Solution to General Math Problems

Problem G1

We flip a fair coin ten times, recording a 0 for tails and 1 for heads. In this way we obtain a binary string of length 10.

(a) Find the probability there is exactly one pair of consecutive equal digits.

(b) Find the probability there are exactly \(n\) pairs of consecutive equal digits, for every \(n = 0, \ldots, 9\).

Solution

The answer to (b) is \(\binom{9}{n} \frac{2^9}{2^9}\). To see this, by swapping the roles of heads and tails we may assume that the first flip is tails (without loss of generality). Thus there are \(2^9\) sequences. On the other hand, a sequence of heads and tails which starts with tails is uniquely determined by the choice for each \(i = 1, \ldots, 9\) of whether the \(i\)th flip and the \((i + 1)\)st flip are different or the same. Thus, if we would like \(n\) pairs to be the same, there are exactly \(\binom{9}{n}\) such sequences.

Hence for (a) the answer is \(\frac{9}{2^9}\).
Problem G2

For which positive integers p is there a nonzero real number t such that

$$t + \sqrt{p} \text{ and } \frac{1}{t} + \sqrt{p}$$

are both rational?

Solution

The answer is that p must either be a square or one more than a perfect square.

If p is a perfect square, then $t = 0$ works. If $p = k^2 + 1$ for some integer k, then $t = k - \sqrt{p}$ works, since $\frac{1}{t} = -(k + \sqrt{p})$.

Now assume p is not a square but such t exists. Let $t + \sqrt{p} = a$ and $1/t + \sqrt{p} = b$ for rational a and b, so that

$$1 = (a - \sqrt{p})(b - \sqrt{p}) = -(a + b)\sqrt{p} + (ab + p).$$

Since \sqrt{p} is irrational, this can only happen if $a + b = 0$. Then the above equation reads $1 = p - a^2$, so $p = a^2 + 1$ (and clearly a has to be an integer).
Problem G3

Points A and B are two opposite vertices of a regular octahedron. An ant starts at point A and, every minute, walks randomly to a neighboring vertex.

(a) Find the expected (i.e. average) amount of time for the ant to reach vertex B.

(b) Compute the same expected value if the octahedron is replaced by a cube (where A and B are still opposite vertices).

Solution

For (a): we let x denote the expected value of the number of steps starting from A. Moreover, we let y denote the expected value of the number of steps starting from one of the four vertices other than A or B (these are equal by symmetry). Then we have

\[
x = y + 1
\]

\[
y = \frac{x + y + y + 0}{4} + 1.
\]

Solving we get $y = 5$ and $x = 6$. Hence the answer is 6 minutes.

For (b): let x denote the expected value starting from A, y the expected value starting from a neighbor of A, z the expected value starting from a neighbor of B. Then

\[
x = y + 1
\]

\[
y = \frac{x + z + z}{3} + 1
\]

\[
z = \frac{y + y + 0}{3} + 1.
\]

Solving gives $(x, y, z) = (10, 9, 7)$, so the answer is 10 minutes.
Problem G4

For a positive integer \(n \), let \(f(n) \) denote the smallest positive integer which neither divides \(n \) nor \(n + 1 \).

(a) Find the smallest \(n \) for which \(f(n) = 9 \).

(b) Is there an \(n \) for which \(f(n) = 2018 \)?

(c) Which values can \(f(n) \) take as \(n \) varies?

Solution

For part (a), note that such an \(n \) should satisfy

\[
\begin{align*}
 n &\equiv -1 \text{ or } 0 \pmod{7} \\
 n &\equiv -1 \text{ or } 0 \pmod{8}
\end{align*}
\]

By the Chinese remainder theorem, we conclude

\[
\begin{align*}
 n &\in \{-1, 0, 7, 7^2 - 1\} \equiv \{0, 7, 48, 55\} \pmod{56}.
\end{align*}
\]

Thus the first few candidates for \(n \) are \(n \in \{0, 7, 48, 55, 56, 63, 104, 111, 112, 119, \ldots \} \).

We need an \(n \) such that \(15 \mid n(n+1) \) and \(9 \nmid n(n+1) \). A calculation then shows the value \(n = 119 \) works and is the smallest possible.

The answer to (b) is yes as \(2018 = 2 \cdot 1009 \) is twice a prime. This will be a corollary of part (c) to follow, but we comment that it suffices to pick \(n \) such that \(n+1 \equiv 0 \pmod{1009} \) and \(n \equiv 0 \pmod{r} \) for any \(1 < r < 2018 \) with \(r \neq 1009 \).

As for (c), we claim \(f(n) \) should be twice a prime or a prime power other than 2. These will be repeated applications of Chinese remainder theorem. To prove that these work:

- To get \(n \) such that \(f(n) = 2p \) for \(p \) an odd prime, pick \(n \) such that \(n \equiv 0 \pmod{r} \) for any number \(1 < r < 2p \) and \(r \neq p \), but \(n+1 \equiv 0 \pmod{p} \).

- To get \(n \) such that \(f(n) = p^e \) for \(p \) a prime and \(p^e \neq 2 \), pick \(n \) such that \(n \equiv 0 \pmod{r} \) for any \(1 < r < p^e \) not divisible by \(p \), but \(n+1 \equiv p^e - 1 \pmod{p^e} \).

Next, we claim that we never have \(f(n) = ab \) if \(\gcd(a, b) = 1 \) and \(\min(a, b) > 2 \). The proof is by contradiction. Indeed, note that \(2a \) and \(2b \) are strictly less than \(f(n) \), so \(2a \) divides either \(n \) or \(n+1 \), similarly \(2b \) divides either \(n \) or \(n+1 \). If \(n \) is even, then we find \(2a \) and \(2b \) both divide \(n \), and since \(\gcd(a, b) = 1 \) we have \(\lcm(2a, 2b) = 2ab \) divides \(n \), contradiction. The case where \(n+1 \) is even is exactly the same.

We now show (again by contradiction) we cannot have \(f(n) = 2p^e \) for any odd prime \(p \) and \(e \geq 2 \). The numbers \(2p \) and \(p^e \) are strictly less than \(f(n) \), and so if \(p \) divides \(n \) (and hence not \(n+1 \)) we have \(\lcm(2p, p^e) = 2p^e \) dividing \(n \), contradiction. Again the case where \(p \) divides \(n+1 \) instead is similar. This completes the proof.

Finally, it’s easy to see \(f(n) \neq 2 \) for any \(n \).
Problem G5

A pile with \(n \geq 3 \) stones is given. Two players Alice and Bob alternate taking stones, with Alice moving first. On a turn, if there are \(m \) stones left, a player loses if \(m \) is prime; otherwise he/she may pick a divisor \(d \mid m \) such that \(1 < d < m \) and remove \(d \) stones from the pile.

(a) Which player wins for \(n = 6, n = 8, n = 10 \)?

(b) Determine the winning player for all \(n \).

Solution

We claim that Alice wins if and only if \(n \) is even and \(n \neq 2^{2k+1} \) for any \(k \geq 0 \). The proof is by (strong) induction on \(n \).

We take the base case as those situations where \(n \) is prime, which clearly work (as \(2 = 2^{2^0+1} \) and the rest of the primes are odd). The inductive step requires several cases:

- Suppose a player is faced with an odd number \(n \). Then they must subtract an odd divisor \(d \), so \(n - d \) is even. Moreover, \(n - d \) is divisible by \(d \), so it is not a power of 2. Thus by induction hypothesis \(n - d \) is winning for their opponent.

- Suppose a player is faced with \(n = 2^{2k+1} \). Then they must subtract an even divisor \(d \) to get the even number \(n - d \), which is not an odd power of 2 (it is a power of 2 only if \(d = 2^{2k} \), but then \(n - d = 2^{2k} \)). Thus by induction hypothesis \(n - d \) is winning for their opponent.

- Suppose on the other hand a player is faced with \(n = 2^{2k} \). They may choose \(d = 2^{2k-1} \) so \(n - d = 2^{2k-1} \) is losing for their opponent by induction hypothesis.

- Finally, suppose a player is faced with an even \(n \) which is not a power of 2. Then they may subtract some odd divisor \(d \), to get an odd number \(n - d \) which is losing for their opponent.

In particular, as for (a), Alice wins for \(n = 6 \) and \(n = 10 \) but loses when \(n = 8 \).
Problem G6

A perfect power is an integer of the form \(b^n \), where \(b, n \geq 2 \) are integers. Consider matrices \(2 \times 2 \) whose entries are perfect powers; we call such matrices *good*.

(a) Find an example of a good matrix with determinant 2019.

(b) Do there exist any such matrices with determinant 1? If so, comment on how many there could be. (Possible hint: use the theory of Pell equations.)

Solution

For (a), since 2019 = 3 \(\cdot \) 673 = 338\(^2\) – 335\(^2\), we find that \[
\begin{bmatrix}
2^2 & 67^2 \\
5^2 & 169^2
\end{bmatrix}
\] is one such example.

For (b), the matrix \[
\begin{bmatrix}
4 & 27 \\
25 & 169
\end{bmatrix}
\] is one such example, found by using 25 \(\cdot \) 27 = 26\(^2\) – 1.

Another example is \[
\begin{bmatrix}
33^2 & 8 \\
35^2 & 9
\end{bmatrix}
\]. More generally, if \(m \geq 1 \) is an integer and

\[
\left(3 + 2\sqrt{2}\right)^{2m+1} = 3x_m + 2y_m\sqrt{2}
\]

for integers \(x_m \) and \(y_m \), then \(9x_m^2 – 8y_m^2 = 1 \) by multiplying by the conjugate (or by Pell equations). Thus

\[
\det \begin{bmatrix}
x_m^2 & 8 \\
y_m^2 & 9
\end{bmatrix} = 1
\]

and so there are infinitely many examples.
Problem G7

We consider a fixed triangle \(ABC\) with side lengths \(a = BC, b = CA, c = AB\), and a variable point \(X\) in the interior. The lines through \(X\) parallel to \(AB\) and \(AC\), together with line \(BC\), determine a triangle \(T_a\). The triangles \(T_b\) and \(T_c\) are defined in a similarly way, as shown in the figure.

Let \(S\) and \(p\) denote the average area and perimeter, respectively, of the three triangles \(T_a, T_b, T_c\).

(a) Determine all possible values of \(S\) as \(X\) varies, in terms of \(a, b, c\).

(b) Determine all possible values of \(p\) as \(X\) varies, in terms of \(a, b, c\).

Solution

For (a), we let \(X\) have barycentric coordinates \((x, y, z)\) with respect to \(\triangle ABC\), subject to \(x + y + z = 1\). Letting brackets denote area, note that

\[
[T_a] + [T_b] + [T_c] + [ABC] = \frac{(1 - x)^2 + (1 - y)^2 + (1 - z)^2}{1]ABC
\]

since \((1 - x)^2[ABC]\) corresponds to the area of the triangle formed by lines \(AB, AC,\) and the line through \(X\) parallel to \(BC\). Thus, we have

\[
S = \frac{(1 - x)^2 + (1 - y)^2 + (1 - z)^2 - 1}{3} \cdot [ABC]
\]

We claim that \(S\) achieves its minimum when \(x = y = 1/3\). To see this, write \((1 - x)^2 + (1 - y)^2 + (x + y)^2 = x^2 - x + (x - 1)y + y^2; for any given x this is minimal when y = \(\frac{1-x}{2}\), and so substituting and minimizing x we find \(x = y = 1/3\). Alternatively, one can simply apply Jensen’s inequality on the function \(t \mapsto (1 - t)^2\).

Either way, we achieves a minimum value of

\[
\frac{3 \cdot (2/3)^2 - 1}{3} \cdot [ABC] = \frac{1}{9} [ABC]
\]

when \(X\) is the centroid of triangle \(ABC\). Also, as \(x \to 1^{-}\) and \(y, z \to 0^{+}\) the value of \(S\) approaches \(\frac{1}{3}[ABC]\) (and this is clearly best possible, since \([T_a] + [T_b] + [T_c] < [ABC]\) at all times). Thus for continuity reasons the answer to (a) is

\[
S \in \left[\frac{[ABC]}{9}, \frac{[ABC]}{3} \right]
\]

Here \([ABC] = \sqrt{\frac{1}{16}(a + b + c)(-a + b + c)(a - b + c)(a + b - c)}\) by Heron’s formula.
For (b), the value of p is always equal to one-third of the perimeter of $\triangle ABC$, i.e. $p = \frac{1}{3}(a + b + c)$. Note that the sides of T_a, T_b, T_c which are parallel to BC have length summing to the length of BC. Consequently, the total perimeter coincides with that of $\triangle ABC$.
Solution to Advanced Math Problems

Problem M1

Let \(\alpha = \sqrt{2} + \sqrt{3} \) and let \(V = \mathbb{Q}(\alpha) \) be the field generated by \(\alpha \) over \(\mathbb{Q} \), regarded as a \(\mathbb{Q} \)-vector space. Let \(T: V \to V \) be given by multiplication by \(\alpha \).

(a) Find \(\dim V \).

(b) Let \(W = \sqrt{2} \mathbb{Q} \oplus \sqrt{3} \mathbb{Q} \). Show that \(V = W \oplus T(W) \). Give a basis of \(T(W) \).

(c) Compute the determinant of \(T \).

Solution

For (a), we have \(\dim V = 4 \). Here are two ways to see this:

- Since \(\alpha \) has minimal polynomial \(P(X) = (X^2 - 5)^2 - 24 \) (irreducible over \(\mathbb{Z} \)), we have a basis \(\{1, \alpha, \alpha^2, \alpha^3\} \).

- Alternatively, we note that \(V \ni \frac{1}{2}(\alpha^2 - 5) = \sqrt{6} \). Then \(\sqrt{6}\alpha = 2\sqrt{3} + 3\sqrt{2} \), and accordingly \((\sqrt{6} - 2)\alpha = \sqrt{2} \) and \((3 - \sqrt{6})\alpha = \sqrt{3} \) are also in \(V \). As the numbers \(\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\} \) are linearly independent over \(\mathbb{Q} \) (and clearly span \(V \)), they form another basis of \(V \).

Using the latter basis, it’s easy to see that \(V = W \oplus T(W) \), since \(W = \sqrt{2} \mathbb{Q} \oplus \sqrt{3} \mathbb{Q} \), then

\[
T(W) = (\sqrt{2}\alpha)\mathbb{Q} \oplus (\sqrt{3}\alpha)\mathbb{Q} = \left(2 + \sqrt{6}\right)\mathbb{Q} \oplus \left(3 + \sqrt{6}\right)\mathbb{Q} = \mathbb{Q} \oplus \sqrt{6}\mathbb{Q}
\]

and in particular a basis of \(T(W) \) is simply \(\{1, \sqrt{6}\} \).

Those familiar with algebraic number theory may recognize \(\det T = 1 \) immediately as the product of the roots of \(P(X) \). One can also do this computation in the basis \(\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\} \) in which \(T \) takes the matrix form

\[
T = \begin{bmatrix}
0 & 2 & 3 & 0 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 2 \\
0 & 1 & 1 & 0
\end{bmatrix}
\]

and \(\det T = 1 \).
Problem M2

Let n be a positive integer. We denote by I_n the $n \times n$ identity matrix. Let G be a group of $n \times n$ matrices with real entries and determinant 1 (under matrix multiplication).

Suppose that any sequence of matrices in G which converges to I_n is eventually constant. Show that for any $A > 0$, the subset of G with entries in $[-A, A]$ is finite.

Solution

The condition states that I_n is an isolated point of G.

Assume for contradiction that for some $A > 0$, there are infinitely many matrices in G with all entries bounded by A. Then, by Bolzano-Weierstrass theorem (applied on the n^2 entries), there should exist an infinite sequence $\gamma_1, \gamma_2, \ldots$ of distinct matrices in G which converges to some matrix ρ. Since $\det(\gamma_i) = 1$ for each i, it follows $\det \rho = 1$ as well.

Then the sequence $\gamma_n \gamma_n^{-1}$ (in G) converges to the identity matrix I_n. However, since I_n is an isolated point, it follows that $\gamma_n = \gamma_{n+1}$ for all large enough n, contradicting the assumption the γ_i were distinct.

Remark M2.1. The converse is also obviously true, and both conditions are equivalent to G being a discrete subgroup of $\text{SL}_n(\mathbb{R})$. For $n = 2$, such a group is called a Fuchsian group, which arises in the study of modular forms.
Problem M3

(a) If \(d \geq 0 \) is an integer, evaluate
\[
\lim_{n \to \infty} \int_{[0,1]^n} \left[\frac{x_1^2 + \cdots + x_n^2}{n} \right]^d \, dx_1 \ldots dx_n.
\]

(b) Evaluate
\[
\lim_{n \to \infty} \int_{[0,1]^n} \cos \left[\frac{x_1^2 + \cdots + x_n^2}{n} \cdot \pi \right] \, dx_1 \ldots dx_n.
\]

Solution

We first show the answer to (a) is \((1/3)^d\), and state this explicitly as the following lemma.

Lemma M3.1. For any integer \(d \geq 0 \),
\[
\lim_{n \to \infty} \int_{[0,1]^n} \left[\frac{x_1^2 + \cdots + x_n^2}{n} \right]^d \, dx_1 \ldots dx_n = \left(\frac{1}{3} \right)^d.
\]
Proof. To see this, fix \(d \) and consider expanding the multinomial coefficient. There will be some terms of the form
\[
d! \int_{[0,1]^n} x_{i_1}^2 x_{i_2}^2 \cdots x_{i_d}^2 = \left(\frac{1}{3} \right)^d
\]
where \(i_1 < i_2 < \cdots < i_d \). The number of such terms is \(\binom{n}{d} = \frac{n^d}{d!} + O(n^{d-1}) \). There are other terms where \(x_i \)'s are repeated, but the contribution of each such term is clearly bounded by 1 and there are \(O(n^{d-1}) \) such terms as well. This proves the claim.

The answer to (b) is \(1/2 \). We contend that:

Lemma M3.2. For any continuous function \(f : [0,1] \to \mathbb{R} \),
\[
\lim_{n} \int_{[0,1]^n} f \left(\frac{x_1^2 + \cdots + x_n^2}{n} \right) = f(1/3).
\]
Proof. The Stone-Weierstrass theorem implies we can approximate the function \(f \) by a series \(f(x) = \sum_d a_d x^d \), and the above lemma implies that
\[
\int_{[0,1]} \sum_d a_d \left(\frac{x_1^2 + \cdots + x_n^2}{n} \right)^d = \sum_d a_d (1/3)^d = f(1/3).
\]
Picking \(f(t) = \cos(t\pi) \), we get the answer \(f(1/3) = \cos(\pi/3) = 1/2 \).

Remark M3.3. This is related to the law of large numbers: consider the random variable \(X \) distributed as \(t^2 \, dt \) for \(t \in [0,1] \). Then \(\int_{[0,1]^n} \frac{x_1^2 + \cdots + x_n^2}{n} \) corresponds to the mean when \(X \) is sampled \(n \) times, and thus “converges rapidly” to \(1/3 \) as \(n \to \infty \).
Problem M4

Let \(n \) be a fixed positive integer. We choose positive integers \(t_1, \ldots, t_n \) (not necessarily distinct) and for each integer \(r \), we let \(a_r \) denote the number of subsets \(I \subseteq \{1, \ldots, n\} \) for which \(\sum_{i \in I} t_i = r \) (this includes \(I = \emptyset \) when \(r = 0 \)). Consider the sum

\[
\sum_{r \in \mathbb{Z}} a_r^2.
\]

(a) Find the minimum possible value of this sum over all choices of \((t_1, \ldots, t_n)\), as a function of \(n \).

(b) Find the maximum possible value of this sum over all choices of \((t_1, \ldots, t_n)\), as a function of \(n \). (Possible hint: Sperner’s theorem.)

Solution

We claim that the best bounds are

\[
2^n \leq \sum_r a_r^2 \leq \binom{2n}{n}.
\]

The quantity \(\sum_r a_r^2 \) counts the number of pairs of subsets \((I, J)\) such that \(\sum_{i \in I} t_i = \sum_{j \in J} t_j \). We call such pairs \textit{good}.

The lower bound is clear, since pairs with \(I = J \) are always good. Equality can be achieved by letting \(t_k = 2^k \) for every \(k \) so that these are the only such good pairs.

The upper bound is achieved by letting \(t_k = 1 \) for all \(k \), so we now prove that this is the largest possible. There is a correspondence between pairs \((I, J)\) and \(K(I, J) = I \cup (J + n) \subseteq \{1, \ldots, 2n\} \)

where \(J \) is the complement of \(J \) in \(\{1, \ldots, n\} \). Under this correspondence, \((I, J)\) if and only if

\[
\sum_{k \in K(I, J)} t_k = t_1 + \cdots + t_n.
\]

where we define \(t_{n+1} = t_1, t_{n+2} = t_2, \ldots, t_{2n} = t_n \).

Because the \(t_i \) were given to be positive, no \(K(I, J) \) from good \((I, J)\) can be a subset of another. By Sperner’s theorem, there are at most \(\binom{2n}{n} \) of them.

Remark M4.1. This question was suggested by Ankan Bhattacharya.
Problem M5

Exhibit a function \(s: \mathbb{Z}_{>0} \to \mathbb{Z} \) with the following property: if \(a \) and \(b \) are positive integers such that \(p = a^2 + b^2 \) is an odd prime, then

\[
s(a) \equiv a^{p-1} \pmod{p}.
\]

The right-hand side is known as the Jacobi symbol \(\left(\frac{a}{p} \right) \).

Solution

Note \(\gcd(a, p) = 1 \). We recognize \(a^{p-1} \equiv \left(\frac{a}{p} \right) \pmod{p} \) as the Legendre symbol, and in fact we claim that

\[
\left(\frac{a}{p} \right) = \begin{cases}
+1 & a \equiv 1 \pmod{2} \\
+1 & a \equiv 0 \pmod{4} \\
-1 & a \equiv 2 \pmod{4}.
\end{cases}
\]

Thus we may take \(s: \mathbb{Z}_{>0} \to \{-1, 1\} \) as above.

To prove this identity, we henceforth assume \(p \equiv 1 \pmod{4} \). Our proof will use extensively the Jacobi symbol and quadratic reciprocity.

First, assume \(a \) is odd. Then

\[
\left(\frac{a}{p} \right) = \left(\frac{p}{a} \right) = \left(\frac{a^2 + b^2}{a} \right) = \left(\frac{b^2}{a} \right) = +1.
\]

Next, assume \(a = 2x \) for \(x \) odd. Then \(p \equiv 5 \pmod{8} \), so \(\left(\frac{2}{p} \right) = -1 \). Then

\[
\left(\frac{a}{p} \right) = \left(\frac{2}{p} \right) \left(\frac{x}{p} \right) = -1 \cdot \left(\frac{p}{x} \right) = -1.
\]

Finally, assume \(a = 2^e y \) for \(e \geq 2 \), and \(y \) odd. Then \(p \equiv 1 \pmod{8} \), so \(\left(\frac{2}{p} \right) = 1 \). Then

\[
\left(\frac{a}{p} \right) = \left(\frac{2}{p} \right)^e \left(\frac{y}{p} \right) = \left(\frac{p}{y} \right) = +1.
\]

Remark M5.1. Assuming there are infinitely many primes of the form \(a^2 + b^2 \) for any fixed \(a > 0 \) (which seems almost certainly true, although it is open), then the function \(s \) we gave above is the only one.
Problem M6

Let G be a nontrivial finite group. We consider automorphisms of G which do not preserve any nontrivial subgroup of G. (An automorphism preserves a subgroup of G if the image of that subgroup is itself.)

(a) Determine for which abelian groups G such an automorphism exists.

(b) Find the number of such automorphisms for each such G.

(c) Show that no such automorphisms exist if G is solvable but not abelian.

(d) Generalizing (c), prove that no such automorphisms exist if G is not abelian.

Solution

We begin by addressing (a), (c), (d) simultaneously.

Lemma M6.1 (Miklós Schweitzer 1985). Let G be any finite group (not necessarily abelian). No such automorphisms exist at all unless (and only unless) G is an elementary abelian group, that is, $G = (\mathbb{Z}/p)^n$.

Proof. Let f be such an automorphism. Note that if f has a nontrivial fixed point, then f fixes the cyclic group generated by that fixed point, consequently G must be a cyclic group, at which point it is easy to see that G should be have prime order.

Thus, we may assume henceforth that f has no nontrivial fixed points. In that case, the map $G \to G$ by $x \mapsto x^{-1}f(x)$ is a bijection, since if $x^{-1}f(x) = y^{-1}f(y)$ then $f(yx^{-1}) = yx^{-1}$.

Now let p be any prime dividing G and let K be a Sylow p-group for G. As $f(K)$ must be a Sylow p-group as well, it is conjugate to K and consequently we have $f(K) = xKx^{-1}$ for some $x \in G$. Now, pick y such that $f(y)x = y$ (possible by the previous claim); then $f(yKy^{-1}) = (f(y)x)K(f(y)x)^{-1} = yKy^{-1}$. So yKy^{-1} is a preserved subgroup of G. Consequently, $yKy^{-1} = G$, so G is a p-group (i.e. a group whose order is a prime power).

We remark that the p-group G has to be abelian, since the center of a p-group is characteristic and nontrivial. Finally, since the elements of order p form a nontrivial characteristic subgroup of G as well, so we conclude that G is an elementary abelian group.

As for $G = (\mathbb{Z}/p)^n$, viewing it as a n-dimensional vector space over \mathbb{Z}/p, an automorphism of G is equivalent to a invertible linear transformation T of G which has no proper nontrivial T-invariant subspaces. We relate this to the characteristic polynomial in the following way.

Lemma M6.2. Let $T : V \to V$ be a map of finite-dimensional vector spaces. Then T has no proper nontrivial T-invariant subspaces if and only if the characteristic polynomial χ_T is irreducible.
Proof. If χ_T is irreducible, there can be no T-invariant subspace since otherwise the restriction of T to that subspace gives a factor of the characteristic polynomial.

We now proceed conversely. Assume there are no T-invariant subspaces. Then the minimal polynomial μ_T of T should coincide with χ_T, since if not there exists a vector v such that the cyclic subspace spanned by \{v, $T(v)$, $T(T(v))$, \ldots\} has dimension $\dim \mu_T$, and hence is a nontrivial proper T-invariant subspace.

In that case, we can pick a basis of V so that it coincides with the companion matrix for χ_T. Then $V \cong \mathbb{F}_p[X]/(\chi_T(X))$ as $\mathbb{F}_p[T]$-modules, and so the invariant subspaces of V are in bijection with the nontrivial factors of χ_T. \hfill \square

For the count, we quote two results.

Lemma M6.3 (Gauss formula). There are \(\frac{1}{n} \sum_{d|n} \mu(n/d)p^d \) monic irreducible polynomials of degree n over \mathbb{F}_p.

Lemma M6.4 (Reiner, Gerstenhaber, 1960). For a given irreducible polynomial f, the number of $n \times n$ matrices over \mathbb{F}_p with characteristic polynomial f is \(\prod_{i=1}^{n-1} (p^n - p^i) \).

For references on these two results, see:

respectively.

Return to the situation $G = (\mathbb{Z}/p)^{\oplus n}$. When $n = 1$ the answer is just the number of automorphisms, which is $p - 1$ (the matrix $[0]$ has no proper invariant subspace but is not invertible). For $n \geq 2$, any T with no invariant subspace is necessarily invertible as well, giving the final answer

\[
\frac{1}{n} \left(\sum_{d|n} \mu(n/d)p^d \right) \left(\prod_{i=1}^{n-1} (p^n - p^i) \right).
\]