1] exist to have the properties stated in Lemma 6.

Step 1. Add new intervals to the set {J1,J2, . . .} such that the new set {J ′1,J ′2, . . .} covers [0, 1] in
gnew as illustrated in Figure 6(a). By Lemma 6, if x ∈ [0, 1] \

⋃
i≥1 J ◦i , then the derivative of g is either 1

or −1. Divide [0, 1] \
⋃
i≥1 J ◦i into a number of intervals with mutually disjoint interiors and each has an

maximum length smaller than ε
2 and dyadic endpoints. Such a division exists because the endpoints of

{Ji} are all dyadic by Lemma 7. If the affine segment on one of the intervals has the slope 1, then replace
it with a 3-fold window perturbation of slopes 21,−22, 22 on the three legs respectively; otherwise, the
affine segment has the slope −1 and replace it with a 3-fold window perturbation of slopes −21, 22,−22

on the three legs respectively.

After step 1, gnew ∈ G and ρ(gold, gnew) < ε
2 . Combine the original J1,J2, . . . and the newly added

intervals to become {J ′1,J ′2, . . .}.
⋃
i≥1 J ′i = [0, 1].

Step 2. Merge adjacent disjoint intervals. Consider adjacent disjoint intervals J ′i and J ′i+1. Let B
be on the graph of g at the boundary point between J ′i and J ′i+1. The graph of g is an affine segment in
a sufficiently small left and right neighborhood of B and the left and the right derivatives are of the same
sign by Lemma 6. Suppose that the derivatives are both positive as shown in Figure 6(b). (The case of
the derivatives being both negative can be proven analogously.) Let the left derivative be 2k1 and the
right derivative be 2k2 . Let AB be the affine segment of g in J ′i and BC be the affine segment of g in J ′i+1
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Figure 7: An example of h that is TM but is not LEO. First, replace the thin segment h(x) = x with
the black thick segments, which are the window perturbations on intervals J1,J2, . . .. Then, replace the
black thick segments with the red thick segments at the boundaries between Ji and Ji+1 for i = 1, 2, . . .
to be TM.

where By − Ay = Cy − By = 2−M for a large positive integer M such that 2−M < min

(
ε
4 ,
|J ′i |

2 ,
|J ′i+1|

2

)
and no breakpoint exists on (Ax, Bx) or (Bx, Cx). Bx − Ax = (By − Ay) · 2−k1 = 2−M−k1 , Cx − Bx =
(Cy −By) · 2−k1 = 2−M−k2 . Thus A and C are both dyadic, because B is dyadic.

Replace segments AB and BC by the following six affine segments to merge J ′i and J ′i+1: AB1,
B1C1, C1B2, B2A1, A1B3 and B3C. The connecting points A1, C1, B1, B2, B3 are defined as follows:
C1,y = Cy, A1,y = Ay, B1,y = B2,y = B3,y = By and B1,x−Ax = 2−M−k1−1, C1,x−B1,x = 2−M−k2−1, B2,x−
C1,x = 2−M−k2−2, A1,x − B2,x = 2−M−k1−2, B3,x − A1,x = 2−M−k1−2, Cx − B3,x = 2−M−k2−2. It is
easy to verify that g is still λ-preserving, the absolute values of the slopes of the affine segments
are 2k1+1, 2k1+2, 2k2+1, 2k2+2, and the newly added breakpoints A,A1, B1, B2, B3, C, C1 are all dyadic.
Therefore, gnew ∈ G.

Repeat the preceding procedure for all i. The choice of M ensures that the perturbation done for all
i does not overlap and ρ(gold, gnew) < ε

2 in step 2. After step 2, {J ′1,J ′2, . . .} are all merged into {[0, 1]}.

Hence, after the preceding two steps of perturbation, ρ(gold, gnew) < ε. By Lemma 8, g is TM, and
by Theorem 9, g is LEO.

Figure 7 shows an example of h that is TM but is not LEO. Specifically, partition [0, 1] into countably
infinitely many subintervals {Ji}, where Ji = [2−i, 2−i+1] for i = 1, 2, . . .. Start with h(x) = x. Next
replace h(x) on Ji with a 3-fold window perturbation, shown as the thick black segments. Then merge
Ji and Ji+1 as in step 2 of the proof of Theorem 10 illustrated in Figure 6(b). The merge is shown as
the thick red segments in Figure 7. Let h(0) = 0. h−1(0) = {0}. The endpoint x = 0 is not accessible
and therefore h is not LEO. Recall that endpoint x = 0 is accessible if there exists x ∈ (0, 1) such that
hn(x) = 0 for some n > 0. Note that this map h is not an element of G, because there are infinitely
many points at which h is not differentiable, although h meets all the other conditions of G. Therefore
this counterexample does not contradict Theorem 9.
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5 Periodicity

Theorem 11 states a salient feature of G.
Theorem 11. Let g ∈ G and c be a dyadic number. Then point (c, g(c)) is preperiodic under the diagonal
action (x, y)→ (g(x), g(y)).

Proof. Let 0 = x0 < · · · < xn = 1 be all the breakpoints of g. Let xi = li
2M

for i = 0, 2, . . . , n, c = p0
2M

and
g(c) = p1

2M
for integers M and li, p0, p1. Integers li, p0, p1 are not necessarily odd.

Let {xb1 , xb2 , . . . , xbm} be the subset of breakpoints between c and g(c), inclusive, where m ≥ 0.
Between x = c and x = g(c) there are m+ 1 affine segments, each with a horizontal length in the form of
l

2M
and a slope in the form of ±2k for some integers l, k. The vertical displacement of any affine segment

is in the form of ± l·2k
2M

. The sum of the vertical displacements of these m + 1 affine segments, equal to

g(g(c))− g(c), is in the form of l
2M

for some integer l. Given that g(c) = p1
2M

, it follows that g(g(c)) = p2
2M

for some integer p2.

Repeating the preceding argument, it follows that gi(c) = pi
2M

for integer pi for all i = 0, 1, 2, . . .,

with 0 ≤ pi ≤ 2M . Because M is a finite number, the total number of distinct pi
2M

in [0, 1] is finite. Hence,
gi1(c) = gi2(c) for some i1 6= i2, and (c, g(c)) is a preperiodic point.

Definition 9 (Markov Map). A piecewise affine interval map is a Markov map if all breakpoints are
preperiodic.

By definition, any breakpoint of g ∈ G is dyadic and thus preperiodic by Theorem 11. The following
corollary follows immediately.
Corollary 12. Any g ∈ G is a Markov map.

By Theorem 10 and Corollary 12, G that is both LEO and Markov is dense in C(λ). Because G is
a subset of PA(λ), this result is stronger than [3, Proposition. 7], which shows that PA(λ) that are both
LEO and Markov is dense in C(λ). Corollary 12 provides an essential basis of the study of topological
conjugacy in Section 9.
Definition 10 (Period of a Point). Suppose that x is a periodic point. The period of x is the least
positive integer p such that hp(x) = x.
Definition 11 (Chaotic Function). A map h is called chaotic if there exists a point x of period k for any
positive integer k.

Li-Yorke theorem [11] states that if a periodic point x of period 3 exists, then h is chaotic. Periodic
points of period 3 are thus of particular importance. The remainder of this section is to characterize the
periods of periodic points of g ∈ G.
Theorem 13. Consider a continuous map h from [0, 1] onto itself. If intervals I0, I1, I2 ⊆ [0, 1] exist
such that I1 ⊂ I0, I2 ⊂ I0, I◦1 ∩ I◦2 = ∅, and h(I1) = h(I2) = I0, then a periodic point x0 ∈ I0 of period
3 exists.

Proof. Because I1 ⊂ I0 = h(I2), an interval I3 ⊂ I2 exists such that I1 = h(I3). Because I3 ⊂ h(I2),
an interval I4 ⊂ I2 exists such that I3 = h(I4). Therefore, I0 = h3(I4). Because I4 ⊂ I0, by the
Intermediate Value Theorem, x0 ∈ I4 exists such that h3(x0) = x0. Specifically, x1 ∈ I3 and x2 ∈ I1 exist
such that x1 = h(x0), x2 = h(x1) and x0 = h(x2). Moreover, I3∩I1 = ∅ because I3 ⊂ I2 and I◦1 ∩I◦2 = ∅.
Then, it follows that I3 ∩ I4 = ∅ because I1 = h(I3) and I3 = h(I4). Thus x0, x1, x2 are all distinct.
Hence, the period of x0 is 3. The proof is illustrated in Figure 8.

Corollary 14. Consider a λ-preserving continuous map h from [0, 1] onto itself. Suppose that an interval
J exists such that h(J ) = J and h−1(J ) = J . Let c be an endpoint of J . If h(c) = J 0 or h(c) = J 1,
and if d0 ∈ J with d0 6= c exists such that h(d0) = h(c), then a periodic point x0 ∈ J of period 3 exists.
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Figure 8: Proof of Theorem 13. The thick black lines represent h and the thick red lines show the period-3

trajectory of x0
h−→ x1

h−→ x2
h−→ x0.

Proof. Without loss of generality, suppose that c = J 0. Suppose that h(c) = J 0. The case of h(c) = J 1

can be proved analogously.

From the hypothesis, there exists d1 ∈ J such that h(d1) = J 1. If d0 > d1, then let I1 = [c, d1],
I2 = [d1, d0] and I0 = J . The conclusion follows from Theorem 13. Otherwise, d0 < d1. Note that
h([c, d0]) ⊇ [c, d0], because otherwise h−1([d0,J 1]) ⊂ [d0,J 1] and λ is not preserved. Thus, there exist c′

and d′0 with c < c′ ≤ d′0 < d0 such that h([c, c′]) = h([d′0, d0]) = [c, d0]. Let I1 = [c, c′], I2 = [d′0, d0] and
I0 = [c, d0]. The conclusion follows from Theorem 13.

Let g ∈ G. Suppose that a collection of {J1,J2, . . .} of g exist to have the properties stated in
Lemma 6.

Case 1. Suppose that either [0, 1]\
⋃
i≥1 J ◦i 6= ∅ and g(x) = x on [0, 1]\

⋃
i≥1 J ◦i , or |{J1,J2, . . .}| > 1

and g(Ji) = Ji for all i. Then an interval J ⊆ Ji for any i exists such that the hypothesis of Corollary 14
holds with h(c) = c. Hence, a periodic point of period 3 exists.

Case 2. Suppose that either [0, 1]\
⋃
i≥1 J ◦i 6= ∅ and g(x) = 1−x on [0, 1]\

⋃
i≥1 J ◦i , or |{J1,J2, . . .}| >

1 and g(Ji) > g(Jj),∀Ji < Jj . If g(Ji) 6= Ji,∀i, then the period of any periodic point is even, because
g2(Ji) = Ji. Otherwise, ∃i0 such that g(Ji0) = Ji0 . In this case, the period of any periodic point x is
even when x ∈ Ji with i 6= i0, and an interval J ⊆ Ji0 exists such that the hypothesis of Corollary 14
holds with h(c) = 1− c. Hence, a periodic point of period 3 exists.

Case 3. Suppose that {J1,J2, . . .} = {[0, 1]}. This case is of particular importance because of
Lemma 8. Two results have been shown for an interval map h in the literature.

• First [1, Proposition. 2.18], if h is transitive, then h is TM if and only if it has a periodic point of
odd period greater than 1.

• Second, define Sharkovsky’s order of positive integers by

3 C 5 C 7 C · · ·C 2 · 3 C 2 · 5 C 2 · 7 C · · ·C 22 · 3 C 22 · 5 C 22 · 7 C · · ·C 23 C 22 C 2 C 1.

Sharkovsky’s theorem [12] states that if h has a periodic point of period n, then h has periodic
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(a) (b)

Figure 9: Two examples of g(x) defined in (3). Point x0 is a periodic point of period i if the graph of
gi(x) intersects the red line representing y = x at x = x0, if x0 is not a periodic point of any period j < i.
In (a), δ = 2−5. Periodic points of period 3 do not exist while periodic points of periods 5 and 7 exist. In
(b), δ = 2−3. Periodic points of period 3, 5, 7 all exist.

points of period m for all integers mBn. Because 3Cn for any n 6= 3, Li-Yorke theorem is a specific
case of Sharkovsky’s theorem.

From these two results, it follows that in the case where {J1,J2, . . .} = {[0, 1]}, there exists an odd
number n0 such that periodic points of period n exist for any odd number n ≥ n0, no periodic points of
period n exist for any odd number 1 < n < n0, and periodic points of period n exist for n = 1 and any
even number n.
Example 2. Let

g(x) =


4x+ 1

2 − δ, 0 ≤ x < 1
2δ

2x+ 1
2 ,

1
2δ ≤ x <

1
4

−2x+ 3
2 ,

1
4 ≤ x <

3
4

2x− 3
2 ,

3
4 ≤ x < 1− 1

2δ
4x− 7

2 + δ, 1− 1
2δ ≤ x ≤ 1

(3)

for 0 < δ < 1
2 . It can be shown that δ exists for any target n0. The smaller target value of n0, the larger

value of δ is needed. Two examples are shown in Figure 9.

6 Entropy

Definition 12 (Entropy). The entropy of a map h on I where I ⊂ [0, 1] is

cλ,I(h) =

∫ I1
I0

log |h′(x)| dλ(x).

When I = [0, 1], simplify notation cλ,[0,1](h) to cλ(h).

Let g ∈ G. Suppose that for interval Y, g−1(Y) consists of m affine legs on intervals Ii for i =
1, 2, . . . ,m. Let 2ki be the absolute value of the slope of the affine segment of g on interval Ii. By
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definition,
m∑
i=1

cλ,Ii(g) =
m∑
i=1

ki |Ii| =
m∑
i=1

ki2
−ki |Y| .

The minimum value of entropy
∑m

i=1 cλ,Ii(g) given |Y| is obtained when {ki} solves the following integer
optimization

min
k1,...,km

m∑
i=1

ki2
−ki (4)

s.t.
m∑
i=1

2−ki = 1. (5)

Lemma 15. The solution to (4) and (5) is

ki =

{
i, i = 1, 2, . . . ,m− 1

m− 1, i = m.
(6)

Proof. We first treat ki as continuous variables. Define the Lagrangian map

L(k1, . . . , km, µ) =

m∑
i=1

ki2
−ki + µ

 m∑
i=1

2−ki − 1

 .

Setting ∂L
∂ki

= 0 leads to ki be equal for all i, which is the interior solution and actually maximizes,
rather than minimizing, the entropy. Next we check the boundary conditions. Without loss of generality,
suppose that k1 ≤ k2 ≤ · · · ≤ km. It is easy to see from (5) that k1 ≥ 1 and km ≤ m− 1. If k1 = 1, then
the original problem is reduced to min

∑m
i=2 ki2

−ki subject to
∑m

i=2 2−ki = 1
2 and we can continue to check

the boundary conditions. If km = m − 1, then km−1 = m − 1, km−2 = m − 2, km−3 = m − 3, . . . , k1 = 1.
Either boundary condition leads to the same solution (6), which minimizes the entropy.

The set of {ki} (6) not only results in the minimum entropy given m but also will be shown to be the
unique set that possesses the property of Lemma 17, which is a stepping stone to proving Theorem 18.
Before stating Lemma 17, we take a detour to solve a dynamic matching problem.
Problem 1 (Dynamic Matching). Consider m buckets and m pumps. Pump i has a fixed pumping rate
αi > 0. At any time, exactly one pump is pumping water into one bucket. The matching policy at time
t can be represented by a permutation Πt : {1, . . . ,m} → {1, . . . ,m}. Initially all buckets are empty at
time t = 0. The task is to find a dynamic matching policy Πt at any time t ∈ [0, 1] so that at t = 1,
bucket i has βi > 0 amount of water. By the law of conservation,

∑m
i=1 βi =

∑m
i=1 αi.

Without loss of generality, suppose that α1 ≥ α2 · · · ≥ αm and β1 ≥ β2 · · · ≥ βm. Not any {αi} and
{βi} have a solution. For example, if βm < αm or β1 > α1, then no solution exists because the target
of bucket m or 1, respectively, cannot be met. The following lemma states a necessary and sufficient
condition of the existence of a solution.
Lemma 16. A solution of Problem 1 exists if and only if

∑i
j=1(αj − βj) ≥ 0 for all i.

Proof. If α1 − β1 < 0, then no solution exists to meet the target of bucket 1. The following assumes
α1− β1 ≥ 0. Let pump 1 only serve bucket 1. If α1− β1 > 0, the arrangement of pump 1 and bucket 1 is
tentative, as the fraction of time that pump 1 serves bucket 1 will be adjusted in subsequent steps. The
quantity α1 − β1 represents the excess capacity due to the capacity of pump 1 in excess of the target of
bucket 1.
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Now consider pump 2 and bucket 2. If
∑2

j=1(αj − βj) < 0, the excess capacity α1− β1 is insufficient
to cover the shortage of α2 − β2. Moreover, from α2 − β2 < 0 it follows that β2 > α2 ≥ αi for i > 2. No
solution exists to meet the target of bucket 2. The following assumes

∑2
j=1(αj − βj) ≥ 0. There are two

cases. In the first case, β2 ≥ α2. Utilize the excess capacity α1 − β1 to cover the shortage of α2 − β2.
Specifically, let bump 2 serve bucket 2 for time interval 1−z while bump 1 serves bucket 1, and then bump
1 serve bucket 2 for time interval z while bump 2 serves bucket 1, where z solves zα1 + (1 − z)α2 = β2.
Because α2 ≤ β2 ≤ β1 ≤ α1, a unique solution z exists with 0 ≤ z ≤ 1. All the arrangements regarding
pump 2 and bucket 2 are final because pump 2 has no excess capacity to offer and bucket 2 has met its
target. The arrangement of pump 1 and bucket 1 is still tentative if

∑2
j=1(αj−βj) > 0 because they have

excess capacity to offer. In the second case, β2 < α2. Let bump 2 only serve bucket 2. The arrangements
of pump 2 and bucket 2 is also tentative as they have excess capacity to offer just like pump 1 and bucket
1. In either case,

∑2
j=1(αj − βj) represent the accumulated excess capacity due to the total capacity of

pumps 1 and 2 in excess of the total target of buckets 1 and 2.

Continue the preceding process for i = 3, . . . ,m. If
∑i

j=1(αj − βj) < 0 for some i, then no solution
exists to meet the target of bucket i, because the accumulated excess capacity from 1, 2, . . . , i − 1, i.e.,∑i−1

j=1(αj − βj), is insufficient to cover the shortage of (αi − βi). Otherwise, if βi ≥ αi, then utilize the
accumulated excess capacity to cover the shortage of (αi − βi) by letting a subset of pumps 1, . . . , i− 1,
whose arrangements have so far been tentative, to serve bucket i for some fraction of time interval to
meet its target while letting pump i to serve the corresponding buckets, thereby reducing the accumulated
excess capacity by (αi−βi). If βi < αi, then tentatively let bump i serve bucket i and note that they have
excess capacity to offer, thereby increasing the accumulated excess capacity by (αi−βi). The process ends
at i = m when the accumulated excess capacity is used up to exactly cover the shortage of (αm − βm),
because

∑m
j=1(αj − βj) = 0 from the law of conservation.

Now consider Y where g−1(Y) consists of m affine legs. The absolute values of the slopes of the i-th
affine leg is 2li . Let {ki} satisfies (6) and be distinct from {li}. Is it possible to replace the i-th affine leg
with piecewise affine segments on the same interval such that the absolute value of any slope is in the set
of {2ki} while preserving λ? Lemma 17 states that not only such a replacement exists, but also the new
map g1 after the replacement is an element of G and is within ε > 0 neighborhood of the original map g.
The importance of such a replacement is that the entropy of the new g1 reaches the minimum value given
m. As will be clear in Theorem 18, another map in G can be constructed from g1 to have any target
value of entropy that is greater than the minimum value.
Lemma 17. Let g ∈ G and Y be an interval with dyadic endpoints. Suppose that g−1(Y) consists of
m affine legs. The absolute value of the slope of the i-th leg is equal to 2li. Partition [0, 1] into 2m + 1
intervals Ij for j = 1, 2, . . . , 2m + 1, such that g−1(Y) =

⋃m
i=1 I2i. Then g1 ∈ G exists and [0, 1] is

partitioned into 2m+ 1 intervals Jj for j = 1, 2, . . . , 2m+ 1 such that

• |J2i+1| = |I2i+1|, g1(J2i+1) ' g(I2i+1);

• g−1
1 (Y) consists of m legs on {J2i}, i.e., g−1

1 (Y) =
⋃m
i=1 J2i;

• ρ(g, g1) < ε;

• ∀y ∈ Y, g−1
1 (y) = {x1, . . . , xm}. If none of xi is a breakpoint, then the set of the absolute values of

the slopes is {2ki} where {ki} is given in (6).

Proof. Partition Y evenly into 2M intervals Ys for s = 1, 2, . . . , 2M where 2−M < ε
2 . Intervals I2i for

i = 1, 2, . . . ,m are correspondingly partitioned into 2M intervals {I2i,s} where g−1(Ys) =
⋃m
i=1 I2i,s. First

construct as follows g2 on g−1(Y1) =
⋃m
i=1 I2i,1 such that g2(I0

2i,1) = g(I0
2i,1) and g2(I1

2i,1) = g(I1
2i,1), and

∀y ∈ Y1, the set of the absolute values of the derivatives at g−1
2 (y) is {2ki} where {ki} is given in (6).
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Figure 10: Construction of g2. The original map g is shown in black and the new map g2 is in red. A
label next to an affine segment represents the absolute value of the slope of a replacing segment in red
or a replaced one in black. M = 1,m = 4. {li} = {2, 2, 2, 2}. {ki} = {1, 2, 3, 3}. Y1 is partitioned into
{Y1,1,Y1,2,Y1,3}. To replace

(
22, 22, 22, 22

)
of g, g2 uses

(
21, 22, 23, 23

)
for Y1,1,

(
23, 22, 23, 21

)
for Y1,2 and(

23, 22, 21, 23
)

for Y1,3. The same construction of g2 is employed for Y2 with horizontal shift for continuity.

The same g2 construction is then employed on I2i,s for s = 2, 3, . . . , 2M while keeping the continuity in
g2. See Figure 10.

Partition Y1 into a number of intervals {Y1,t} and perturb g as follows to obtain g2. On g−1(Y1,t),
replace the m legs of g with affine segments whose slopes keep the same signs as the original m segments
of g and take the absolute values equal to a permutation of {2ki}. That is, for i = 1, . . . ,m, replace 2li

with 2kjt(i) where jt(i) represents a permutation of Πt : {1, . . . ,m} → {1, . . . ,m}. The length of the i-th
leg on g−1(Y1,t) on the x-axis is thus 2−kjt(i) |Y1,t|. Permutation Πt used for different interval Y1,t can be
different. The task is to keep the total length of the i-th leg of g−1(Y1) on the x-axis unchanged, i.e., for
all i, ∑

t

2−kjt(i) |Y1,t| = 2−li |Y1| = |I2i,1|,

by employing appropriate {Y1,t} partition and permutations {Πt}. This problem is equivalent to Problem 1
by viewing a new, replacing affine segment as a pump at rate αi = 2−ki and an original, replaced affine
segment as a bucket with target βi = 2−li and viewing {Y1,t} partition as the partition of service time
intervals and {Πt} as the matching policy in the service intervals.

In (6), k1 ≤ k2 ≤ · · · ≤ km. Without loss of generality, suppose that l1 ≤ l2 ≤ · · · ≤ lm. Set {li} can
be partitioned into {li0+1, . . . , li1}, {li1+1, . . . , li2}, . . . , {lin−1+1, . . . , lin}, {lin+1} with i0 = 0, in = m − 1
such that

2−k1 = 2−li0+1 + · · ·+ 2−li1 ,

2−k2 = 2−li1+1 + · · ·+ 2−li2 ,

· · · (7)

2−kn = 2−lin−1+1 + · · ·+ 2−lin ,

2−kn+1 + · · ·+ 2−kin+1 = 2−lin+1 .
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As an example, suppose that {li} = {3, 3, 3, 3, 3, 3, 4, 4, 4, 4} and {ki} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 9}. It follows
that 2−1 = 2−3 + 2−3 + 2−3 + 2−3, 2−2 = 2−3 + 2−3, 2−3 = 2−4 + 2−4, 2−4 = 2−4 and 2−5 + 2−6 + 2−7 +
2−8 + 2−9 + 2−9 = 2−4. It can be shown from (7) that

∑i
j=1(2−kj − 2−lj ) ≥ 0 for i = 1, . . . ,m. From

Lemma 16, a solution of Problem 1 exists and can be readily derived from the constructive steps in the
proof of Lemma 16. An example is illustrated in Figure 10.

The g2 constructed above may not be an element in G, because the endpoints of {Y1,t} from the
solution of Lemma 16 are not necessarily all dyadic. If so, replace {Y1,t} with {Y ′1,t}, which are all dyadic,
while keeping permutations Πt unchanged and

∑
t |Y ′1,t| = |Y1| to become g1. Choose {Y ′1,t} sufficiently

close to {Y1,t} with

max
t

∣∣∣|Y1,t| − |Y ′1,t|
∣∣∣ < ε

2
· 1

2maxi(ki,li)
· 1

m
. (8)

Unlike g2, |g−1
1 (Y1)| is not necessarily equal to |g−1(Y1)| on every leg. Because

∑m
i=1 2−ki =

∑m
i=1 2−li ,

the total of |g−1
1 (Y1)| on all the m legs is equal to that of |g−1(Y1)|. That is,∑

t

2−kjt(i) |Y ′1,t| = 2−li |Y1|

may not hold for all i; however,

m∑
i=1

∑
t

2−kjt(i) |Y ′1,t| =
m∑
i=1

2−li |Y1|. (9)

To complete the proof, partition [0, 1] into 2m + 1 intervals {Jj} such that g−1
1 (Y) =

⋃m
i=1 J2i and

|J2i+1| = |I2i+1|. Specifically, let |J1| = |I1|. For i = 1, . . . ,m, let

|J2i| =
2M∑
s=1

∑
t

2−kjt(i) |Y ′s,t| (10)

and let J2i+1 be a horizontally shifted version of I2i+1 to accommodate small discrepancy between |I2i|
and |J2i|. From (9) and (10),

m∑
i=1

|J2i| =
m∑
i=1

2M∑
s=1

∑
t

2−kjt(i) |Y ′s,t| =
2M∑
s=1

m∑
i=1

∑
t

2−kjt(i) |Y ′s,t| =
2M∑
s=1

m∑
i=1

2−li |Ys| =
m∑
i=1

|I2i|.

Thus,
2m+1∑
j=1

|Jj | =
m∑
i=1

|J2i|+
m∑
i=0

|J2i+1| =
m∑
i=1

|I2i|+
m∑
i=0

|I2i+1| = 1.

Therefore, {Jj} is a valid partition of [0, 1]. See Figure 11 for an illustration.

Map g1 on
⋃m
i=1 J2i has been constructed in the above. Next, let g1(J2i+1) ' g(I2i+1) for i =

0, . . . ,m. From (8), the maximum discrepancy between g1 and g2 caused by the replacement of {Y1,t} on⋃m
i=1 I2i by {Y ′1,t} on

⋃m
i=1 J2i and due to the horizontal shifts from {I2i+1} to {J2i+1} is ε

2 . Hence, by
construction, g1 ∈ G and ρ(g, g1) < ρ(g, g2) + ρ(g2, g1) < ε

2 + ε
2 = ε.

Lemma 17 states that m legs of affine segments with the absolute values of the slopes equal to any
set {2li} can be approximated by m legs of piecewise affine segments with the absolute values of the slopes
{2ki} with {ki} given by (6). Set of integers {ki} given by (6) is unique in the sense that by the analogy
of Problem 1, any target amounts {2−li} are achievable by pumping rates {2−ki} and the converse does
not hold. Targets {2−ki} are not achievable by any different pumping rates {2−li}, because the difference
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Figure 11: Construction of g1. Map g1 is obtained by slightly perturbing g2 obtained in Figure 10 such
that all the breakpoints of g1 are dyadic. Sets {Ii} and {Ji} are the partitions of [0, 1] by g2 and g1

respectively. |J2i+1| = |I2i+1| for i = 1, . . . ,m. It is not necessary that |J2i| = |I2i| for all i because all
the breakpoints of g2 are not necessarily dyadic; however,

∑m
i=1 |I2i| =

∑m
i=1 |J2i|.

between the maximum and minimum achievable amounts is upper-bounded by maxi 2−li−mini 2−li , which
is smaller than what is required by the targets maxi 2−ki −mini 2−ki = 2−1 − 2−m+1.

The slope of an affine segment of g ∈ G has to be in the form of ±2k for non-negative integer k. If
g is required to be LEO, then k must be positive, and as a result, the entropy must be at least equal to
1. If g has m legs on [0, 1], from Lemma 15, the minimum value of entropy cλ(g) is given by

cmin(m) =

m−1∑
i=1

i2−i + (m− 1)2−(m−1). (11)

It is easy to confirm that cmin(m) is an increasing sequence of m and limm→∞ cmin(m) = 2. Therefore,
for any m,

cmin(m) < 2. (12)

Theorem 18. For any c ∈ [2,∞) and ε > 0, the subset of Markov LEO maps in G whose entropy is
within ε of c is dense in C(λ).

Proof. Let h ∈ C(λ). We will show that g ∈ G exists such that g is Markov and LEO, ρ(h, g) < ε and
|c− cλ(g)| < ε.

By Theorem 10, g0 ∈ G exists such that g0 is Markov and LEO, and ρ(h, g0) < ε
3 . Partition [0, 1]

into n intervals {Yi} such that g−1
0 (Yi) has mi legs for i = 1, . . . , n. Applying Lemma 17 to all the n

intervals, g1 ∈ G exists such that ρ(g0, g1) < ε
3 and the entropy of g1 is given by

cλ(g1) =

n∑
i=1

cmin(mi)λ(Yi) ≤ 2

n∑
i=1

λ(Yi) = 2. (13)
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Figure 12: Increase entropy by replacing an affine segment (black) with a window perturbation (red). In
this figure, l = 3.

The inequality is because of (12).

Consider any c ≥ 2. If
∣∣c− cλ(g1)

∣∣ ≤ ε, then let g = g1 and the proof is complete. Otherwise,∣∣c− cλ(g1)
∣∣ > ε. From (13), c−cλ(g1) > ε. Select any affine segment of g1 of dyadic endpoints and dyadic

length ∆x and replace it with a window perturbation to obtain g, as shown in Figure 12. Specifically,
suppose that the selected affine segment is of slope 2k. Let ∆x < 2−k · ε3 . Thus, ρ(g1, g) < ε

3 . Hence,
ρ(h, g) < ρ(h, g0) + ρ(g0, g1) + ρ(g1, g) < ε.

The window perturbation consists of 2l − 1 legs, where each of the first 2l − 2 legs is of slope of
absolute value 2k+l and the last leg is of slope of absolute value 2k+l−1, for integer l. The increase in
entropy from g1 to g on ∆x is given by ∆x · (l − 2−l+1). Thus,

cλ(g) = cλ(g1) + ∆x · (l − 2−l+1).

Select ∆x sufficiently small and l sufficiently large such that∣∣∣∆x · (l − 2−l+1)−
(
c− cλ(g1)

)∣∣∣ < ε.

Hence, |cλ(g)− c| < ε, which completes the proof.

The authors in [3, Proposition. 21] prove that for every c ∈ (0,∞), the subset of Markov LEO PA(λ)
is dense in C(λ) with cλ(h) = c. Comparison with Theorem 18 shows that because the breakpoints in
G are constrained to be dyadic, cλ(g) can only be within any ε neighborhood of an entropy target c but
is not guaranteed to be exactly equal to c. Moreover, to be LEO, the absolute value of the slope of any
affine segment can only take a discrete value of 2k for positive integer k in G, but can be any real number
no smaller than 1 in PA(λ). Given a target map h, the smallest entropy value achievable by the dense
subset of G is thus greater than what is achievable by that of PA(λ).

7 Decomposition

Recall that F is generated by two generator maps. Theorem 33 in this section is to show that any
map in G can be expressed as a composition of a finite number of basic maps in G and the generators in
F. To this end, first Theorem 28 shows that any map in G is a composition of maps in F and window
perturbations, and then all window perturbations are shown to be generated by a few basic maps in G.
On the other hand, Theorem 35 shows that unlike F, G is not finitely generated.

First, consider type I breakpoints.
Lemma 19. Let {I1 < · · · < I2n+1} be a partition of [0, 1]. Let g ∈ G. Suppose that for i = 1, . . . , n, g
is an affine segment on I2i whose slope is (−1)pi2ki, and Y = g(I2i) is the same for all i. If integers {li}

Page 22 of 50



PRIMES-USA 2020 Research Report William Li

exist such that
n∑
i=1

2−ki =
n∑
i=1

2−li , (14)

then f1 ∈ F, g1 ∈ G and another partition of [0, 1] {J1 < · · · < J2n+1} exist such that composition
g1(f1(x)) = g(x) for any x ∈ [0, 1], g1(Jj) ' g(Ij) for any j, and

• for odd j, |Jj | = |Ij |;

• for even j = 2i, g1 on J2i is an affine segment whose slope is equal to (−1)pi2li.

Proof. The set of intervals {Jj} is completely defined once their lengths are defined. Specifically, let

|Jj | =

{
|Ij |, for odd j;
|Y| · 2−li , for even j = 2i.

(15)

The endpoints of any interval Jj are dyadic by construction. To show the above partition is a valid one,
note that for i = 1, 2, . . . , n,

|I2i| = |Y| · 2−ki , |J2i| = |Y| · 2−li

By (14)
====⇒

n∑
i=1

|I2i| =

n∑
i=1

|J2i| =⇒
2n+1∑
j=1

|Jj | =
2n+1∑
j=1

|Ij | = 1.

Construct g1 as follows. With odd j, for x ∈ Jj , let g1(x) = g(x−dj), where dj = J 0
j −I0

j . For even
j = 2i, the graph of g1(x) on Jj is the affine segment that connects the right endpoint of g1 on Jj−1 and
the left endpoint of g1 on Jj+1. Thus by construction (15), the slope of the affine segment is (−1)pi2li .
Moreover, by (14), g1 is λ-preserving. Hence, g1 ∈ G.

Construct f1 as follows. Set f1(0) = 0. For j = 1, 2, . . . , 2n+ 1 and x ∈ Ij , the slope of f1 is set to
1 for odd j and to 2ki−li for even j = 2i. By construction, the breakpoints of f1 are dyadic and all the
slopes are in the form of 2m for integer m. To validate that f1 ∈ F, note that

|I2i| = |Y| · 2−ki =⇒ |f1(I2i)| = |Y| · 2−ki · 2ki−li = |Y| · 2−li

By (14)
====⇒

n∑
i=1

|f1(I2i)| =
n∑
i=1

|I2i| =⇒
2n+1∑
j=1

|f1(Ij)| =
2n+1∑
j=1

|Ij | = 1

Finally, to show that g1(f1) = g, note that by construction of f1 and g1 that for j = 1, 2, . . . , 2n+ 1,

f1(Ij) ' Jj , g1(Jj) ' g(Ij) =⇒ g1(f1(Ij)) ' g(Ij)

Hence, g1(f1) = g.

Corollary 20. Let {I ′1 < · · · < I ′2n+1} be a partition of [0, 1]. Let g ∈ G. Suppose that for i = 1, . . . , n,
g is a piecewise affine segment containing a single type I breakpoint Ai on I ′2i. Suppose that Y = g(I ′2i)
is the same for all i and that Ai,y is the same for i = 1, . . . , n. Let (−1)pi2li be the slope of the affine
segment on g−1([Y0, Ai,y]) ∩ I ′2i and (−1)pi2ki be the slope of the affine segment on g−1([Ai,y,Y1]) ∩ I ′2i.
If (14) holds, then f1 ∈ F, g1 ∈ G and another partition of [0, 1] {J ′1 < · · · < J ′2n+1} exist such that
composition g1(f1(x)) = g(x) for any x ∈ [0, 1],

• for odd j, |I ′j | = |J ′j | and g1(J ′j ) ' g(I ′j);

• for even j, g1 on J ′j is an affine segment.
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Figure 13: Use of Lemma 19 and Corollary 20. The red segments in g are replaced by those in g1 where
g = g1 ◦ f1. As a result, type I breakpoints A1, A2, A3 of g are eliminated in g1 because the left and right
derivatives are the same at A′1, A

′
2, A

′
3. The number next to an affine segment represents the absolute

value of the slope.

Proof. By Lemma 19, one can replace the affine segment of g on g−1([Ai,y,Y1]) ∩ I ′2i with another one
whose slope is equal to (−1)pi2li for i = 1, 2, . . . , n, while keeping the slope of affine segment unchanged
on g−1([Y0, Ai,y]) ∩ I ′2i. As a result, g1 on [I ′2i

0, I ′2i
1] is an affine segment with no type I breakpoint

inside.

Figure 13 illustrates the use of Lemma 19 and Corollary 20.

By Corollary 20, g can be generated by g1, which eliminates certain type I breakpoints of g. In
particular, the following corollary holds.
Corollary 21. Let {Ii} for i = 1, . . . ,m be a set of intervals with mutually disjoint interiors. Let g ∈ G.
If g is monotone on Ii for all i, Y = g(Ii) is the same for all i, and g−1(Y) =

⋃m
i=1 Ii, then all the type

I breakpoints in the interiors of {Ii} can be eliminated.

Proof. ∀y ∈ Y, g−1(Y) consists of one point on each Ii. If the derivative exists at all points of g−1(y),
then (2) holds and so does (14) with a common set of {li} for any y. The set of the affine segments in
the neighborhood of g−1(y), i.e., g−1([y − δ, y + δ]) for some δ > 0, whose slopes have absolute values
equal to 2ki(y) on Ii can be replaced by affine segments with absolute values of slopes equal to 2li with
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∑m
i=1 2−li = 1. Set {2li} remain the same for all y ∈ Y. Thus, by Corollary 20, the piecewise affine segment

on each Ii is replaced by an affine segment and any breakpoint in the interior of Ii is eliminated.

Corollary 21 covers the case of g−1(g(
⋃m
i=1 Ii)) =

⋃m
i=1 Ii. The opposite case is where ∀y ∈ g(

⋃m
i=1 Ii),

g−1(y) 6⊂
⋃m
i=1 Ii, which is addressed next.

Lemma 22. Let {I1 < · · · < I2m+1} be a partition of [0, 1]. Suppose that g ∈ G is an affine segment
on I2i and Y = g(I2i) is the same for i = 1, . . . ,m. If ∀y ∈ Y, g−1(y) 6⊂

⋃m
i=1 Ii, then f1 ∈ F, g1 ∈ G

and another partition of [0, 1] {J1 < · · · < J2m+1} exist such that composition g1(f1(x)) = g(x) for any
x ∈ [0, 1], g1(J2i) ' g(I2i) and g1 is an affine segment on J2i with the absolute value of the slope being
2ki where

∑m
i=1 2−ki = 2−K for some positive integer K.

Proof. Partition Y into intervals {Yj}, j = 1, 2, . . . , n, such that no breakpoint exists whose y-coordinate
falls in the interior of any Yj , i.e., @ breakpoint B such that By ∈ (Y0

j ,Y1
j ). Consider g−1(Yj). Let

g−1(Yj) = {Ij,1, Ij,2, . . . , Ij,m, Ij,m+1, . . . , Ij,m+nj} with mutually disjoint interiors, where interval Ij,i ⊂
I2i for i = 1, . . . ,m. By the hypothesis of the lemma, nj ≥ 1. Because Y =

⋃n
j=1 Yj , it follows that for

i = 1, . . . ,m,
n⋃
j=1

Ij,i = I2i. (16)

The graph of g is affine on every Ij,i because no breakpoint exists on Y◦j . Let 2kj,i be the absolute
value of the slope of the affine segment on Ij,i. Because g is λ-preserving,

m+nj∑
i=1

2−kj,i = 1. (17)

Let
m∑
i=1

2−kj,i = L · 2−K , (18)

where L is an odd integer. Because the graph of g is an affine segment on I2i, kj,i does not depend on j
when i = 1, . . . ,m, which is the reason that L,K do not have subscript j in (18).

Assume that L > 1. The following iterative procedure is employed to decrement L by adjusting kj,i
where 1 ≤ i ≤ m+ nj while satisfying (17) so that eventually L = 1.

From (18),
∑m

i=1 2−kj,i+K = L. Focus on kj,i that is greater than or equal to K and arrange them
in an increasing order. Add such 2−kj,i+K terms one-by-one until the sum reaches 1. Therefore, a
subset of {1, 2, . . . ,m}, denoted by Φ1, exists such that

∑
i∈Φ1

2−kj,i = 2−K . Because L − 1 is even, let∑m
i=1,i 6∈Φ1

2−kj,i = (L− 1) · 2−K = L′ · 2−K′ , where 0 < K ′ < K and L′ is odd. L′ < L. Similarly, a subset

of {1, 2, . . . ,m} \ Φ1, denoted by Φ2, exists such that
∑

i∈Φ2
2−kj,i = 2−K

′
. Now let

k′j,i =


kj,i +K ′ + 1−K, i ∈ Φ1;
kj,i + 1, i ∈ Φ2;
kj,i, i ∈ {1, 2, . . . ,m} \ (Φ1 ∪ Φ2).

(19)

Therefore,

m∑
i=1

2−k
′
j,i =

∑
i∈Φ1

+
∑
i∈Φ2

+
∑

i∈{1,2,...,m}\(Φ1∪Φ2)

 2−k
′
j,i = 2−K ·2K−K′−1+2−K

′ ·2−1+(L′−1)·2−K′ = L′·2−K′ .
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Figure 14: Illustration of the proof of Lemma 22. The graphs of g on {I2i} and g1 on {J2i} are drawn in
red. The graphs of g on g−1(Y)∩ ([0, 1] \

⋃m
i=1 I2i) and g1 on g−1

1 (Y)∩ ([0, 1] \
⋃m
i=1 J2i) are drawn green.

m = 2, n = 2, n1 = 7, n2 = 5. g on
⋃m
i=1 I2i satisfies 2−2 + 2−3 = 3 · 2−3 in (18). g1 on

⋃m
i=1 J2i satisfies

2−3 + 2−3 = 1 · 2−2 in (21).

On the other hand,
∑m+nj

i=m+1 2−kj,i = 1−L ·2−K . Similarly, a subset of {m+1,m+2, . . . ,m+nj}, denoted

by Ψ, exists such that
∑

i∈Ψ 2−kj,i = 2−K . Now let

k′j,i =

{
kj,i − 1, i ∈ Ψ;
kj,i, i ∈ {m+ 1,m+ 2, . . . ,m+ nj} \Ψ.

(20)

Therefore,

m+nj∑
i=m+1

2−k
′
j,i =

∑
i∈Ψ

+
∑

i∈{m+1,m+2,...,m+nj}\Ψ

 2−k
′
j,i = 2−K · 21 + (1− L · 2−K − 2−K) = 1− L′ · 2−K′ .

From {kj,i} to {k′j,i}, L drops to L′. The above process continues until L = 1. Because kj,i does not
depend on j when i = 1, 2, . . . ,m, neither does k′j,i in (19). This property remains in the process.

When the process ends, for any j
m∑
i=1

2−k
′′
j,i = 2−K

′′
. (21)

Because
m+nj∑
i=1

2−k
′′
j,i =

m+nj∑
i=1

2−kj,i = 1, (22)

apply Lemma 19 for all j one-by-one. Then f1 ∈ F, g1 ∈ G and another partition of [0, 1] {J1 < · · · <
J2m+1} exist such that composition g1(f1(x)) = g(x) for any x ∈ [0, 1]. Just like (16), for i = 1, . . . ,m,
J2i can be decomposed to J2i =

⋃n
j=1 Jj,i such that g1(Jj,i) ' g(Ij,i). Thus, g1(J2i) ' g(I2i). The graph

of g1 is an affine segment on Jj,i with the absolute value of the slope being 2k
′′
j,i , which does not depend

on j when i = 1, 2, . . . ,m. Thus, g1 is an affine segment in every J2i. The absolute values of the slopes
of these affine segments for i = 1, . . . ,m satisfies (21). This completes the proof.
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(a) (b)

Figure 15: Use of Lemma 23: (a) the case of odd m and (b) the case of even m. A few type II breakpoints
in g(f(x)) are eliminated in g(x).

Figure 14 shows an example to illustrate the proof of Lemma 22.

Next, consider type II breakpoints. Let w be an m-fold window perturbation on interval I and
w(x) = x or w(x) = 1 − x if x ∈ [0, 1] \ I to continuously connect the end points of the window
perturbation. Abusing the terminology, we call w a window perturbation too. Let 2ki be the absolute
value of the slope of the i-th leg of the m-fold window perturbation w for i = 1, 2, . . . ,m.

∑m
i=1 2−ki = 1

to be λ-preserving.

Suppose that g1 on I is an affine segment, whose slope has an absolute value of 2K . Then composition
g1(w1) is identical to g1 on [0, 1] \ I. On I the affine segment of g1 is replaced by an m-fold window
perturbation, whose i-th leg has an absolute value of the slope 2ki+K . The ratio of the slopes of any two
legs of g1(w1) is the same as that of the corresponding legs of w1. Lemma 23 follows.
Lemma 23. Suppose that g on interval I is an m-fold window perturbation. Let 2ki+K be the absolute
value of the slope of the i-th leg. If

∑m
i=1 2−ki = 1, then g1 ∈ G and an m-fold window perturbation map

w1 exist such that composition g1(w1(x)) = g(x) for any x ∈ [0, 1], g1([0, I0]) ' g([0, I0]), g1([I1, 1]) '
g([I1, 1]), and g1 is an affine segment on I whose slope has the absolute value of 2K .

Figure 15 shows the use of Lemma 23. Interval I can be anywhere on [0, 1] for odd m. For even m,
I must cover at least one endpoint; that is, I0 = 0 or I1 = 1.

A special case of Lemma 23 is when K = 0. Because
∑m

i=1 2−ki = 1, ∀y ∈ g(I), g−1(y) ⊂ I. Thus,
g−1(g(I)) = I. This case is similar to what Corollary 21 covers. On the other hand, just like Lemma 22,
Lemma 24 covers the case where ∀y ∈ g(

⋃m
i=1 Ii), g−1(y) 6⊂

⋃m
i=1 Ii. Specifically, in Lemma 22 when I2i,

for i = 1, . . . ,m, are adjacent, i.e., each of I3, I5, . . . , I2m−1 is reduced to a single point, the m affine
segments form a m-fold window perturbation and can be further simplified as stated in Lemma 24.
Lemma 24. Suppose that in Lemma 22,

⋃m
i=1 I2i is an interval, denoted by I. That is, g is an m-fold

window perturbation on I. Then f1 ∈ F, g1 ∈ G, an m-fold window perturbation map w1 and another
partition of [0, 1] {J1 < · · · < J2m+1} exist such that composition g1(w1(f1(x))) = g(x) for any x ∈ [0, 1],
and

⋃m
i=1 J2i is an interval on which g1 is an affine segment.

Proof. Maps f1, g2 and interval partition {J1 < · · · < J2m+1} are obtained by Lemma 22 such that
g2(f1) = g. Each of J3,J5, . . . ,J2m−1 is reduced to a single point just like I3, I5, . . . , I2m−1. Thus,⋃m
i=1 J2i is an interval, denoted by J . In the proof of Lemma 22, g2 on J is an m-fold window
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Figure 16: Use of Lemma 24. The three solid red affine segments in the right figure represent g1. The
leftmost one is replaced by three dashed red segments due to a window perturbation w1 with m = 3. The
resultant five red segments, dashed and solid, are horizontally adjusted by f1 to generate g in the left
figure. Two type II breakpoints of g are eliminated in g1.

Figure 17: Illustration of generalized m-fold window perturbation

perturbation, just like g on I. The difference between the two m-fold window perturbations is that
the slopes of their legs are described in (18) and (21) respectively. Now let w1 be an m-fold window

perturbation on J where the slope of the i-th leg is (−1)i+12k
′′
j,i−K′′ for i = 1, 2, . . . ,m. Modify g2 to

become g1 where the m-fold window perturbation on J of g2 is replaced by an affine segment of g1 whose
slope has an absolute value of 2K

′′
. The sign of the slope is such that g1 is continuous at the endpoints

of J . By Lemma 23, g2 = g1(w1). Therefore, g1(w1(f1)) = g.

Figure 16 illustrates the use of Lemma 24. By Lemma 24, g can be generated by g1 by eliminating
m− 1 type II breakpoints.

In Lemma 23 and Lemma 24, g has to be an m-fold window perturbation on I. The m-fold window
perturbation consists of m legs each of which is an affine segment. One can generalize the notion of
m-fold window perturbation such that it consists of m legs each of which itself consists of piecewise affine
segments. The more precise definition is given below.
Definition 13 (Generalized Window Perturbation). A generalized m-fold window perturbation g on I is
defined as follows. Suppose that I is partitioned into {I1 < I2 < · · · < Im}. g(Ii) ' g(Ij) if both i and
j are either odd or even and g(Ii) ' g(Îj) if one of i, j is even and the other is odd where Îj represents
Ij flipped horizontally. Each Ii is referred to as a component interval of I.

Figure 17 provides two examples of the generalized m-fold window perturbations, one for an even m
and the other for an odd m.
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Corollary 25. Lemma 23 and Lemma 24 hold if g is a generalized m-fold window perturbation instead
of an m-fold window perturbation on interval I, except that in the conclusion g1 is a piecewise affine
segment, instead of an affine segment, on J where g1(J ) ' g(I0) or g1(J ) ' g(Î0) with I0 being one
component interval of I. Whether g1(J ) ' g(I0) or g1(J ) ' g(Î0) depends on the continuity of g1.

Recall that Corollary 21 and Lemma 22 consider two cases respectively: either ∀y ∈ g(I), g−1(y) ⊂ I
or ∀y ∈ g(I), g−1(y) 6⊂ I. Corollary 26 addresses a mixed case using the notion of generalized window
perturbations.
Corollary 26. Let g ∈ G. Let interval I ⊂ [0, 1] and Y = g(I). Suppose that I =

⋃m
i=1 Ii where {Ii} are

m intervals with mutually disjoint interiors and g is monotone on every Ii. Suppose that c ∈ (Y0,Y1)
exists such that ∀y ∈ [Y0, c), g−1(y) ⊂ I, and ∀y ∈ [c,Y1], g−1(y) 6⊂ I. Then f1 ∈ F, g1 ∈ G, and an
m-fold window perturbation map w1 and interval J exists such that g = g1(w1(f1)), the graph of g1 on J
consists of two affine segments connected by a type I breakpoint, and g1([0,J 0]) ' g([0, I0]), g1([J 1, 1]) '
g([I1, 1]).

Proof. Because g is monotone on every Ii, Ii can be partitioned into Ii = Ii,0 ∪ Ii,1 where g(Ii,0) =
[Y0, c] and g(Ii,1) = [c,Y1]. Combining Corollary 21 and Lemma 22, f1 ∈ F, g2 ∈ G and interval
J =

⋃m
i=1(Ji,0 ∪ Ji,1), where {Ji,0,Ji,1} are intervals with mutually disjoint interiors, exist such that

g2(f1) = g, and g2([0,J 0]) ' g([0, I0]), g2([J 1, 1]) ' g([I1, 1]). For i = 1, 2, . . . ,m, the graph of g2 on
Ji,1 is an affine segment whose slope has the absolute value 2k

′′
i with

∑m
i=1 2−k

′′
i = 2−K

′′
for some positive

integer K ′′, and the graph of g2 on Ji,0 is an affine segment with the absolute value of the slope equal
to 2k

′′
i −K′′ . Recall that

∑m
i=1 2−k

′′
i +K′′ = 1. Hence, g2 is a generalized m-fold window perturbation on

J where Ji,0 ∪ Ji,1 is a component interval. By Corollary 25, an m-fold window perturbation w1 on J
exists such that g2 = g1(w1). Interval J can be partitioned to two intervals J = J0 ∪ J1 with mutually
disjoint interiors such that the graph of g1 on J0 is affine with absolute value of the slope equal to 1 and
the graph of g1 on J1 is affine with absolute value of the slope equal to 2K

′′
.

Corollary 26 holds under a slightly modified hypothesis: ∀y ∈ [Y0, c], g−1(y) 6⊂ I, and ∀y ∈ (c,Y1],
g−1(y) ⊂ I. One can further extend the result to a scenario where c1, c2 ∈ (Y0,Y1) exist with c1 < c2

such that ∀y ∈ [Y0, c1) ∪ (c2,Y1], g−1(y) ⊂ I, and ∀y ∈ [c1, c2], g−1(y) 6⊂ I. The same conclusion
as in Corollary 26 holds except that g1 on I consists of three affine segments connected by two type I
breakpoints.

In Lemma 22 and Lemma 24 g is required to be an m-fold window perturbation on I. This
requirement is relaxed in Lemma 27.
Lemma 27. Replacing “g ∈ G is an affine segment on interval I2i” in Lemma 22 and replacing “g is an
m-fold window perturbation on interval I” in Lemma 24 by “let g be monotone on interval I2i for all i”,
the conclusions in Lemma 22 and in Lemma 24 still hold.

Proof. The difference from Lemma 22 and Lemma 24 is that g is not necessarily an affine segment
on I2i. As in the proof of Lemma 22, partition interval Y into intervals {Yj}, j = 1, 2, . . . , n such
that no breakpoint exists whose y-coordinate falls in the interior of any Yj . Consider g−1(Yj). Let
g−1(Yj) = {Ij,1, Ij,2, . . . , Ij,m, Ij,m+1, . . . , Ij,m+nj}. By the hypothesis of the lemma, interval Ij,i ⊂ I for
i = 1, . . . ,m, and interval Ij,i ∩ I = ∅ for i = m + 1, . . . ,m + nj and nj ≥ 1. Let 2kj,i be the absolute
value of the slope of the affine segment on Ij,i.

Let j∗ = arg minj=1,2,...,n nj . If arg minj=1,2,...,n nj is not unique, then pick any one of them as j∗.
For j = 1, . . . , n, let

k′′j,i =


kj∗,i, i = 1, 2, . . . ,m+ nj∗ − 1;
kj∗,m+nj∗ + i−m− nj∗ + 1, i = m+ nj∗ ,m+ nj∗ + 1, . . . ,m+ nj − 1;

kj∗,m+nj∗ + nj − nj∗ , i = m+ nj .
(23)
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Figure 18: Proof of Theorem 28. In (c), n = 5.

It is easy to verify that (22) holds. As in the proof of Lemma 22, one can find f1 ∈ F, g1 ∈ G and a
partition of [0, 1] {J1 < · · · < J2m+1}, where J2i is further partitioned to J2i =

⋃n
j=1 Jj,i, such that

g1(f1(x)) = g(x), g1(Jj,i) ' g(Ij,i), and the absolute value of the slope changes from 2kj,i of g on Ij,i to

2k
′′
j,i of g1 on Jj,i for i = 1, . . . , nj and j = 1, . . . , n, and remains unchanged from g on [0, 1] \

⋃m
i=1 I2i to

g1 on [0, 1] \
⋃m
i=1 J2i.

Note from the preceding construction (23) that k′′j,i does not depend on j when i = 1, 2, . . . ,m,
because nj∗ ≥ 1. Thus, the graph of g1 on J2i is one affine segment and Lemma 22 is applicable to g1

and the conclusion in Lemma 22 still holds.

Moreover, if
⋃m
i=1 I2i is an interval, then as in the proof of Lemma 24,

⋃m
i=1 J2i is an interval too,

denoted by J . The graph of g1 on J is an m-fold window perturbation. Hence, Lemma 24 is applicable
to g1 and the conclusion in Lemma 24 still holds.

In summary, Lemma 19 to Lemma 27 can be used to eliminate type I and type II breakpoints. The
following theorem shows that for any g ∈ G, all interior breakpoints can be eliminated by repetitively
applying these lemmas and corollaries. The only G maps that have no interior breakpoints are the trivial
maps g0,+ and g0,−.
Theorem 28. Let g ∈ G. Then g is equal to the composition of a trivial map followed by a combination
of F maps and window perturbations.

Proof. Suppose that Lemma 19 to Lemma 27 have been applied to eliminate the breakpoints of g such
that g = g1 ◦ f1 ◦ w1 ◦ f2 ◦ w2 ◦ · · · where g1 ∈ G and f1 ◦ w1 ◦ f2 ◦ w2 ◦ · · · represent a combination of
F maps and window perturbations. Assume that no more interior breakpoints in g1 can be eliminated
using the preceding lemmas. Next we show that g1 has no interior breakpoints.

Denote by A0 the point of g1 at A0,x = 0. Without loss of generality, suppose that the derivative
at A0 is positive. As x increases from 0, g1(x) increases until it reaches another point A1 where g1 stops
increasing. If A1,x = 1, then g1 = g0,+ and the proof is done. Otherwise, A1 must be a type II breakpoint
and the right derivative is negative. As x increases from A1,x, g1(x) decreases until it reaches another
type II breakpoint A2.

First, suppose that A2,y ≤ A0,y. Then a unique point B2 exists where A1,x < B2,x < A2,x and
B2,y = A0,y, as shown in Figure 18(a). Consider the following three cases illustrated respectively by three
dash lines coming out of point A2 in Figure 18(a).

• Assume max(g1([A2,x, 1])) < A0,y. Then ∀y ∈ [A0,y, A1,y], @x ∈ (B2,x, 1] such that g1(x) = y. That
is, g−1

1 (y) consists of two points x1, x2 where x1 ∈ [A0,x, A1,x], x2 ∈ [A1,x, B2,x]. Thus, A0A1 and
A1B2 must be affine segments with slopes 2,−2 respectively. By Lemma 23, breakpoint A1 can be
eliminated with a 2-fold window perturbation. Contradiction.
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• Assume A0,y ≤ max(g1([A2,x, 1])) ≤ A1,y. Let C1, C2 be points between A0, A1 and between A1, B2

respectively such that C1y = C2,y = max(g1([A2,x, 1])). Then ∀y ∈ (max(g1([A2,x, 1])), A1,y], @x ∈
(B2,x, 1] such that g1(x) = y. Thus, C1A1 and A1C2 must be affine segments with slopes 2,−2
respectively. On the other hand, ∀y ∈ [A0,y,max(g1([A2,x, 1]))], ∃x ∈ (B2,x, 1] such that g1(x) =
y. By Lemma 22, one can eliminate all type I breakpoints, if any, between A0, C1 and between
C2, B2. By Lemma 19, make A0C1 and C2B2 affine segments with the same slope except for the
sign. Therefore, the graph of g1 on A0C1A1C2B2 is a generalized 2-fold window perturbation. By
Corollary 25, breakpoint A1 can be eliminated with a 2-fold window perturbation. Contradiction.

• Assume max(g1([A2,x, 1])) > A1,y. By Lemma 22, one can eliminate all type I breakpoints, if any,
between A0, A1 and between A1, B2. By Lemma 19, make A0A1 and A1B2 affine segments with
the same slope except for the sign. Therefore, the graph of g1 on A0A1B2 is a 2-fold window
perturbation. By Lemma 23, breakpoint A1 can be eliminated with a 2-fold window perturbation.
Contradiction.

In the following, suppose that A2,y > A0,y. Then a unique point B1 exists where A0,x < B1,x < A1,x

and B1,y = A2,y. As x increases from A2,x, g1(x) increases until it reaches another type II breakpoint
A3. If A3,y ≥ A1,y, then a unique point B3 exists where A2,x < B3,x < A3,x and B3,y = A1,y, as shown
in Figure 18(b). By Corollary 26 and Lemma 27, type II breakpoints A1 and A2 can both be eliminated.
Contradiction.

Therefore, A3,y < A1,y. The process continues as shown in Figure 18(c). For odd i, type II breakpoint
Ai is facing down and Ai,y > Ai+2,y. For even i, type II breakpoint Ai is facing up and Ai,y < Ai+2,y.
A2i+1,y > A2j,y for any i, j. Suppose that An is the endpoint where An,x = 1. min(An−1,y, An−2,y) <
An,y < max(An−1,y, An−2,y). Therefore, a unique point Bn−1 exists where An−2,x < Bn−1,x < An−1,x and
Bn−1,y = An,y. By Lemma 22, one can eliminate all type I breakpoints, if any, between Bn−1, An−1 and
between An−1, An. By Lemma 19, make Bn−1An−1 and An−1, An affine segments with the same slope
except for the sign. Therefore, the graph of g1 on Bn−1An−1An is a 2-fold window perturbation. By
Lemma 23, breakpoint An−1 can be eliminated with a 2-fold window perturbation. Contradiction.

Hence, we conclude that g1 has no interior breakpoints.

Because any F map can be generated by the two generators defined in (1), it suffices to study the
basic maps in G to generate the window perturbations thanks to Theorem 28.

Denote by wm,J an m-fold window perturbation map where wm,J (x) = x for x ∈ [0, 1] \ J and
wm,J (x) is an m-fold window perturbation on J . Specifically, let {J1 < J2 < · · · < Jm} be a partition of
J . The graph of wm,J is an affine segment on each Ji with slope (−1)i−12ki where

∑m
i=1 2−ki = 1. The

graph of wm,J on Ji is referred to as the i-th leg of wm,J . Map wm,J defined here is from the lower left
corner to the upper right corner. Map 1 − wm,J , which is from the upper left corner to the lower right
corner, can be generated by g0,−(wm,J ).
Lemma 29. Any (m + 2)-fold window perturbation map wm+2,J on interval J is equal to wm,J (w(f))
where w is a 3-fold window perturbation w and f ∈ F.

Proof. Let wm,J be a m-fold window perturbation. Let Jm be the interval corresponding to the m-th leg
of wm,J . Let w3,Jm be a 3-fold window perturbation on Jm with the absolute values of the slopes being
2qj for j = 1, 2, 3 on the three legs respectively. By definition,

∑3
j=1 2−qj = 1.

By construction, wm,J (w3,Jm) is an (m + 2)-fold window perturbation map on interval J where
wm,J (w3,Jm)(x) = wm,J (x) for x ∈ [0, 1] \ Jm and wm,J (w3,Jm)(x) consists of three legs on Jm whose
slopes are (−1)m−1+j2km+qj for j = 1, 2, 3. Interval Jm is thus partitioned to three intervals Jmj

corresponding to the three legs.
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Figure 19: Construction of w3,J with w̄3,[ 1
4
, 1
2

].

Let J ′1 < J ′2 < · · · < J ′m+2 be the partition of J of any desired (m + 2)-fold window perturbation
wm+2,J , which is an affine segment on each J ′i with slope (−1)i−12li . Because

m+2∑
i=1

2−li =
m−1∑
i=1

2−ki +
3∑
j=1

2−km−qj = 1,

by Lemma 19, f ∈ F exists to map J ′i to Ji for i = 1, . . . ,m−1 and J ′m−1+j to Jmj for j = 1, 2, 3 without
altering anything on [0, 1] \ J . Hence, wm+2,J = wm,J (w3,Jm(f)).

From Lemma 29, any m-fold window perturbation wm,J can be generated by repetitively applying
3-fold window perturbations on appropriate intervals of J to 1-fold w1,J for odd m or 2-fold window
perturbation w2,J for even m. The 1-fold window perturbation w1,J is simply g0,+ or g0,−. Next we
show that all 3-fold or 2-fold window perturbations can be generated by a finite number of basic window
perturbations.

Define the basic 3-fold window perturbation w̄3,[ 1
4
, 1
2

] as the special case of w3,[ 1
4
, 1
2

] with the absolute

values of the slopes being 2, 4, 4 on the three legs respectively. Lemma 30 states that almost any 3-fold
window perturbation can be generated by the the basic 3-fold window perturbation. The remaining cases
of 3-fold window perturbations are addressed in Lemma 32.
Lemma 30. Any 3-fold window perturbation w3,J is equal to f1(w̄3,[ 1

4
, 1
2

](f2)) for f1, f2 ∈ F if 0 < J 0 <

J 1 < 1.

Proof. We prove the lemma by construction as illustrated in Figure 19.

Map f2, which scales w̄3,[ 1
4
, 1
2

] horizontally to w̄3,[ 1
4
, 1
2

](f2), does the following.
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(a) Map [0,J 0] to [0, 1
4 ]. If

1
4
J 0 is in the form of 2k, then f2 on [0,J 0] is an affine segment; otherwise,

f2 on [0,J 0] consists of two affine segments separated by point (x1, y1), a partition point between
points (0, 0) and (J 0, 1

4) by Lemma 3.

(b) Map [J 0,J 1] to [1
4 ,

1
2 ]. If

1
2
− 1

4
J 1−J 0 is in the form of 2k, then f2 on [J 0,J 1] is an affine segment;

otherwise, a point (x2, y2) exists in Lemma 3 such that
1
2
−y2

J 1−x2 and
y2− 1

4
x2−J 0 are both in the form

of 2k. The graph of f2 on [J 0,J 1] consists of six affine segments separated by partition points

(x2,1,
1
4 +

y2− 1
4

2 ), (J
0+J 1

2 , 3
8), (x2,2,

3
8 +

1
2
−y2
4 ), (J

0+3J 1

4 , 7
16) and (x2,3,

7
16 +

y2− 1
4

4 ) between points

(J 0, 1
4) and (J 1, 1

2), where x2,1 = J 0 + x2−J 0

2 , x2,2 = J 0+J 1

2 + J 1−x2
4 and x2,3 = J 0+3J 1

4 + x2−J 0

4 .

Note that the derivative of f2 is
y2− 1

4
x2−J 0 on [J 0, x2,1], [x2,2,

J 0+3J 1

4 ] and [J
0+3J 1

4 , x2,3], and is
1
2
−y2

J 1−x2
on [x2,1,

J 0+J 1

2 ], [J
0+J 1

2 , x2,2] and [x2,3,J 1].

(c) Map [J 1, 1] to [1
2 , 1]. If

1− 1
2

1−J 1 is in the form of 2k, then f2 on [J 1, 1] is an affine segment; otherwise,

f2 on [J 1, 1] consists of two affine segments separated by point (x3, y3), a partition point between
points (J 1, 1

2) and (1, 1) by Lemma 3.

Map f1, which scales w̄3,[ 1
4
, 1
2

](f2) vertically to f1(w̄3,[ 1
4
, 1
2

](f2)), does the following.

(a) Map [0, 1
4 ] to [0,J 0]. If J

0

1
4

is in the form of 2k, then f1 on [0, 1
4 ] is an affine segment; otherwise, by

symmetry, f1 on [0, 1
4 ] consists of two affine segments separated by point (y1, x1), where x1 and y1

are given in the preceding step (a).

(b) Map [1
4 ,

1
2 ] to [J 0,J 1]. If J

1−J 0

1
2
− 1

4

is in the form of 2k, then f1 on [1
4 ,

1
2 ] is an affine segment; otherwise,

by symmetry, f1 on [1
4 ,

1
2 ] consists of two affine segments separated by point (y2, x2), where x2 and

y2 are given in the preceding step (b).

(c) Map [1
2 , 1] to [J 1, 1]. If

1− 1
2

1−J 1 is in the form of 2k, then f1 on [1
2 , 1] is an affine segment; otherwise,

by symmetry, f1 on [1
2 , 1] consists of two affine segments separated by (y3, x3), where x3 and y3 are

given in the preceding step (c).

Hence, f1 and f2 scale and translate the 3-fold window perturbation on [1
4 ,

1
2 ] to [J 0,J 1]. Finally,

the absolute values of the slopes are 2, 2, 4 on the three legs of f1(w̄3,[ 1
4
, 1
2

](f2)). One can apply f3 ∈ F
such that f1(w̄3,[ 1

4
, 1
2

](f2(f3))) achieves any 2q1 , 2q2 , 2q3 by Lemma 19.

Next consider 2-fold window perturbations.
Lemma 31. Any 2-fold window perturbation w2,J can be generated by w2,[ 3

4
,1] if J ⊂ [0, 1].

Proof. As in Lemma 30, it can be shown with scaling construction that any 2-fold window perturbation
w2,J can be generated with f1(w2,[ 3

4
,1](f2)) for f1, f2 ∈ F if 0 < J 0 < J 1 = 1. On the other hand,

w2,J1 with 0 = J 0
1 < J 1

1 < 1 can be generated with g0,−(w2,J (g0,−)) where J = [1 − J 1
1 , 1]. Hence, the

conclusion follows.

Finally consider the special cases of 3-fold window perturbations that are not addressed in Lemma 30.
Lemma 32. Any 3-fold window perturbation w3,J with J 0 = 0 and/or J 1 = 1 is equal to the composition
of 2-fold window perturbations and f ∈ F.

Proof. Suppose J 1 = 1. The case of J 0 = 0 can be addressed similarly.
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Figure 20: Plots of basic maps in G: w̄3,[ 1
4
, 1
2

], g0,+, g0,−, w2,[ 3
4
,1], and w2,[0,1]

Consider the 3-fold window perturbation w̄3,J as the special case of w3,J with the absolute values
of the slopes being 2, 4, 4 on the three legs respectively.

w̄3,J = w2,J

(
w2,J 1

2

)
,

where interval J 1
2

= [J
0+1
2 , 1]. Then any w3,J = w̄3,J (f) for some f ∈ F by Lemma 19.

The follow theorem follows from Theorem 28 and Lemmas 29, 30, 31 and 32.
Theorem 33. Let g ∈ G. Then g is equal to the composition of a combination of g0,+, g0,−, w̄3,[ 1

4
, 1
2

],

w2,[ 3
4
,1], w2,[0,1] and the two generator maps of F defined in (1).

Figure 20 plots g0,−, w̄3,[ 1
4
, 1
2

], w2,[ 3
4
,1], and w2,[0,1].

Finally, Theorem 35 shows that unlike F, G is not finitely generated. To this end, Lemma 34 studies
the number of type II breakpoints of a composition map in G. Denote by #(g) the number of type II
breakpoints of map g.
Lemma 34. Let g1, g2 ∈ G. Then #(g1 ◦ g2) ≥ #(g1) + #(g2).

Proof. Consider two cases.

Case 1. Suppose that point B on the graph of g2 is a type II breakpoint. There exists δ > 0 such that
the graph of g2 is an affine segment on [Bx− δ,Bx] and a different affine segment on [Bx, Bx + δ] and the
slopes of the two affine segments are of different signs. Either g2(Bx−δ) > g2(Bx) and g2(Bx+δ) > g2(Bx),
or g2(Bx − δ) < g2(Bx) and g2(Bx + δ) < g2(Bx). Thus a sufficiently small δ exists such that the graph
of g1 is an affine segment on both 〈g2(Bx − δ), g2(Bx)〉 and 〈g2(Bx + δ), g2(Bx)〉. Therefore, g1(g2(Bx))
is a type II breakpoint on the graph of g1 ◦ g2. That is, every type II breakpoint of g2 corresponds to at
least one type II breakpoint of g1 ◦ g2.

Case 2. Suppose that point A on the graph of g1 is a type II breakpoint. Because g2 is a continuous
map onto [0, 1], point C exists on the graph of g2 such that Cx ∈ g−1

2 (Ax) and δ > 0 exists such that the
graph of g2 on [Cx − δ, Cx + δ] is monotone. Following the preceding argument in case 1, g1(g2(Cx)) is
a type II breakpoint on the graph of g1 ◦ g2. That is, every type II breakpoint of g1 corresponds to at
least one type II breakpoint of g1 ◦ g2. Because point C is not a type II breakpoint of g2, this type II
breakpoint on the graph of g1 ◦ g2 is not included in the preceding case 1 and there is no double counting
between cases 1 and 2. Hence, #(g1 ◦ g2) ≥ #(g1) + #(g2).

Theorem 35. G is not finitely generated.

Proof. For any dyadic number δ ∈ (0, 1),#(w2,[δ,1]) = 1. If g1, g2 ∈ G exist such that w2,[δ,1] = g1 ◦ g2,
then by Lemma 34, one of g1 and g2 is a trivial map. Thus, w2,[δ,1] cannot be generated by w2,[δ′,1] with

Page 34 of 50



PRIMES-USA 2020 Research Report William Li

another dyadic number δ′ 6= δ or other maps in G with two or more type II breakpoints. As there are
infinitely many δ, the set of {w2,[δ,1]} cannot be generated by a finite number of generators.

8 Equivalence Classes and Generators

Comparison of Theorem 33 and Theorem 35 indicates that the maps in F play an important role in
allowing a finite number of basic maps to generate any map in G. To study this idea formally, define the
notion of equivalence relation and equivalence classes.
Definition 14 (Equivalence Relation). A binary relation ∼ on G is defined as follows. Suppose that
g1, g2 ∈ G. g1 ∼ g2 if and only if f1, f2 ∈ F exist such that g2 = f1 ◦ g1 ◦ f2. Binary relation ∼ is an
equivalence relation because it is reflexive, symmetric and transitive.
Definition 15 (Equivalence Class). The equivalence class of g ∈ G, denoted by [g], is the set {ĝ ∈ G|ĝ ∼
g}.

To understand the effect of f1 and f2 on g in Definition 15, let g ∈ G and f ∈ F. Suppose that the
graph of f is an affine segment on interval I0 = f−1(I1). The slope of the affine segment is s = |I1|

|I0| . From
the properties of F, a portion of the graph of g is scaled at a ratio of s to become part of g ◦ f or f ◦ g.
Specifically, to obtain g ◦ f , the graph of g on I1 is scaled horizontally to an interval I ′0 with |I ′0| = |I0|.
The exact location of I ′0 on [0, 1] is such that the continuity is maintained in g ◦ f and thus depends on
the scaling of other portions. To obtain f ◦ g, the graph of g on g−1(I0) is scaled vertically to an interval
I ′1 with |I ′1| = |I1|. The exact location of I ′1 on [0, 1] is such that the continuity is maintained in f ◦ g.
Figure 21 illustrates the scaling operation of an affine segment of f .
Lemma 36. Let f1 ∈ F and g ∈ G. Then there exists f2 ∈ F such that f1 ◦ g ◦ f2 ∈ G.

Proof. Partition [0, 1] into a set of intervals {Yi} such that the interiors of f−1
1 (Yi) contains no breakpoints

of f1 and the endpoints of {Yi} are all dyadic for all i. Suppose that the derivative of f1 on f−1
1 (Yi) is si.

From g to f1 ◦ g, f1 vertically scales the graph of g on g−1(f−1
1 (Yi)) by a factor of si.

In the rectangle diagram representation of a map f ∈ F, [0, 1] is partitioned into {Ii} and f ∈ F is
completely defined by specifying a scaling factor from Ii to Ji, for i = 1, 2, . . . ,, where {Ji} is another
interval partition of [0, 1]. To construct f2, let the scaling factor be si on g−1(f−1

1 (Yi)) for all i. Let
g−1(f−1

1 (Yi)) =
⋃
j Ii,j where Ii,1, Ii,2, . . . are intervals of mutually disjoint interiors. Map f2 scales the

graph of f1 ◦g on Ii,j horizontally to the graph of f1 ◦g ◦f2 on Ji,j by si and thus |Ji,j | = si|Ii,j |. Because

Figure 21: The scaling operation of g ◦ f and f ◦ g on the graph of g by an affine segment of f .
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Figure 22: A counterexample to show that (a) ĝ1,1 ◦ ĝ2 and (b) ĝ1,2 ◦ ĝ2 are not in the same equivalence
class. ĝ1,1, ĝ1,2 ∈ [g1] where g1 = w2,[ 3

4
,1] and ĝ2 = w2,[0,1].

g is λ-preserving, ∑
j

|Ii,j | = |f−1
1 (Yi)| =

|Yi|
si
⇒
∑
i

∑
j

|Ji,j | =
∑
i

|Yi| = 1.

Therefore, Ji,j is a valid partition of [0, 1]. Moreover, si is in the form of 2k for integer k and the endpoints
of g−1(f−1

1 (Yi)) are dyadic because f1 ∈ F and g ∈ G. Therefore, f2 ∈ F.

From f1 ◦ g to f1 ◦ g ◦ f2, f2 horizontally scales the graph of f1 ◦ g on g−1(f−1
1 (Yi)) by a factor of si.

Combining the two steps, from g to f1 ◦ g ◦ f2, the graph of g on g−1(f−1
1 (Yi)) is scaled horizontally and

vertically by the same factor for all i. Because g ∈ G, it follows that f1 ◦ g ◦ f2 ∈ G.

Lemma 37. The equivalence classes defined in Definition 15 form a partition of set G.

Proof. Because any map in F is invertible, it follows that if ĝ ∈ [g], then g ∈ [ĝ] and [g] = [ĝ], and if
ĝ1, ĝ2 ∈ [g], then [ĝ1] = [ĝ2]. Therefore, any map in G is in exactly one equivalence class.

However, the equivalence classes do not form a monoid. Consider the following definition of a binary
operation � on [g]. Let [g] = [g1]� [g2] where ĝ ∈ [g] if and only if ĝ1 ∈ [g1] and ĝ2 ∈ [g2] exist such that
ĝ ∈ [ĝ1 ◦ ĝ2]. Example 3 shows that [g1]� [g2] is not necessarily a single equivalence class.
Example 3. Let g1 = w2,[ 3

4
,1] and g2 = w2,[0,1]. Let ĝ2 = w2,[0,1] ∈ [g2]. Consider two elements in

equivalence class [g1]: ĝ1,1 = w2,[ 1
2
,1] ∈ [g1] and ĝ1,2 = w2,[ 1

4
,1] ∈ [g1]. Figure 22 compares ĝ1,1 ◦ ĝ2 and

ĝ1,2 ◦ ĝ2 and shows that they are not in the same equivalence class.

To avoid the technical difficulty of working with equivalence classes directly, consider the notion of
sets of equivalence classes instead.
Definition 16 (Set of Equivalence Classes). Let Φ ⊂ G. Let {[g]g∈Φ} be the set of equivalence classes [g],
∀g ∈ Φ. Define a binary operation � on {[g]g∈Φ} as follows: {[g]g∈Φ1}�{[g]g∈Φ2} is the set of equivalence
classes [ĝ1 ◦ ĝ2] where g1 ∈ Φ1 and g2 ∈ Φ2 exist such that ĝ1 ∈ [g1] and ĝ2 ∈ [g2].
Lemma 38. Let Φ1,Φ2,Φ3 ⊂ G. Then(

{[g]g∈Φ1} � {[g]g∈Φ2}
)
� {[g]g∈Φ3} = {[g]g∈Φ1} �

(
{[g]g∈Φ2} � {[g]g∈Φ3}

)
.

Proof. By Definition 16, if g ∈ ({[g]g∈Φ1}� {[g]g∈Φ2})�{[g]g∈Φ3}, then f1, f2, . . . , f10 ∈ F exist such that
for some g1 ∈ Φ1, g2 ∈ Φ2, g3 ∈ Φ3,

g = f1 ◦
((

f2 ◦
(
(f3 ◦ g1 ◦ f4) ◦ (f5 ◦ g2 ◦ f6)

)
f7

)
◦ (f8 ◦ g3 ◦ f9)

)
◦ f10.
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Let

g = f ′1 ◦

((
f ′2 ◦ g1 ◦ f ′3

)
◦
(
f ′4 ◦

((
f ′5 ◦ g2 ◦ f ′6

)
◦
(
f ′7 ◦ g3 ◦ f ′8

))
◦ f ′9

))
◦ f ′10,

where f ′1, . . . , f
′
10 ∈ F are determined such that

f1 ◦ f2 ◦ f3 = f ′1 ◦ f ′2,
f4 ◦ f5 = f ′3 ◦ f ′4 ◦ f ′5,
f6 ◦ f7 ◦ f8 = f ′6 ◦ f ′7,
f9 ◦ f10 = f ′8 ◦ f ′9 ◦ f ′10,

and f ′2 ◦ g1 ◦ f ′3, f ′5 ◦ g2 ◦ f ′6, f ′7 ◦ g3 ◦ f ′8, f ′4 ◦
((
f ′5 ◦ g2 ◦ f ′6

)
◦
(
f ′7 ◦ g3 ◦ f ′8

))
◦ f ′9 are all in G. Let f ′1 = g0,+

and f ′2 = f1 ◦ f2 ◦ f3. From Lemma 36, f ′3 exists to make f ′2 ◦ g1 ◦ f ′3 ∈ G. Next, let f ′4 = g0,+ and
f ′5 = (f ′3)−1 ◦ f4 ◦ f5 and f ′6 exists to make f ′5 ◦ g2 ◦ f ′6 ∈ G. Let f ′7 = (f ′6)−1 ◦ f6 ◦ f7 ◦ f8 and f ′8 exists

to make f ′7 ◦ g3 ◦ f ′8 ∈ G. Finally, f ′9 exists such that f ′4 ◦
((
f ′5 ◦ g2 ◦ f ′6

)
◦
(
f ′7 ◦ g3 ◦ f ′8

))
◦ f ′9 ∈ G. Let

f ′10 = (f ′9)−1 ◦ (f ′8)−1 ◦ f9 ◦ f10. Hence, by Definition 16, g ∈ {[g]g∈Φ1} �
(
{[g]g∈Φ2} � {[g]g∈Φ3}

)
. This

completes the proof.

Theorem 39. Let Φa = {g0,+},Φb = {g0,−},Φc = {w̄3,[ 1
4
, 1
2

]},Φd = {w2,[ 3
4
,1]} and Φe = {w2,[0,1]}.

Construct a collection of sets of equivalence classes, each of which is equal to {[g]g∈Φ1} � {[g]g∈Φ2} � · · ·
where Φi for any i is one of Φa,Φb,Φc,Φd,Φe. Then, the collection is a monoid and finitely generated.
The union of all the elements of the collection is a set of equivalence classes, the union of which is G.

Proof. By Lemma 38, associativity holds for the elements in the collection. Equivalence class set {[g]g∈Φe}
is the identity element. The collection is thus a monoid. By construction, {[g]g∈Φa}, {[g]g∈Φb

}, {[g]g∈Φc},
{[g]g∈Φd

} and {[g]g∈Φe} are the generators of the monoid. By Theorem 33, any map g ∈ G is equal to
the composition of a combination of maps, each of which is in one of equivalence classes [g]g∈Φa , [g]g∈Φb

,
[g]g∈Φc , [g]g∈Φd

and [g]g∈Φe . Therefore, the last part of the theorem holds.

Next we characterize [g]. Partition [0, 1] into intervals {Yl}, l = 1, 2, . . . ,m with |Yl| > 0 for all l and
Y1 < Y2 < · · · < Ym such that no breakpoint exists whose y-coordinate falls in the interior of any Yl, i.e.,
no breakpoint B exists such that By ∈ (Y0

l ,Y1
l ) for any l. As x increases from 0 to 1, g(x) moves from

one interval to another or stays in one interval but changes the sign of the derivative. We characterize g
by the sequence of the indices, referred to as evolution sequence, representing the intervals on which g(x)
resides.

More precisely, let I1 < · · · < In be a partition of [0, 1] such that for any i = 1, 2, . . . , n, a unique
li ∈ {1, 2, . . . ,m} exists where g(Ii) = Yli and the graph of g is affine on every Ii. Because no breakpoint
exists inside any of {Yl}, the construction of {Ii} exists and is unique. The evolution sequence is defined
as ±l1l2 · · · ln, where the sign + or − represents the sign of the derivative of g in interval I1. In an
evolution sequence ±l1l2 · · · ln, adjacent indices li and li+1 differ at most by 1. In Ii∪Ii+1, g is increasing
if li+1 − li = 1 or decreasing if li+1 − li = −1. If li+1 − li = 0, g alternates between increasing and
decreasing in Ii and Ii+1.

Suppose that ĝ ∈ [g]. From the scaling operation illustrated in Figure 21, partitions {Ii} and {I ′i} of
[0, 1] for i = 1, . . . , n exist such that for all i, ĝ(I ′i) ' cig(Ii) + di for some numbers ci, di. The following
lemma follows immediately.
Lemma 40. If g1, g2 ∈ G have the same evolution sequence, then g1 and g2 are in the same equivalence
class.

The converse of Lemma 40 is not true.
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Figure 23: Example of C(g) and C([g]).

Define the size of an evolution sequence ±l1l2 · · · ln as | ± l1l2 · · · ln| = mn, where m represents the
number of intervals {Yl} and n the number of intervals {Ii}. It is easy to show that if partition {Y ′l} is
a strict refinement of partition {Yl}, then m′ > m and n′ > m. Therefore, for given g, one can minimize
|± l1l2 · · · ln| by using only the partition {Yl} where at least one breakpoint exists at the boundary of any
two adjacent intervals. In this case, the evolution sequence is referred to as the characteristic sequence
of g, denoted by C(g), as shown in Figure 23. Characteristic sequence C(g) is unique for any g given the
breakpoints of g.

Furthermore, not all elements in [g] have the same size of the characteristic sequence, because
f1(g(f2)) adds or removes type I breakpoints as seen in Section 7. The one of the minimum size is
referred to as the characteristic sequence of [g], denoted by C([g]). That is, suppose that

ĝ∗ = arg min
ĝ∈[g]
|C(ĝ)|. (24)

Then
C([g]) = C(ĝ∗). (25)

In (24), |C(ĝ)| represents the size of C(ĝ). It may appear that if ĝ∗1 and ĝ∗2 both satisfy (24), C(ĝ∗1) and
C(ĝ∗2) are not necessarily equal, even though |C(ĝ∗1)| = |C(ĝ∗2)|. If so, then C[g] in (25) would not be well
defined. However, Theorem 41 shows that C(ĝ∗1) = C(ĝ∗2). Therefore, C([g]) defined in (25) is unique
given g.
Theorem 41. If g∗1 and g∗2 both satisfy (24), then C(ĝ∗1) = C(ĝ∗2).

Proof. Let A = {0 = y0 < y1 < · · · < ym = 1} be a set where if x is a type II breakpoint of g or x = 0, 1
then g(x) ∈ A. Suppose that x1 is a type I breakpoint and g(x1) 6∈ A. Let Y be an interval such that
g(x1) ∈ Y and Y ∩ A = ∅. Breakpoint x1 can be eliminated by applying Corollary 20 on Y. Applying
Corollary 20 to eliminate all such type I breakpoints by some f ∈ F, one obtains ĝ = g◦f . When ĝ cannot
be simplified with Corollary 20, for any interval Y, either Y ∩ A 6= ∅ or ĝ−1(Y) contains no breakpoints.

For ĝ, let partition {Yl} where Yl = [yl−1, yl] for l = 1, . . . ,m. Characteristic sequence C(ĝ) can
be obtained with partition {Yl}, because if x is a breakpoint of ĝ then ĝ(x) ∈ A. On the other hand,
recall that ĝ1 = f1(g(f2)) with any f1, f2 ∈ F scales g horizontally and vertically, and thus does not add
or eliminate any type II breakpoint or endpint. The size of any partition of [0, 1] to obtain C(ĝ1) thus
cannot be smaller than |{Yl}|. Therefore, |C(ĝ)| ≤ |C(ĝ1)| and ĝ satisfies (24).

Given g, C(ĝ∗) is unique in the sense that for ĝ∗1, ĝ
∗
2 ∈ [g], if neither ĝ∗1 nor ĝ∗2 can be simplified with

Corollary 20, then C(ĝ∗1) = C(ĝ∗2). The reason is that the partition set {Yl} defined for ĝ∗1 can be scaled
by some f ∈ F to become that defined for ĝ∗2. As a result, ĝ∗1 and ĝ∗2 have the same evolution sequence.

The following corollary from Lemma 40 and Theorem 41 provides a simple way to check whether g1

and g2 are in the same equivalence class.
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Corollary 42. g1, g2 ∈ G are in the same equivalence class if and only if C([g1]) = C([g2]).

9 Topological Conjugacy

Definition 17 (Topological Conjugacy). Continuous maps s1 and s2 from [0, 1] to [0, 1] are topologically
conjugate if there exists a homeomorphism h such that s2 = h ◦ s1 ◦ h−1.
Remark. Homeomorphism h represents a change of coordinates between s1 and s2. From s2 = h◦s1 ◦h−1,
it follows that sn2 = h ◦ sn1 ◦ h−1 for n ≥ 0. Therefore, topologically conjugate s1 and s2 share the same
dynamics from the topological viewpoint.

It is not always an easy task to determine the topological conjugacy of s1 and s2 directly by the
definition. However, for linear or expanding Markov maps, this task is reduced to comparing the index
maps s∗1 and s∗2 associated with s1 and s2. A continuous map s is linear Markov if it is piecewise affine
and the set P of all sk(x), where k ≥ 0 and x is an endpoint of an affine piece, is finite. A continuous
map s is expanding Markov if it is piecewise monotone, the set P of all sk(x), where k ≥ 0 and x is an
endpoint of a monotone piece, is finite, and there is a constant c > 1 such that |s(x) − s(y)| ≥ c|x − y|
whenever x and y lie in the same monotone piece. Set P is the orbit of all endpoints. The orbit of point
x is defined as the set {sk(x)|k ≥ 0} of any map s.

Let P = {0 = x0 < x1 < · · · < xN = 1} and P ∗ = {0, 1, . . . , N}. Define index map s∗ : P ∗ → P ∗ by

s∗(i) = j, if s(xi) = xj (26)

for i = 0, 1, . . . , N .
Theorem 43 (Block and Coven, 1987, [13, Theorem. 2.7]). Linear or expanding Markov maps s1 and s2

are topologically conjugate if and only if s∗1 = s∗2 or s∗1 = ∗s2.

Here ∗s is the reverse of s∗, defined by ∗s(i) = N−s∗(N−i). From Theorem 43, a linear or expanding
Markov map s is characterized by s∗ as far as topological conjugacy is concerned. The following proposition
connects the notions of topological conjugacy and equivalence classes.
Proposition 44. Suppose that g1, g2 ∈ G. If g∗1 = g∗2, then g1 and g2 are in the same equivalence class.

Proof. Because g∗1 = g∗2, |g∗1| = |g∗2|. Let N = |g∗1| = |g∗2|. For k = 1, 2, let Pk = {0 = xk,0 < · · · < xk,N =
1} be the set P of gk. The graph of gk is monotone on any interval [xk,i−1, xk,i] for i = 1, . . . , N . Use
P1 and P2 to derive the partition set {Yl} defined in Section 8 to determine the evolution sequences of
g1 and g2. Maps g1 and g2 have the same evolution sequence because g∗1 = g∗2, and are thus in the same
equivalence class by Lemma 40.

The converse of Proposition 44 is not necessarily true. Figure 24 shows an example of g1 and g2 that
are in the same equivalence class but are not topologically conjugate. In this sense, topological conjudacy
is a stronger relationship between maps than equivalence classes.

Now consider topological conjugacy and λ-preservation together. Observe the following.

• Suppose that s1 and s2 are topologically conjugate. If s1 ∈ PA(λ), it is possible that s2 6∈ PA(λ).
An example is shown in Figure 25(a).

• It is possible that no λ-preserving s2 exists to be topologically conjugate to a given s1. Figure 25(b)
shows one example of such s1. In this example, for any topologically conjugate s2, s2(s2(1)) = 1,
s−1

2 (s2(1)) = {c, 1} where 0 < c < s2(1), and s2(x) < s2(1) for 0 ≤ x < c and s2(x) > s2(1) for
c < x < 1. Therefore, λ(s−1

2 ([s2(1), 1])) = λ([c, 1]) > λ([s2(1), 1]). s2 6∈ C(λ).
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Figure 24: An example of g1, g2 in the same equivalence class but of distinct partition sets of P . In (a), for
g1, P = 2−4 · {0, 4, 8, 8.5, 8.75, 14, 16}. In (b), for g2, P = 2−4 · {0, 2, 4, 7.5, 8, 8.5, 8.75, 14, 15, 16}. g∗1 6= g∗2.

(a) (b)

Figure 25: Two examples to illustrate the observations of topological conjugacy and λ-preservation. (a)
An example shows that while s1 ∈ PA(λ), s2 6∈ PA(λ). (b) An example of s1 to which no λ-preserving
s2 exists that is topologically conjugate. The same homeomorphism h as in (a) is used to produce s2 in
(b) as an illustrative example.
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Figure 26: Illustration of piecewise expanding monotone t on Ii. In this example, s∗i0−1 = j0 + 1, s∗i0 =
j0− 1, s∗i0+1 = j0. A∗i0,j0 = A∗i0,j0+1 = 1 and A∗i0,j = 0 for j 6= j0, j0 + 1. The graph of t is monotone on Ii0
consisting of two affine segments with slopes ai0,j0 and ai0,j0+1, respectively. A∗i0+1,j0

= 1 and A∗i0+1,j = 0
for j 6= j0. The graph of t is affine on Ii0+1 with slope ai0+1,j0 .

This section characterizes continuous maps s to which a λ-preserving t exists to be topologically
conjugate. To this end, make the following assumption of s.
Assumption 1. First, set {0 = x̂0 < · · · < x̂N = 1} exists such that for any i = 0, . . . , N , s(x̂i) = x̂j for
some j with 0 ≤ j ≤ N . Second, the graph of s is monotone on [x̂i−1, x̂i] for any i = 1, . . . , N .

Map s is not necessarily affine or expanding on [x̂i−1, x̂i]. Linear or expanding Markov maps are a
strict subset of continuous maps that satisfy Assumption 1. The remainder of this section is to characterize
continuous maps s under Assumption 1 for which t ∈ PA(λ) or t ∈ G exists such that t and s are
topologically conjugate. First consider linear or expanding Markov maps and then extend the results to a
mixed case where the maps are linear but not expanding on some intervals and expanding but not linear
on other intervals. This mixed case is important for the study of λ-preserving maps.

For s under Assumption 1, define index map s∗ as in (26). The basic idea is to construct t by
“continuously connecting the dots”. Specifically, let P = {0 = x0 < · · · < xN = 1} be a partition of [0, 1]
such that t(xi) = xj and the graph of t be a monotone and piecewise affine segment on [xi−1, xi]. Index
map t∗ is well defined in (26). The partition P and piecewise affine segments on {[xi−1, xi]} are to be
constructed so that t∗ = s∗ and t preserves λ.

Define an N ×N matrix A∗ from s∗

A∗i,j =

{
1, if min(s∗(i− 1), s∗(i)) < j ≤ max(s∗(i− 1), s∗(i)),
0, otherwise.

(27)

While A∗ is defined by index map s∗, s∗ is uniquely determined by A∗.

Now construct piecewise affine t. Let interval Ii = [xi−1, xi] for i = 1, . . . , N . Let t be monotone on
each Ii and be affine on Ii ∩ t−1(Ij) whenever A∗i,j = 1. Denote by ai,j the slope of the affine segment.
ai,j 6= 0 is required for λ-preservation. Because t is monotone on Ii, ai,j > 0 if s∗i−1 < s∗i and ai,j < 0
otherwise. See Figure 26 for an illustration. Given i, if ai,j is the same for all j whenever A∗i,j = 1, then t
is an affine segment on Ii; if |ai,j | > 1 for all j whenever A∗i,j = 1, then t is an expanding monotone piece
on Ii.

For t∗ = s∗, {Ii} and {ai,j} are determined such that t satisfies

t(Ii) =

max(s∗(i−1),s∗(i))⋃
j=min(s∗(i−1),s∗(i))+1

Ij . (28)
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That is to say that Ij ⊆ t(Ii) if and only if A∗i,j = 1.

Define non-negative matrix A

Ai,j =

{
|ai,j |−1, if A∗i,j = 1

0, otherwise.
(29)

For t to be Markov and continuous and satisfy (28), {|Ii|} solves the following system of linear equations,
|I1|

...
|IN |

 = A


|I1|

...
|IN |

 . (30)

A vector is said positive if each element is positive. A solution to (30) must be a positive vector that
sums to 1 for P to be a valid partition,

N∑
i=1

|Ii| = 1, |Ii| > 0, for i = 1, . . . , N. (31)

From Lemma 2, for t to preserve λ,
N∑
i=1

Ai,j = 1 (32)

for any j. If {|I1|, . . . , |IN |} and {|ai,j |} exist to satisfy (30), (31) and (32), then by construction,
t ∈ PA(λ) and t∗ = s∗. Furthermore, for t ∈ G, {|ai,j |} are in the form of ±2k with integer k and {Ii}
are dyadic numbers.

One can permute A by reversely mapping indices {1, 2, . . . , N} → {N,N − 1, . . . , 1} in (30). The
resultant t is such that t∗ = ∗s. For the sake of simplicity, ignore this case of permuted A∗ and ∗s in the
reminder of this section, because such permutation does not affect the existence of t, as will be clear in
Lemma 45.

From (32), A is a column stochastic matrix as each entry is non-negative and each column sums to
1. Thus, 1 is an eigenvalue of A. Matrix A defines a Markov chain where Ai,j represents the transition
probability from state j to i. The theory of Markov chains can be used to solve (30), (31) and (32).

Specifically, let |I1|, . . . , |IN | represent the nodes of a directed graph and A∗ be the adjacency matrix.
An arc exists from node |Ij | to |Ii| if A∗i,j = 1. Node |Ii| is reachable from |Ij | if (A∗)ki,j > 0 for some
k ≥ 1. Nodes |Ii| and |Ij | are said to communicate if |Ii| is reachable from |Ij | and |Ij | is reachable from
|Ii|. The set of nodes {|I1|, . . . , |IN |} can be uniquely decomposed into K disjoint subsets Ck, with

{|I1|, . . . , |IN |} =
K⋃
k=1

Ck,

for some positive integer K, such that nodes of each subset communicate and nodes of different subsets
do not communicate. A node is recurrent if the probability of ever returning to node |Ii| starting in node
|Ii| is 1, and is transient otherwise. All nodes in a given subset Ck are either recurrent or transient.
Lemma 45 (Sericola, 2013, [14]). Let {π1, . . . , πN} be the limiting probability distribution of the Markov
chain defined by A. Vector [π1, . . . , πN ] is an eigenvector of A corresponding to eigenvalue 1 and sums to
1. The solution {π1, . . . , πN} can be categorized into three types depending on A∗.

• If K = 1, then every node of {|I1|, . . . , |IN |} is reachable from every other node. All nodes are
recurrent and A∗ is said irreducible. By Perron-Frobenius Theorem [15, Theorem. 0.1], a unique
positive solution {π1, . . . , πN} exists.
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• If K > 1 and every subset Ck is recurrent, then A∗ can be decomposed into K irreducible subsets.
Infinitely many positive solutions {π1, . . . , πN} exist.

• If K > 1 and at least one subset Ck is transient, then no positive solution exists, because the limiting
probability of any transient state is 0, therefore violating (31).

We will use Lemma 45 to study the existence of t ∈ PA(λ) that is topologically conjugate to s.

First consider the case where for any j,

N∑
i=1

A∗i,j > 1. (33)

An example is illustrated in Figure 24(a) and described in Example 4.
Theorem 46. If A∗ is irreducible and satisfies (33), then for any {ai,j} satisfying (32), a unique t exists
such that t is expanding Markov, t ∈ PA(λ), and t and s are topologically conjugate if s is a linear or
expanding Markov map. If A∗ can be decomposed into multiple irreducible subsets, then infinitely many
such t exist. If A∗ can be decomposed into multiple subsets, at least one of which are transient, then no
such t exists.

Proof. From (33), given any j, the number of i for which A∗i,j = 1 for i = 1, . . . , N is greater than 1.
Thus it is easy to select {|ai,j |}, with |ai,j | > 1 for any i, j, to satisfy (32). The graph of t on Ii is thus
expanding for any i.

Consider the first case of A∗ being irreducible. From Lemma 45, a unique positive eigenvector v
of A exists corresponding to eigenvalue 1 with |v| = 1. Let [|I1|, . . . , |IN |]T = v. Let partition set
P = {0 = x0 < · · · < xN = 1} where xi =

∑i
l=1 |Il| for i = 1, . . . , N . Let t(xi) = xs∗i . Interval Ii is

partitioned into {Ii,j0 < · · · < Ii,j1} where A∗i,j = 1 for j = j0, . . . , j1. If s∗i−1 < s∗i , then |Ii,j | = |ai,j |−1|Ij |
and t is an affine segment with slope ai,j ; If s∗i−1 > s∗i , then |Ii,j | = |ai,j |−1|Ij1+j0−j | and t is an affine
segment with slope −ai,j . Therefore t is completely defined. By (30), t is continuous at the boundary
between the piecewise affine segments on adjacent intervals Ii−1 and Ii. By construction, t is expanding
Markov, t∗ = s∗ and t ∈ PA(λ). If s is a linear or expanding Markov map, then by Theorem 43, t and s
are topologically conjugate.

The other two cases of A∗ can be shown analogously.

Additional conditions are required for t ∈ G as stated in the following corollary.
Corollary 47. Suppose that A∗ is irreducible and satisfies (33). For a set of {ai,j} satisfying (32) and
being in the form of ±2k for integer k, if (30) and (31) have a dyadic solution, then unique t exists such
that t is expanding Markov, t ∈ G, and t and s are topologically conjugate.

The following examples show that the choice of {ai,j} makes no difference in determining whether
t ∈ PA(λ) exists, as expected from Theorem 46, but plays an important role for t ∈ G.
Example 4. Suppose that N = 6, s∗(0) = 0, s∗(1) = 2, s∗(2) = 6, s∗(3) = 5, s∗(4) = 6, s∗(5) = 1, s∗(6) =
0. From s∗,

A∗ =



1 1 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 1 1 1 1 1
1 0 0 0 0 0


.
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A∗ is irreducible. Let

A =



2−1 2−1 0 0 0 0
0 0 2−1 2−1 2−1 2−1

0 0 0 0 0 2−2

0 0 0 0 0 2−3

0 2−1 2−1 2−1 2−1 2−3

2−1 0 0 0 0 0


.

The solution to (30) is given by[
|I1|, . . . , |I6|

]
=
[

1
4

1
4

1
32

1
64

21
64

1
8

]
.

In this case, t ∈ G. Figure 24(a) plots t. However, for a slightly different choice of A

A =



2−1 2−1 0 0 0 0
0 0 2−1 2−1 2−1 2−2

0 0 0 0 0 2−1

0 0 0 0 0 2−3

0 2−1 2−1 2−1 2−1 2−3

2−1 0 0 0 0 0


.

The solution to (30) is given by[
|I1|, . . . , |I6|

]
=
[

4
17

4
17

1
17

1
68

23
68

2
17

]
.

In this case, t ∈ PA(λ) but t 6∈ G.
Example 5. A∗ is not irreducible in the following two cases. First,

A∗ =


0 1 1 0 0
0 1 1 0 0
1 0 0 0 0
1 1 1 1 1
1 1 1 1 1

 .
No positive solution to (30) exists, because solving (30) for any {ai,j} leads to |I1| = |I2| = |I3| = 0
because the first three states are transient. Next,

A∗ =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 .
Infinitely many positive solutions to (30) exist for any {ai,j}, because the first two states form an
irreducible subset and the last two states form another irreducible subset.

Next consider the case where for some j0,

N∑
i=1

A∗i,j0 = 1. (34)

The difference from (33) is that in (34) a single i0 exists such that A∗i0,j0 = 1 and A∗i,j0 = 0 for all i 6= i0.
From (32), |ai0,j0 | = 1 to be λ-preserving. If A∗i0,j′ = 1 for some j′ 6= j0, then t on Ii0 is neither an
affine segment nor an expanding monotone piece as illustrated in Figure 27(a), in which case Theorem 43
cannot be applied. To avoid this problem, the remainder of the section assumes the following.
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Figure 27: Illustration of the cases described by (34). Case (a) is not considered under Assumption 2.
Cases (b) and (c) are addressed in Corollary 48 and Corollary 50 respectively.

Assumption 2. First, one and only one j0 exists such that a single i0 exists where A∗i0,j0 = 1 and
A∗i,j0 = 0 for all i 6= i0. Second, for i0 obtained in part (1), A∗i0,j = 0 for any j 6= j0.

Part (1) of Assumption 2 is for simplicity. The results can be easily extended to the case where
multiple such j0 exist. Part (2) is needed such that t on any Ii is either expanding monotone or an affine
segment with slope equal to ±1. Specifically, a unique pair of indices i0, j0 exist such that{

|ai0,j0 | = 1,
|ai,j | > 1, whenever A∗i,j = 1 and if i 6= i0 or j 6= i0.

(35)

Even with Assumption 2, Theorem 43 cannot be directly applied because t is not a linear or expanding
Markov map: t is not expanding on Ii0 and not necessarily1 linear on Ii for i 6= i0. Next, we apply
Definition 17 of topological conjugacy directly to circumvent this technical issue.

First, suppose that s∗i0−1 < s∗i0 , as illustrated in Figure 27(b). Then ai0,j0 = 1. In this case,

t

i0−1⋃
i=1

Ii

 =

j0−1⋃
i=1

Ii and t−1

j0−1⋃
i=1

Ii

 =

i0−1⋃
i=1

Ii.

j0 must be equal to i0, because

λ

j0−1⋃
i=1

Ii

 =

j0−1∑
i=1

|Ii| = λ

i0−1⋃
i=1

Ii

 =

i0−1∑
i=1

|Ii| .

Therefore, 
s∗i ≤ i0 − 1, if i < i0 − 1,
s∗i = i, if i = i0 − 1, i0
s∗i ≥ i0, if i > i0.

(36)

Figure 28 shows the construction of t. Recall that {0 = x̂0 < · · · < x̂N = 1} is the partition of s.
First, revise s to obtain s′ by eliminating the portion on [x̂i0−1, x̂i0 ], scaling up the portion on [0, x̂i0−1]
by a factor of 1

α to fill up [0, x̂i0 ] and keeping the portion on [x̂i0 , 1] unchanged. Specifically,

s′(x) =

{
1
αs (αx) , if 0 ≤ x < x̂i0 ,
s(x), otherwise.

(37)

1For t to be a λ-preserving linear Markov map, Ai,j must be the same for all j given i whenever A∗i,j = 1 and (32) must
be satisfied. Whether {ai,j} exists to meet both conditions depends on A∗. For the first two A∗ in Example 6 t is a linear
Markov map, and for the last A∗ t is not a linear or expanding Markov map.
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Figure 28: Construction of t in the case of (34) with ai0,j0 = 1. Here N = 7 and i0 = 4.

with

α =
x̂i0−1

x̂i0
. (38)

From (36), s(x̂i0−1) = x̂i0−1 and s(x̂i0) = x̂i0 . In (37), s′
(
(x̂i0)−

)
= 1

αs(x̂i0−1) = s(x̂i0) = s′
(
(x̂i0)+

)
.

Thus, s′ is continuous and expanding Markov. The change from s to s′ in effect combines elements i0− 1
and i0 of the (N + 1)-element set P ∗ = {0, 1, . . . , N} into a single element to arrive at an N -element set
P ∗′ = {0′, 1′, . . . , (N − 1)′} where 0 becomes 0′, 1 becomes 1′, and so on, and i0 − 1 and i0 are combined
to become (i0− 1)′, then i0 + 1 becomes i′0, i0 + 2 becomes (i0 + 1)′, and so on, and N becomes (N − 1)′.
Revise the index map s∗ to become s∗′ when P ∗ becomes P ∗′, as shown in Figure 28(a) and (b).

The revisedA∗′ obtained from the revised s∗′ satisfies (33) instead of (34). MatrixA∗′ is a block-diagonal
one consisting of A∗′1 and A∗′2 where A∗′1 is a map of {I ′1, . . . , I ′i0−1} to itself and A∗′2 is a map of
{I ′i0 , . . . , I

′
N−1} to itself, as shown in Figure 28(c). If A∗′ can be decomposed into multiple irreducible

subsets, then from Theorem 46, infinitely many t′ exists such that t′ is expanding Markov, t′ ∈ PA(λ),
and t′ and s′ are topologically conjugate. Set {I ′1, . . . , I ′N−1} is obtained in the construction of t′ according
to Theorem 46. Let homeomorphism h′ be such that

s′ = h′ ◦ t′ ◦ h′−1. (39)

Comparing the scaling (37) with (39), it follows that

[x̂i−1, x̂i] =

{
αh′(I ′i), for i = 1, . . . , i0 − 1,
h′(I ′i−1), for i = i0 + 1, . . . , N.

In particular, x̂i0 = h′(β) where β =
∑i0−1

i=1 |I ′i|.

Finally, revise t′ to obtain t by scaling down I ′1, . . . , I ′i0−1 by a factor of α, keeping I ′i0 , . . . , I
′
N−1

unchanged, and inserting a new interval of length (1− α)β between I ′i0−1 and I ′i0 to arrive at a set of N

intervals I1, . . . , IN with
∑N

i=1 |Ii| = 1, as shown in Figure 28(d). Let t be an affine segment with slope
1 on Ii0 and continuous between Ii0−1, Ii0 and between Ii0 , Ii0+1. Revise h′ to obtain h correspondingly

h(x) =


αh′

(
1
αx
)
, if 0 ≤ x < αβ,

x̂i0 +
x̂i0
β (x− β), if αβ ≤ x < β,

h′(x), otherwise.

(40)

Recall that t on Ii0 is affine with slope 1. If s is affine with slope 1 on [x̂i0−1, x̂i0 ], then by (39) and (40),
it follows that

s = h ◦ t ◦ h−1. (41)
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Then
[x̂i−1, x̂i] = h(Ii)

for i = 1, . . . , N . Moreover, because t′ ∈ PA(λ) and t on Ii0 is affine with slope 1, t ∈ PA(λ). Hence, the
following corollary holds.
Corollary 48. Suppose that A∗ satisfies (34) and that Assumption 2 holds. Suppose that j0 = i0 and
s∗i0−1 < s∗i0. Suppose that s is affine with slope 1 on [x̂i0−1, x̂i0 ]. If the revised A∗′ can be decomposed into
irreducible subsets, then t exists such that t and s are topologically conjugate and t ∈ PA(λ). Furthermore,
suppose that t′ is constructed from the revised s′ in (37) and (39). If t′ ∈ G and α of (38) is dyadic, then
t ∈ G.

Clearly t is not unique in the preceding construction because the solution of {I ′1, . . . , I ′N−1} in
Theorem 46 are not unique.

Next, suppose that s∗i0−1 > s∗i0 , as illustrated in Figure 27(c). Then ai0,j0 = −1. If j0 = i0, then
one can construct t analogously to the preceding case of ai0,j0 = 1 except that in the final step when a
new interval of length (1−α)β is inserted as shown in Figure 28(d), t is an affine segment with slope −1,
instead of 1, on Ii0 .

Now suppose j0 6= i0. Assume i0 < j0. (The case of i0 > j0 can be addressed analogously.) In this
case,

t(Ii0) = Ij0 and t−1(Ij0) = Ii0 . (42)

t

i0−1⋃
i=1

Ii

 =
N⋃

i=j0+1

Ii and t−1

 N⋃
i=j0+1

Ii

 =

i0−1⋃
i=1

Ii. (43)

λ-preservation leads to ∣∣Ij0∣∣ =
∣∣Ii0∣∣ . (44)

λ

 N⋃
i=j0+1

Ii

 =
N∑

i=j0+1

|Ii| = λ

i0−1⋃
i=1

Ii

 =

i0−1∑
i=1

|Ii| . (45)

Lemma 49. Suppose that A∗ satisfies (34) and that Assumption 2 holds. Suppose that ai0,j0 = −1 and
i0 < j0. Let {0 = x0 < · · · < xN = 1} be a partition of [0, 1] and Ii = [xi−1, xi] for i = 1, . . . , N . Let
t ∈ C(λ) be monotone on each Ii and be affine on Ii ∩ t−1(Ij) where A∗i,j = 1, and the slope ai,j of the
affine segment satisfies (35). Then ∣∣∣∣d(t ◦ t)

dx

∣∣∣∣ > 1 (46)

for all x ∈ [0, 1] except for a finite number of points.

Proof. From (44) and (45), it is easy to show that intervals Ii0 and Ij0 are symmetric with respect to 1
2 .

From (35),
∣∣∣ dtdx ∣∣∣ = 1 on Ii0 and

∣∣∣ dtdx ∣∣∣ > 1 on [0, 1] \ Ii0 .

The affine segment of t with slope −1 on Ii0 affects t ◦ t in two ways, as illustrated in Figure 29.
First, t on Ij0 flips horizontally along the x = 1

2 axis to become t ◦ t on Ii0 . Second, t on t−1(Ii0) flips
vertically along the y = 1

2 axis to become t◦ t on (t◦ t)−1(Ij0). On other portions of [0, 1], t◦ t is obtained

by the composition of two segments each with
∣∣∣ dtdx ∣∣∣ > 1, and thus

∣∣∣d(t◦t)
dx

∣∣∣ is greater than either of the two.

Hence, (46) holds on [0, 1] whenever the derivative is defined.

Lemma 49 states that t◦t is expanding Markov although t is not. The proof of the expanding Markov
case of Theorem 43 in [13, Theorem. 2.1] notes that the expanding property of t is used only to make
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Figure 29: Illustration of t in (a) and t ◦ t in (b) where t satisfies (42) and (43). The graph of t on Ii0
is an affine segment of slope −1. t(Ii0) = Ij0 . This affine segment transforms portions of t to become
portions of t ◦ t as highlighted as green and red segments.

⋃
n t
−n(P ) dense and the theorem holds for maps for which some power is expanding Markov. Hence, the

following corollary holds.
Corollary 50. Suppose that A∗ satisfies (34) and that Assumption 2 holds. Suppose that ai0,j0 = −1. If
i0 = j0, then the conclusion of Corollary 48 holds. If i0 6= j0, then the conclusions of Theorem 46 and
Corollary 47 hold.
Example 6. First, infinitely many t ∈ PA(λ) exist in Corollaries 48 and 50, respectively, for

A∗ =


0 0 0 1 1
0 0 0 1 1
0 0 1 0 0
1 1 0 0 0
1 1 0 0 0

 and A∗ =


1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1

 ,
where i0 = j0 = 3. t ∈ G exists. Second, a unique t ∈ PA(λ) exists in Corollary 50 for

A∗ =



0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 1 1 1 1
0 1 1 1 1 1
1 0 0 0 0 0


,

where i0 = 6, j0 = 1. However, in this case, t 6∈ G.

10 Conclusion and Future Study

This paper has introduced a new and interesting monoid, λ-preserving Thompson’s monoid G,
modeled on Thompson’s group F, and studied a number of properties of G. The main results of this paper
improve several results of [3] and demonstrate an interesting interplay between algebraic and dynamical
settings.
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A few areas are worth further exploring.

First, ergodicity. This paper has studied the properties of TM, LEO and Markov, and characterized
periods of periodic points of maps in G. The next step is to systematically study statistical properties
of long-term time averages of various functions along trajectories of the dynamical system governed by
g ∈ G.

Second, presentations. Thompson’s group F admits infinite and finite presentations. As seen in this
paper, λ-preserving Thompson’s monoid G is more sophisticated and the notions of equivalence classes and
sets of equivalence classes are useful in presenting G. The next step is to construct various presentations
of G.

Third, analogue of G in a high dimensional space. This paper has studied interval maps, which exist
in a one-dimensional space. It will be interesting to extend the study to a higher dimensional space and
see if different conclusions will be drawn for high dimensional maps as opposed to interval maps.
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