Bases for Quotients of Symmetric Polynomials

Andrew Weinfeld
Mentor: Guangyi Yue
Newton South High School
May 19, 2019
MIT PRIMES Conference
Basic Ideas

Definition

R is a commutative ring with unity.

Definition

Ring of polynomials:

\[
R[x] = \left\{ r_0 + r_1 x + \cdots + r_d x^d \mid r_j \in R, r_d \neq 0 \right\}
\]

d is the degree of the polynomial.

Example

- \(2 - x + x^2 \in \mathbb{Z}[x]\), degree 2
- \(\pi + 2x^2 - ix^5 \in \mathbb{C}[x]\), degree 5
More Indeterminates

Definition

k indeterminates x_1, \ldots, x_k:

$$R[x_1, \ldots, x_k] = R[x_1] \cdots [x_k] = \left\{ \sum_{j_1, \ldots, j_k \geq 0, \text{Finitely many terms}} r_{j_1, \ldots, j_k} x_1^{j_1} \cdots x_k^{j_k} \mid r_{j_1, \ldots, j_k} \in R \right\}$$

$$\max(j_1 + \cdots + j_k \mid r_{j_1, \ldots, j_k} \neq 0)$$ is the degree of the polynomial.

Example

- $x_1 x_2 + x_1 x_2 x_3 + 2x_1^5 x_3^2 \in \mathbb{Z}[x_1, x_2, x_3]$, degree 7
- $\pi + 2x_1^2 - ix_1 x_2 + x_4^3 \in \mathbb{C}[x_1, x_2, x_3, x_4]$, degree 3
Symmetric Polynomials

Definition

S is the subset of $R[x_1, \ldots, x_k]$ of polynomials that remain unchanged when indeterminates are permuted.

Example

If $k = 2$, then

$$x_1 + x_2 \in S$$

since $x_2 + x_1 = x_1 + x_2$.

Example

If $k = 3$, then

$$x_1 + x_2 \notin S$$

since $x_2 + x_3 \neq x_1 + x_2$, but

$$x_1 + x_2 + x_3 \in S$$
Partitions

Definition

A **partition** \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{\ell(\lambda)}) \) is a decreasing sequence of positive integers, that is, \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{\ell(\lambda)} > 0 \). The **Young diagram** of \(\lambda \) is the left-aligned grid of boxes with \(\lambda_i \) boxes in the \(i \)th row.

\(\text{Par}_k \) is the set of partitions with \(\ell(\lambda) \leq k \). \(\text{Par}_{k,n-k} \) is the set of partitions whose Young diagram fits inside of box of height \(k \) and length \(n-k \).

The conjugate of \(\lambda \), \(\lambda' \), is the partition whose Young diagram is the reflection of the Young diagram of \(\lambda \) across the main diagonal.

Example

Let \(\lambda = (3, 2) \). Then \(\lambda \in \text{Par}_2 \), \(\lambda \in \text{Par}_{2,3} \), \(\lambda \notin \text{Par}_{2,2} \), \(\lambda' = (2, 2, 1) \).

\[\lambda : \quad \begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \\
\end{array} \quad \lambda' : \quad \begin{array}{ccc}
\bullet & \bullet & \\
\bullet & & \\
\end{array} \]

Note that \(\lambda' \in \text{Par}_k \iff \lambda_1 \leq k \).
Homogeneous Symmetric Polynomials

Definition

\[h_i = \sum_{j_1 + \cdots + j_k = i, j_1, \ldots, j_k \geq 0} x_1^{j_1} \cdots x_k^{j_k} \]

\[h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_{\ell(\lambda)}} \]

Example

If \(k = 2 \):

\[h_0 = 1 \]

\[h_3 = x_1^3 + x_1^2 x_2 + x_1 x_2^2 + x_2^3 \]

\[h_{(2,1)} = h_2 h_1 = (x_1^2 + x_1 x_2 + x_2^2)(x_1 + x_2) = x_1^3 + 2x_1^2 x_2 + 2x_1 x_2^2 + x_2^3 \]

Theorem (Enumerative Combinatorics Vol. 2)

\[\{h_\lambda \mid \lambda' \in Par_k\} \text{ is a basis for } S \text{ over } R \]
Definition

Let $\ell(\lambda) \leq k$. Then

$$s_\lambda = \det(h_{\lambda_i+j-i})_{i,j=1}^{\ell(\lambda)}$$

Example

If $k = 2$:

$$s_{(2,1)} = \begin{vmatrix} h_2 & h_0 \\ h_3 & h_1 \end{vmatrix} = h_2 h_1 - h_3 h_0$$

$$= (x_1^2 + x_1 x_2 + x_2^2)(x_1 + x_2) - (x_1^3 + x_1^2 x_2 + x_1 x_2^2 + x_2^3)$$

$$= x_1^2 x_2 + x_1 x_2^2$$

Theorem (Enumerative Combinatorics Vol. 2)

$$\{s_\lambda \mid \lambda \in \text{Par}_k\}$$ is a basis for S over R.

Motivation

- \(R = \mathbb{Z} \)
 Cohomology ring of the Grassmannian,
 \[
 H^*(Gr(k, n)) \cong S/\langle h_{n-k+1}, \ldots, h_n \rangle
 \]

- \(R = \mathbb{Z}[q] \)
 Quantum cohomology ring of the Grassmannian,
 \[
 QH^*(Gr(k, n)) \cong S/\langle h_{n-k+1}, \ldots, h_{n-1}, h_n + (-1)^k q \rangle
 \]

Theorem (Postnikov)

\[\{s_\lambda \mid \lambda \in Par_{k,n-k}\} \]

is a basis (over \(R \)) for both quotients; that is, every member of \(S \) can written uniquely as

some member of the ideal + \(\sum c_\lambda s_\lambda \), \(c_\lambda \in R, \lambda \in Par_{k,n-k} \)
Theorem (Grinberg)

Let $a_i \in R$. Then

$$\{s_\lambda \mid \lambda \in \text{Par}_{k,n-k}\}$$

is a basis for

$$S/\langle h_{n-k+1} - a_1, \ldots, h_n - a_k \rangle$$
Example

If \(k = 2, \ n = 4 \):

\[
\{ s_\emptyset, s(1), s(1,1), s(2), s(2,1), s(2,2) \}
\]

\[
= \{ 1, x_1 + x_2, x_1 x_2, x_1^2 + x_1 x_2 + x_2^2, x_1^2 x_2 + x_1 x_2^2, x_1^2 x_2^2 \}
\]

is a basis for

\[
S/\langle h_3 - a_1, h_4 - a_2 \rangle
\]

\[
= S/\langle x_1^3 + x_1^2 x_2 + x_1 x_2^2 + x_2^3 - a_1, x_1^4 + x_1^3 x_2 + x_1^2 x_2^2 + x_1 x_2^3 + x_2^4 - a_2 \rangle
\]

For instance:

\[
x_1^4 + x_2^4 = -(x_1 + x_2)(h_3 - a_1) + 2(h_4 - a_2) + 2a_2 s_\emptyset - a_1 s(1)
\]
Power Sums

Definition

\[p_i = x_1^i + \cdots + x_k^i \]

\[p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_\ell(\lambda)} \]

Example

If \(k = 2 \):

\[p_3 = x_1^3 + x_2^3 \]

\[p_{(2,1)} = p_2 p_1 = (x_1^2 + x_2^2)(x_1 + x_2) = x_1^3 + x_1^2 x_2 + x_1 x_2^2 + x_2^3 \]

Theorem (Enumerative Combinatorics Vol. 2)

If \(\mathbb{Q} \subseteq R \), then \(\{ p_\lambda \mid \lambda' \in \text{Par}_k \} \) is a basis for \(S \) over \(R \).
Quotients with p_i's

Theorem (W)

Let $\mathbb{Q} \subseteq R$. Then

$$\{s_\lambda \mid \lambda \in Par_{k,n-k}\}$$

is a basis for

$$S/\langle p_{n-k+1}, \ldots, p_n \rangle$$

Example

If $k = 2$, $n = 4$:

$$\{s_\emptyset, s_{(1)}, s_{(1,1)}, s_{(2)}, s_{(2,1)}, s_{(2,2)}\}$$

$$= \{1, x_1 + x_2, x_1 x_2, x_1^2 + x_1 x_2 + x_2^2, x_1^2 x_2 + x_1 x_2^2, x_1^2 x_2^2\}$$

is a basis for

$$S/\langle p_3, p_4 \rangle = S/\langle x_1^3 + x_2^3, x_1^4 + x_2^4 \rangle$$

For instance:

$$x_1^4 + x_1^3 x_2 + x_1^2 x_2^2 + x_1 x_2^3 + x_2^4 = (x_1 + x_2)p_3 + s_{(2,2)}$$
Future Directions

- $a_i \not\in R$ for both h_i’s and p_i’s.
- Writing Pieri’s rule in the basis of the quotients:
 \[
 h_i s_{\lambda} = \sum_{\mu/\lambda \text{ has } i \text{ squares across } i \text{ columns}} s_{\mu} = \sum_{\mu \in \text{Par}, n-k} c_{\lambda,\mu} s_{\mu}
 \]
- What is S mod other ideals of symmetric polynomials?
- Which other ideals of S give the same basis when modded out?
- s_{λ} and p_{λ} are related by representation theory; is this usable?
Thank You

I would like to thank

- My mentor, Guangyi Yue
- Dr. Darij Grinberg, for suggesting the project
- Prof. Pavel Etingof, Dr. Tanya Khovanova, Dr. Slava Gerovitch
- The PRIMES program
- My parents
References

