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Abstract. The max-cut problem is a classical graph theory problem
which is NP-complete. The best polynomial time approximation scheme
relies on semidefinite programming (SDP). We study the conditions under
which graphs of certain classes have rank 1 solutions to the max-cut SDP.
We apply these findings to look at how solutions to the max-cut SDP
behave under simple combinatorial constructions. Our results determine
when solutions to the max-cut SDP for cycle graphs are rank 1. We find
the solutions to the max-cut SDP of the vertex sum of two graphs. We
then characterize the SDP solutions upon joining two triangle graphs by
an edge sum.
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1. Introduction

Consider a graph G = (V,E) with vertex set V = [n], edge set E, and
fixed weights {wij}ij∈E assigned to the edges. Consider partitions, or cuts,
of the vertex set V = V1 t V2. The max-cut problem asks for the maximum
possible sum of all weights between vertices on opposite sides of the cut. In
other words, we wish to maximize

cut(V1, V2) :=
∑

i∈V1,j∈V2

wij

across all partitions V = V1 t V2.
The max-cut problem is a key problem in theoretical computer science and

operations research. In particular, it is one of Karp’s 21 NP-complete prob-
lems [10]. Furthermore, it has applications in physics and circuit design [3].
In statistical physics and magnetism, the Edwards-Anderson model for the
ground states of spin glasses is an optimization problem in ±1-variables and
can be reduced to the max-cut problem. In Very-Large-Integrated-Scale
(VLSI) circuit design, the problem of reducing the number of vias, or con-
nections between layers of a circuit board, can be reduced to the max-cut
problem.

Although the max-cut problem is NP-complete [10], a breakthrough paper
of Goemans and Williamson [9] proved that the max-cut problem can be
approximated in polynomial time up to a factor of 0.87854 using a technique
known as semidefinite programming (SDP).

A semidefinite program is an optimization problem where we minimize a
linear function on the entries of a matrix subject to two types of constraints:
the matrix is positive semidefinite (i.e., its eigenvalues are non-negative) and
its entries satisfy some linear equations.

Semidefinite programs have far-reaching applications [16,17], most notably
in approximation algorithms, which we discuss in this paper.

The max-cut problem can be relaxed to a semidefinite program. The
max-cut SDP requires the following definitions.

The Laplacian matrix of a weighted graph L(G,w) is the n×n symmetric
matrix with entries

L(G,w)ij :=


−wij if ij ∈ E∑

k wik if i = j

0 otherwise.

We use the shorthand X � 0 to indicate that the matrix X is positive
semidefinite, and we use • to represent the Frobenius inner product A •
B = Tr(ATB) for real square matrices A and B of the same dimension.
Furthermore, Sn denotes the space of n× n symmetric matrices.
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The max-cut SDP is presented below, the derivation of which we will
present in Section 2.

max
X∈Sn

1

4
L(G,w) •X

s.t. Xii = 1 for i ∈ [n]

X � 0.

In this paper, we study how the optimal solution to the max-cut SDP
behaves under simple graph operations. The operations covered in the paper
are the vertex sum, where two graphs are joined at a common vertex, and the
edge sum, where two graphs are joined at a common edge. These operations
are special instances of a clique sum, where two graphs are joined at a
common clique Kn for some n.

In this paper we pay special attention to the rank of the optimal solution
obtained. In general, low rank solutions to the max-cut SDP are desirable.
In particular, if the optimal solution is rank 1 then we may recover an exact
optimal solution of the max-cut problem. Our current results characterize
when cycle graphs have rank 1 solutions to their max-cut SDPs. We also
study the behaviour for random weights. For random normally distributed
weights, we experimentally estimate the probability that the optimal solution
is rank 1.

Related work. The max-cut SDP was first studied in [8], where the authors
showed promising experimental results. It gained major attention after the
seminal work of Goemans and Williamson [9], where they introduced a
rounding technique capable of producing a cut which is optimal up to a
factor of 0.87854. The gives the best known polynomial time approximation
algorithm to the max-cut problem.

Having a low rank solution has many important computational and theo-
retical consequences. Indeed, if the optimal solution has low rank then one
can take advantage of faster optimization routines [5], and the approximation
factor can be also be improved [2, 7].

The rank of the optimal solution matrix is closely related to the geometric
structure of the SDP. The geometry of the max-cut SDP has been investigated
in [6,12,13]. The paper [14] leverages geometric information to provide upper
bounds on the rank of the solution.

It is possible to construct more sophisticated SDPs for the max-cut problem
that rely on a technique known as the SOS method [4]. It is an open problem
whether such sophisticated SDPs can improve the approximation factor. This
problem has received quite a lot of interest in recent years, and it is closely
related to a twenty-year old conjecture from computer science known as the
unique games conjecture [11]. We do not consider these advanced SDPs here.

Structure. The structure of this paper is as follows. In Section 2, we derive
and state the max-cut semidefinite program and provide definitions related
to weighted graphs and clique sums of graphs. In Section 3, we discuss
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experimental findings on the ranks of solutions to the max-cut SDP. In
Section 4, we discuss theorems which characterize the ranks of solutions to
the max-cut SDP, as well as solutions to the max-cut SDP for vertex sums
and an edge sum of triangles. In Section 5, we provide proofs for theorems
discussed in Section 4. In Section 6, we discuss unresolved conjectures not
covered in Section 5 and potential future avenues for research.

2. Background

2.1. Semidefinite programs. Let C ∈ Sn be an n×n cost matrix. Consider
m constraint matrices A1, A2, . . . , Am ∈ Sn, as well as a constraint vector
b ∈ Rm. A semidefinite program is an optimization problem of the form

max
X

C •X

s.t. Ai •X = bi ∀1 ≤ i ≤ m
X � 0.

For each semidefinite program, there exists an associated dual semidefinite
program The dual SDP is formulated as follows (here b, Ai and C are the
same as above):

min
y,S

bT y

s.t. S =
n∑

i=1

yiAi − C

S � 0.

We denote the primal value p∗ to represent the maximal value achieved by
the SDP across its domain, and we similarly define d∗ as the dual optimal
value. It is always the case that the primal value p∗ is at most the dual value
d∗, or p∗ ≤ d∗. This is known as weak duality. In case that the two values
agree, or p∗ = d∗, we say that strong duality holds. It is known that strong
duality holds under mild assumptions, see e.g. [16, Thm 3.1].

2.2. Max-cut SDP. In this section we explain the connection between the
max-cut problem and its SDP relaxation.

Given a cut (V1, V2), consider assigning 1 to all vertices in V1 and −1 to
all vertices in V2. Then we can treat a cut as a vector x with x2i = 1 for all i.
Now, the quantity 1− xixj , for any edge ij ∈ E, will be 0 if i and j are in
the same group, and 2 otherwise. Thus, we arrive at

cut(V1, V2) =
∑

i∈V1,j∈V2

wij =
1

2

∑
ij∈E

wij(1−xixj) =
1

4

∑
i,j

L(G,w)ijxixj .

Let X = xxT ∈ Sn. Note that X is rank 1, positive semidefinite, and has all
diagonal entries equal to 1. Moreover, all such matrices X satisfying those
three conditions can be rewritten as X = xxT for some vector x with x2i = 1
for all i.
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Thus, the max-cut problem can be rephrased as

max
V1,V2

cut(V1, V2) =
max
x

1
4 x

TL(G,w)x

s.t x2i = 1 ∀i
=

max
X

1
4 L(G,w) •X

s.t Xii = 1 ∀i
X � 0, rankX = 1.

The last optimization problem involves the nonconvex constraint rankX = 1.
We can relax this problem to a semidefinite program by getting rid of the
rank 1 constraint. By doing so, we arrive at the primal max-cut SDP.

Definition 1. Let C = 1
4L(G,w). The primal max-cut SDP is the following

relaxation of the max-cut problem:

max
X∈Sn

C •X

s.t. Xii = 1 for i ∈ [n]

X � 0.

Henceforth, the max-cut SDP will refer to the primal max-cut SDP. Note
that if the optimal solution X of the SDP has rank 1, then we may write it
in the form X = xxT , and hence we may recover the optimal cut. We say
that the relaxation is exact if this happens.

We now introduce the dual of this semidefinite program. Note that in
the situation above, the constraint variables Ai and bi correspond to each
diagonal entry on the matrix. In particular, Ai is a matrix with iith entry
1 and all other entries 0, while bi = 1. We can then define the dual for the
max-cut SDP.

Definition 2. The dual max-cut SDP is as follows:

min
y∈Rn,S∈Sn

∑
yi

s.t. S = Diag(y)− C
S � 0.

We say a matrix X is primal feasible if it satisfies all the constraints of
the primal SDP. Similarly, we say a matrix S is dual feasible if it satisfies all
the constraints of the dual SDP.

The following is a well known theorem that characterizes the optimal
solutions to any SDP satisfying strong duality. Note that all max-cut SDPs
are known to satisfy strong duality.

Theorem 1 ( [16, eq.(33)]). Suppose we have two matrices X̄, S̄. The
following three statements are satisfied simultaneously if and only if X̄ and
S̄ are optimal solutions to the primal and dual max-cut SDP, respectively:

• X̄ is primal feasible
• S̄ is dual feasible
• Complementary slackness, or X̄S̄ = 0.
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2.3. Clique sums of graphs. In this paper, we study ranks of solutions
to the primal max-cut SDP in relation to clique-sums. A clique-sum of two
graphs G and H which both contain a clique graph Kn, and we join G and
H along this clique graph Kn to form a new graph F , which has two vertex
sets V1 and V2 such that the following are true:

• The induced subgraph of F on V1 is isomorphic to G,
• The induced subgraph of F on V2 is isomorphic to H,
• The induced subgraph of F on V1 ∩ V2 is isomorphic to Kn, and
• V1 ∪ V2 is the vertex set of H.

We then define a vertex sum as a clique-sum with the clique K1, and an edge
sum as a clique-sum with the clique K2.

3. Experiments on rank of max-cut SDP

Rank is important to the max-cut problem because lower rank solutions
will be able to yield better approximate solutions to the max-cut SDP. We
have already noted that a rank 1 solution will exactly find the solution to
the max-cut problem, while it has been shown that rank 2 solutions yield
better approximation algorithms for the max-cut problem.

Given a weighted graph G, the set of optimal primal (or dual) solutions
might not be unique. We let rP (G) be the largest rank among all possible pri-
mal optimal solutions. Similarly, we may define rD(G) to be the largest rank
among all possible dual optimal solutions. We say that strict complemen-
tarity holds if rP (G) + rD(G) = n. It is known that strict complementarity
holds generically [1]. Hence, we restrict our attention to the primal rank
rP (G).

We study the primal ranks rP (G) for random families of weighted graphs.
For a given graph G = ([n], E), we consider two probability distributions on
the weights {wij : ij ∈ E}. In the first probability distribution, each weight
wij is an independent Gaussian random variable. The second probability
distribution is similar, except that we force the weights wij to be nonnegative.

The probabilities shown in Table 1 are the experimental values for the
probability that the solution to the primal max-cut SDP of a graph returns
a certain rank.

To obtain this data, we generated 1000 different weights for each graph
G = (V,E) corresponding to random points on the |E|-dimensional unit
sphere (for arbitrary weights), then 1000 different weights corresponding to
random points on the |E|-dimensional unit sphere in the first orthant (for
positive weights). We then counted the number of times that each of the
ranks was obtained.

Known algorithms will return the highest rank solution, so graphs which
yield multiple solutions or solutions of multiple different ranks will not be
shown in the following table.
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In Table 1, “Diamond” represents a K4 graph with the edge removed,
“Butterfly” is the vertex sum of K3 and K3, and the “Fish” graph is the
vertex sum of K3 and C4.

Table 1. Rank distribution of optimal solutions

Arbitrary Weights Positive Weights
Graph Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3
K3 85% 15% 0% 69% 31% 0%
C4 77% 23% 0% 100% 0% 0%

Diamond 71% 29% 0% 65% 35% 0%
C5 73% 27% 0% 45% 55% 0%

Butterfly 72% 25% 3% 50% 42% 8%
C6 70% 30% 0% 100% 0% 0%

Fish 62% 34% 4% 69% 31% 0%

We know a few facts about the ranks of the optimal matrices. In particular,
there always exists a primal matrix X̄ with rank r such that

(
r+1
2

)
≤ n,

and there always exists a dual matrix S̄ with rank s such that s ≤ n−1,
see [15, Thm 2.1].

However, there can also exist solutions with rank greater than the primal
value p. For instance, the butterfly graph has an approximately 2% chance
of returning a rank 3 primal solution, despite the fact that there must exist
an optimal solution of rank 2 or lower. When this occurs, we know that
the primal solution is not unique. For most graphs, there will be a unique
solution to the primal matrix.

4. Solutions and Ranks for Particular Classes of Graphs

4.1. Rank 1 solutions for cycles. We aim to understand the conditions
in which the rank of a primal solution is 1 for certain graphs.

We will prove the following theorem regarding the rank of solutions to the
primal max-cut SDPs of cycle graphs in Section 5.

Theorem 2. Consider a cycle graph Cn with V = [n] and E consisting of
all edges (i, i+ 1) with indices taken modulo n. For simplicity, let wi denote
the weight of the edge (i, i+ 1). There exists a rank 1 solution to the primal
SDP L(G,w) if and only if at least one of the following statements is true:

• There are an even number of positively weighted edges in the graph.
• There exists a weight wm such that

1

|wm|
≥
∑
i 6=m

1

|wi|
.

The following corollary also holds:

Corollary 1. If a cycle graph has a rank 1 solution to its corresponding
max-cut primal SDP, then the rank 1 solution is unique.
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As an application of the above theorem, we calculate the probability that
the K3 graph has a rank 1 primal solution in the following example.

Example 1. The probability that a a triangle, or K3, with weights randomly

chosen from a standard distribution, has a rank 1 primal solution, is 6−2
√
3

3 .

When restricted to random positive weights, this probability is 9−4
√
3

3 .

Suppose we choose a random vector of weights (w1, w2, w3) ∈ R3. Without
loss of generality, we can normalize this vector so that w2

1 + w2
2 + w2

3 = 1.
We claim that the condition of Theorem 2 is satisfied if and only if either
w1 + w2 + w3, w1 − w2 − w3,−w1 + w2 − w3, or −w1 − w2 + w3 is at most
−1. Indeed, note that if there are an even number of positively weighted
edges, one of these 4 values has 3 negative terms, and thus as |x| > x2 for
all x2 ≤ 1, it satisfies this condition. Otherwise, note that

1

|w1|
≥ 1

|w2|
+

1

|w3|
⇐⇒ |w2w3| ≥ |w1w2|+ |w1w3|

⇐⇒ (|w1| − |w2| − |w3|)2 ≥ 1.

Looking at each octant individually, we see that the resulting signs will
define the four inequalities as described. Using calculus, it can be shown that

the probability that one of the four inequalities is satisfied is p = 1
2 −

√
3
6 .

As a result, the probability the solution to the primal max-cut SDP of

the triangle with random weights is rank 1 is 4p =
6− 2

√
3

3
≈ 0.8453.

Since 0 < rank X̄ ≤ 3 − rank S̄ ≤ 2, then the remaining probability is the
probability the primal is rank 2.

Note that when we randomly choose weights, we have a 1
2 chance of having

an even number of positive weights, thus this total probability is the average
of 1 and the probability for an odd number of positive weights. As a result,
when we restrict our random weights to be all positive, the probability is

2

(
6− 2

√
3

3

)
− 1 =

9− 4
√

3

3
≈ 0.6905.

4.2. Max-cut SDP for a vertex sum. We have characterized the condi-
tions where cycle graphs are rank 1. We now characterize the probability
distributions of primal solutions graphs that are the vertex sum of two graphs,
in terms of the distributions of the subgraphs.

Say p1 and p2 be the probabilities that the rank of the solution to the
primal max-cut SDP for K3 with arbitrary weights is 1 and 2, respectively.

According to the experimental values in Table 1, the probability for
arbitrary weights that the rank of the primal matrix is 1 is p21, the probability
it is rank 2 is 2p1p2, and the probability it is rank 3 is p22.

We obtain similar results for the Fish graph. Furthermore, equivalent
results hold for the normally distributed nonnegative weights.

Suppose we have two graphs G1 = (V1, E1), G2 = (V2, E2), where L(G1)
has primal-dual solution pair X1, S1, and L(G2) has primal-dual solution
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pair X2, S2. Without loss of generality suppose we sum the graphs along
the last element of V1 and the first of V2. Let x1 be the final column of X1,

and as the final entry of x1 is 1, define y1 so that x1 =

[
y1
1

]
. Similarly, let

x2 =

[
1
y2

]
be the first column of X2. Finally, define Y1, Y2 so that

X1 =

[
Y1 y1
yT1 1

]
, X2 =

[
1 yT2
y2 Y2

]
.

The above observations regarding the probability distributions motivates
the following theorem.

Theorem 3. The primal-dual pair

X ′ =

 Y1 y1 y1y
T
2

yT1 1 yT2
y2y

T
1 y2 Y2

 , S′ =

[
S1 0
0 0

]
+

[
0 0
0 S2

]
is optimal. Furthermore, rankX ′ = rankX1 + rankX2 − 1.

A direct consequence of this result is that we now have well-defined
solutions to the primal and dual max-cut SDPs of two graphs summed at a
vertex. The following corollary shows that in fact the max-cut problem for a
vertex sum graph also has well-defined ranks for its solutions.

Corollary 2. If G′ is a vertex sum of G1 and G2 along an element of V1
and an element of V2, then there exists a primal solution to L(G′) with rank
at most max(rank(X1), rank(X2)).

The proof of the above theorem and corollary is presented in Section 5.
To illustrate how this theorem helps us further determine the probabilities,
we provide the following example.

Example 2. The probabilities for the butterfly graph primal SDP returning
a solution of rank 1, 2, and 3 are in fact p21, 2p1p2, and p22, respectively, where

p1 =
6− 2

√
3

3
and p2 = 1− p1 =

2
√

3− 3

3
.

Note that the best known algorithms return the highest rank solutions.
As a result, a rank 1 solution will be returned if and only if the two summed
K3 graphs are both yield rank 1 primal solutions, a rank 3 solution if and
only if both yield rank 2 solutions, and a rank 2 solution otherwise. This
gives us the probabilities desired.

4.3. Max-cut SDP for a diamond graph. In addition to our study of
vertex sums, we also studied edge sums. In particular, we focused on the
diamond graph, which is the edge sum of two K3 graphs.

Suppose that we have a diamond graph with V = {1, 2, 3, 4} and
E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}. Let X∗, S∗ be a primal-dual solution
pair to the max-cut SDP for G. Let G1 and G2 be the induced subgraphs of
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G on vertex sets {1, 2, 3} and {2, 3, 4} respectively with same weight vector
as G.

We prove the following two theorems about diamond graphs.

Theorem 4. Assume that G1 and G2 both yield rank 1 optimal primal
solutions which agree on the joined edge between vertices 2 and 3. Then the
following are equivalent:

• w23 ≤ min( 1
1/w12+1/w13

, 1
1/w24+1/w34

).

• The matrix X, where x = [−1, 1, 1,−1] and X = xxT , is an optimal
primal solution.

Also, the above items imply that the optimal dual solution S∗ is of the form

S∗ =

[
S1 0
0 0

]
+

[
0 0
0 S2

]
+

1

4


0 0 0 0
0 −w1 w1 0
0 w1 −w1 0
0 0 0 0

 .
Theorem 5. Assume that G1 and G2 both yield rank 1 optimal primal
solutions which agree on the joined edge between vertices 2 and 3. Then the
following are equivalent:

• w23 ≥ 1
|1/w12−1/w13| + 1

|1/w24−1/w34| .

• The matrix X, where x = [ε1,−1, 1, ε2] and X = xxT , is an optimal
primal solution for some ε1, ε2 ∈ {−1, 1}.

The above items imply that the optimal dual solution S∗ is of the form

S∗ =

[
S1 0
0 0

]
+

[
0 0
0 S2

]
+

1

4


0 0 0 0
0 w1 w1 0
0 w1 w1 0
0 0 0 0

 .
5. Proofs

5.1. General Lemma on Rank 1 optimal solutions. From Theorem 1,
we can obtain that if x is the ones vector (1, . . . , 1) ∈ Rn, then S̄x = 0 if
and only if S̄ = −1

4L. Therefore, the ones matrix xxT is an optimal solution

to the primal max-cut SDP if and only if and only if S̄ � 0 when S̄x = 0,
which is equivalent to −L(G,w) � 0.
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We can generalize for any vector x = (±1, . . . ,±1) ∈ Rn. This result will
be helpful for the proofs in following subsections.

Lemma 1. Suppose a graph G has weight vector w and the primal SDP
of the matrix L(G,w) has a rank 1 optimal solution. There there exists a
vector x with x2i = 1 for all i, such that for edge weights w defined with
wij = −xixjwij ∀ i, j ∈ [n], the matrix S′ = L(G,w) is positive semi-definite.

Proof. Suppose the primal SDP returns a solution (X̄, S̄) with X̄ rank 1.
By definition, we know X̄ = xxT for some vector x with xi = ±1 for all i.
Since x is the first column of X, then Sx = 0. Define S′ with S′ij = 4xixjS̄ij .

Then for all edges i ∈ E(G)j, we just have S′ij = xixj · 4Sij = −xixjwij . It

is evident that S′ij = 0 for ij not connected. Let S̄i be the ith column of S̄,

and note by definition xTSi = 0. Now,

n∑
j=1

S′ij =
n∑

j=1

4xixjS̄ij = 4xi(x
T S̄i) = 0.

Thus, S′ is indeed the Laplacian matrix with the weights as claimed. Finally,
note that for any vector y, we have

yTS′y =
∑

1≤i,j≤n
4yiyjxixjS̄ij .

We set a vector z with zi = xiyi. Because S̄ � 0, we have zT S̄z ≥ 0, and
thus yTS′y ≥ 0. As a result, S′ is positive semidefinite. �

This proof tells us if X̄ is rank 1 and is an optimal solution to the primal
max-cut SDP for some graph, then some transformation of L is positive
semi-definite. More practically, the set of constraints on L to have a rank 1
optimal primal solution is orthogonal to the condition for which the all ones
matrix is an optimal primal solution.

5.2. Rank 1 solutions for cycles.

Proof of Theorem 2. By Lemma 1, we know that a rank 1 solution will lead
to the exact optimal cut x with x2i = 1 for all i. For convenience let xn+1 = x1.
Suppose that wkxkxk+1 is positive for at least two different values of k, say
k1 < k2. Then consider the vector x′ with x′k = −xk for all k1 < k ≤ k2 and
x′k = xk otherwise. It is clear that the total sum of wkxkxk+1 will decrease,
thus leading to a better primal solution. As a result, wixixi+1 is positive for
at most one value of i.

If −wixixi+1 ≥ 0 for all values of i, then we can take the product of all of
these constraints to get

n∏
i=1

−wi =
n∏

i=1

−wixixi+1 ≥ 0.
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Thus there are an even number of positive wi in this case. In fact, the
converse is true: if there are an even number of positive wi, it is always
possible to choose an x so that wixixi+1 is negative for all i.

Now, without loss of generality suppose that x = (1, . . . , 1) ∈ Rn, so that
the matrix S′ = −L(G,w) is positive semidefinite by Lemma 1. S′ � 0 if
and only if the determinant of each principal submatrix is positive. Note
that S′ has the form

−(wn + w1) w1 . . . 0 wn

w1 w1 + w2 . . . 0 0
...

...
. . .

...
...

0 0 . . . −(wn−2 + wn−1) wn−1
wn 0 . . . wn−1 −(wn−1 + wn)

 .
By induction, we can show that the determinant of the lower-right m×m sub-
matrix of S′ is themth symmetric sum of the numbers−wn−m,−wn−m+1, . . . ,
−wn for 1 ≤ m < n. Call this symmetric sum dm, and note that for mge2,

dm = −wn−mdm−1 + (−1)mwn−m+1 . . . wn−1wn.

The base cases of m = 1 and m = 2 are easily verified, giving determinants
of d1 and d2. Assuming that the hypothesis is true for m and m− 1 with
m ≥ 2, we can evaluate the determinant of the lower-right m+ 1 ×m+ 1
matrix to get

− (wn−m−1 + wn−m)dm + w2
n−mdm−1

=− wn−m−1dm − wn−m(dm − wn−mdm−1)

=− wn−m−1dm − wn−m(−1)mwn−m+1 . . . wn−1wn

= dm+1.

We only need to consider determinants of principal submatrices that
correspond to connected components of the cycle graph, because other
can be expressed in terms of those. Note that if all wi are negative, we
automatically satisfy all the necessary inequalities. Otherwise, we have at
least one constraint dn−1 ≥ 0 and note that for wi all nonzero it is equivalent
to

(−w1)(−w2) . . . (−wn)

(
−1

w1
+ . . .+

−1

wn

)
≥ 0.

As shown earlier, at most one wi can be positive, so if exactly one wi is
positive, then we must have

1

w1
+ . . .+

1

wn
≥ 0,

as desired. All other constraints follow similarly from this single constraint;
thus, this constraint is both necessary and sufficient to describe when the
cycle graph has a solution with x as the all ones vector, where not all weights
are negative. For any other vector x, the weights wi will simply be replaced
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instead by the values xixi+1wi, and and the final necessary and sufficient
constraint is that there exists a weight wm such that

1

|wm|
≥
∑
i 6=m

1

|wi|
.

�

Proof of Corollary 1. If the first condition (an even number of positive edges)
is satisfied, then the vector x is the unique vector (up to multiplication by
−1) so that every wixixi+1 is negative.

Otherwise, we have some weight wm such that

1

|wm|
≥
∑
i 6=m

1

|wi|
.

Note that clearly, |wm| < |wi| for all i 6= m, and as a result m is unique. The
the unique solution to the max-cut problem (and thus the unique solution
to the max-cut SDP) is the vector x such that wixixi+1 is negative for all
i 6= m, and positive for i = m.

In both cases, a rank 1 solution for the cycle graph must be unique. �

5.3. Max-cut SDP for a vertex sum.

Proof of Theorem 3. Due to the dual feasibility of S1, S2 we know S′ is a
sum of two positive semidefinite matrices, so evidently S′ is dual feasible.

Now note X ′ =

[
X1 x1y

T
2

y2x
T
1 Y2

]
=

[
Y1 y1x

T
2

x2y
T
1 X2

]
. From here, we see

X ′S′ =

[
X1 x1y

T
2

y2x
T
1 Y2

] [
S1 0
0 0

]
+

[
Y1 y1x

T
2

x2y
T
1 X2

] [
0 0
0 S2

]
=

[
X1S1 0
y2x

T
1 S1 0

]
+

[
0 y1x

T
2 S2

0 X2S2

]
=

[
0 0
0 0

]
.

From the fact that X1S1 = X2S2 = 0.
Now, let V be a matrix with n columns and column size equal to the rank

of X1 such that V TV = X1. Let v be the final column of v. Then we know
V T v is the last column of X1, which is x1, and similarly vT v = 1. Note that[

V T

y2v
T

] [
V vyT2

]
=

[
V TV y2v

TV
V T vyT2 y2v

T vyT2

]
=

[
X1 y2x

T
1

x1y
T
2 y2y

T
2

]
.

Furthermore, note that by the Schur Complement, X2 � 0, 1 � 0 =⇒ Y2 �
y2y

T
2 . As a result,

X ′ =
[
V vyT2

]T [
V vyT2

]
+

[
0 0
0 Y2 − y2yT2

]
� 0.

Finally, Let V2 be a matrix with V T
2 V2 = Y2 − y2yT2 . Then note

X ′ =

[
V vyT2
0 V2

]T [
V vyT2
0 V2

]T
.
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Since such a representation is an upper block diagonal matrix, we know
rankX ′ = rankV + rankV2 = rank(V TV ) + rank(V T

2 V2) = rank(X1) +
rank(Y2 − y2yT2 ). By properties of the Schur Complement, we thus have
rankX ′ = rankX1 + rankX2 − 1.

Thus, by Theorem 1, (X ′, S′) satisfies all conditions of optimality. �

Proof of Corollary 2. We now have a solution X ′ to L(G′) of rank rankX1 +

rankX2 − 1. Consider X ′ in the form X ′ =

 Y1 y1 y1y
T
2

yT1 1 yT2
y2y

T
1 y2 Y2

 again. The

optimization problem to solve for X ′ involves maximizing the dot of X ′ and
L(G′). Thus, modifying any entry of the upper right or lower left blocks in
the matrix will not change the optimal value. It is known that we are able to
complete these remaining values of the block matrix to a semidefinite matrix
of rank equal to max(rankX1, rankX2), which gives the same objective value
as X ′ and is thus still optimal. �

This corollary means that any graph which can be expressed as a vertex
sum of two cliques can be analyzed in terms of its two summed components,
and this analysis is no harder than solving the max-cut problem simply
for the two components. Thus, we can reduce our analysis to biconnected
graphs.

5.4. Edge sum of two triangles.

Proof of Theorem 4. The rank 1 solutions to the max-cut SDP on the smaller
subgraphs give optimal solutions for the max-cut problem on such graphs. By
Corollary 1, the optimal solutions are unique. Thus, the optimal solution to
the max-cut problem on the graph G is unique and agrees with the solutions
on the subgraphs G1 and G2.

Suppose now that w23 ≤ min( 1
1/w12+1/w13

, 1
1/w24+1/w34

). Let G′1 be the

graph on 4 vertices with w′12 = w12, w
′
13 = w13, and w′23 = 1

2w23, and all other

weights 0. Similarly, let G′2 with w′24 = w24, w
′
34 = w34, and w′23 = 1

2w23, and
all other weights 0. Then, by Theorem 2, the vector x = (−1, 1, 1,−1) is an
optimal solution to the max-cut problem on both G′1 and G′2. By Corollary 1,
this solution is unique on both G′1 and G′2. Thus, the matrix xxT is indeed
the unique optimal solution for the max-cut SDP on the full graph G.

On the other hand, if we know that xxT is a solution to the max-cut SDP
for G where x = (−1, 1, 1− 1), then x is in fact a solution to the max-cut
problem on each of G,G1, and G2. Since we are given that G1 and G2

are both rank 1, then by Theorem 2, one of the weights w12, w13 and w23

has a reciprocal greater than the sum of the reciprocals of the other two
terms. Corollary 1 tells us that this is the unique weight such that wijwiwj

is positive. Since all wij are positive and x2x3 = 1, this weight is w23. As a
result,

1

w23
<

1

w12
+

1

w13
.
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Now, suppose that xxT is a primal solution, where x = (−1, 1, 1,−1).
Then the dual solution S∗ is the unique dual solution which agrees with
L(G,w) on the off-diagonal values, and satisfies S∗x = 0. Note that

S∗ =

[
S1 0
0 0

]
+

[
0 0
0 S2

]
+

1

4


0 0 0 0
0 −w1 w1 0
0 w1 −w1 0
0 0 0 0

 .
�

satisfies both of these conditions, and thus must be the unique dual
solution.

Proof of Theorem 5. Suppose for the sake of simplicity that w12 > w13 and
w24 > w34. Then first assume the matrix X = xxT , where x = (ε1,−1, 1, ε2),
is a solution. Repeating the argument from the previous proof, the vector x
must be a solution to the max-cut problem for each of G,G1 and G2. By
exhaustively checking all cases to solve the max-cut problem on G1 and
G2, we find that x = (1,−1, 1, 1). Now, the dual matrix has the form
S′ = L(G, w̄), where w̄ij = −xixjwij by Lemma 1. The upper 3 by 3
principal submatrix of S′ has entriesw12 − w13 −w12 w13

−w12 w12 + w23 + w14 −w23

w13 −w23 −w13 + w23 − w34

 .
The determinant of this matrix simplifies to

w23(w12−w13)(w24−w34)−w12w13w24+w12w13w34−w12w23w24+w13w14w24.

Since S′ is positive semidefinite, then this determinant must be nonnegative.
For the determinant to be positive, w23 must satisfy

w23 ≥
1

1/w12 − 1/w13
+

1

1/w24 − 1/w34
,

as desired.
On the other hand, if the weights satisfy both inequalities given in the

first condition, then we can see for some ε1, ε2 ∈ {−1, 1} it is true that when
x = (ε1,−1, 1, ε2), then X = xxT is an optimal solution to any graph on 4
vertices such that it has 3 edges which form a triangle and the weights satisfy
the condition in Theorem 2. Since we can find positive real numbers p and q
such that p+ q = w23, p ≥ 1

1/w12−1/w13
, and q ≥ 1

1/w24−1/w34
. Thus, since X

is an optimal solution to both of these graphs, it is an optimal solution for
the large graph as well.

Note that again, similar to above, the existence of the primal optimal
solution allows us to exactly find the dual solution of the matrix. We can
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check that

S∗ =

[
S1 0
0 0

]
+

[
0 0
0 S2

]
+

1

4


0 0 0 0
0 w1 w1 0
0 w1 w1 0
0 0 0 0


indeed agrees with the Laplacian matrix on the off-diagonal values and that
S∗x = 0, thus it must be the unique dual solution. �

6. Future work

In our project, we began by considering a vertex sum, or what happened
when we joined two subgraphs at a vertex. We were able to fully characterize
a primal and dual solution to the SDP given solutions to the SDPs for the
subgraphs. Doing the same for an edge sum, or joining two graphs at an
edge, proved to be much more difficult. We were able to show a result for
joining two K3s given a constraint on the rank. Future work may look to
extend our results to the max-cut SDP for general edge sums or larger clique
sums. To account for more general clique sums, one possible direction to
look at is to add two graphs. In particular, the weight of an edge in this
sum would be the sum of the corresponding edge weights of the summand
graphs. This area is promising because it gave a good characterization for
the theorem on the butterfly graph and for vertex sums.

A conjecture we have proposed for the solutions to the max-cut SDP of
the edge sum of two graphs is as follows.

Conjecture 1. Let G1 and G2 be two graphs with vertex sets V1 = {1, 2, . . . ,m+
1,m+ 2}, and V2 = {m+ 1,m+ 2, . . . , n− 1, n}. Let (X1, S1) and (X2, S2)
be the primal-dual solution pairs to the max-cut SDPs on G1 and G2, respec-
tively.

Let G be the edge sum of G1 and G2, with common edge (m+ 1,m+ 2).
Let (X∗, S∗) be the primal and dual optimal solutions to the graph.

Then, the following two statements are equivalent:

(1) X1, X2 are rank 1 matrices and agree on the intersection.
(2) For some common choice of ± on the off-diagonal w1s, we have

S =

[
S∗1 0
0 0

]
+

[
0 0
0 S∗2

]
− 1

4


0 0 0 0
0 w1 ±w1 0
0 ±w1 w1 0
0 0 0 0

 .
Here, the first two matrices are n×n. The matrix S1 is m+2×m+2,

and the matrix S2 is n−m× n−m. In the last matrix, the w1s are
in entry Am+1,m+1 and Am+2,m+2.

In addition, our analysis can be extended in the future to cover more
families of graphs and operations upon them. In particular, we believe
that series-parallel graphs are an interesting family of graphs to investigate.
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Series-parallel graphs can easily be decomposed into vertex sums, which
means their rank one solutions may be able to be characterized.
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