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Let’s start with a classical hat puzzle.

● The characters:

● The Sultan                                                   The Three Sages



How does this game work?
● The sultan shows everyone his 3 red hats and 2 blue hats 
● 1 hat on each sage. They cannot see their own hats. 
● The sages can see each other’s hats. 
● Game: Every minute, the sages say whether or not they know the color of 

their own hat
● Once someone says yes, the game is over.



What happens in this puzzle?
● First minute: If a sage sees 2 blue hats, they know their hat must be red
● Second minute: if no sage said yes the first round, then every sage knows 

that there are at least 2 red hats. 
● If a sage sees one blue hat, then they know that their hat is red.
● Third minute: no one has said yes, there must be 3 red hats. 
● They all know this and say that they know their hat color. 



Some things to note
● If they didn’t agree to talk once every minute, would the game change?
● How did knowing that there were 2 blue hats and 3 red hats help the sages? 



Generalization with more sages, more hats, and 
more opportunities for people to be decapitated
● N sages, N red hats, N-1 blue hats
● First Round: If sage sees N-1 blue hats, they are red
● Second Round: They all know there are at least 2 red hats. If anyone sees 

N-2 blue hats, they know they have a red hat.
● Kth Round (1<K<N+1): They all know that there are at least K red hats. If 

anyone sees N-K blue hats, they know they have a red.
● Done in N rounds

...



COMMON KNOWLEDGE

VS
MUTUAL KNOWLEDGE

Some Important Distinctions



Some More Important Distinctions

Circular Game

VS
Simultaneous Game 



Hats: the circular edition!! 

● Sages who see red hats after them say no.

● The last sage with a red hat says yes.

● All the following blues say yes.

● Round 2: Nothing new happens

● Everyone before the last red never figures out their 

color

...



Alice the Blind Person

● Now we have a circular game with 
Alice, a blind sage

● It is common knowledge that there 
exists a red hat and that Alice is blind

● N people, each person has a red or 
blue hat

● Question: How many people are 
guaranteed to figure out their color?



Alice the Blind Person - What will happen?
● If someone before Alice, say Max, is the last red, he will say yes and 

everyone after him, knows they are blue.
● If no one before Alice says yes, and Alice is the last to speak, she knows she 

must be red.
● If Alice is blue the game proceeds as normal. The last red will say yes, and in 

round 2 Alice knows she is blue
● If Alice is red, no one after her knows anything. On round 2, Alice knows she 

is red.
● Ironically, the blind person is the only person to always know his/her color.



Far-sighted People
Definition: Far-sighted people can see the 

hats of everyone except their immediate 
neighbors.
● 9 far-sighted people, simultaneous game
● Announcement: Exactly three red hats
● In the first round everyone says NO 
● What will they say in the second round?



Far-sighted People - What will happen?
● If anyone sees 3 reds they know they are blue
● No one said yes in round 1, so no one saw 3 reds
● Thus everyone is either red or next to a red
● So we can’t have 3 blues in a row
● The configuration must be R-B-B-R-B-B-R-B-B
● Every person knows this and sees 2 reds, so everyone says YES in the 

second round



Nearsighted People
Definition: Nearsighted people only see the 
hats of their immediate neighbors

● N nearsighted people, simultaneous game
● Announcement: Exactly one red hat
● Some people never figured out their color
● What is N?



Nearsighted People - What will happen?
● If N ≤ 3 everyone figures out their color
● If N > 3, the 2 neighbors of the red hat say YES in round 1
● In round 2, if N > 4, everyone knows the red is between the 2 that said YES, 

so everyone says YES round 2
● The exception is when N = 4, since they don’t know which side has the red 

hat



From colors to numbers
In the next puzzle

● There has been a shortage of hats
● Now, sticky notes are used
● On the sticky notes numbers are written
● The handwriting is good enough to be read by all of the people

16
(Example sticky note)



7

8
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N people and N sticky notes

● Simultaneous game

● N people, N sticky notes

● Each sticky note has a number 

● The sages are told that their numbers are consecutive non-negative integers



N people and N sticky notes - What will happen?
Case 1: The maximum = the range

○ First round: everyone except the 0 figures out their number
○ Second round: person with 0 figures out their number

Case 2: The maximum ≠ the range

○ First round: people who aren’t the maximum or minimum figure out their numbers
○ In the second round the max and min figure out their numbers



More Sticky Notes
● N non-negative integers
● They are told that the difference 

between the maximum and minimum 
numbers on their foreheads is 1

● The game is simultaneous
. ..

x x-1

x

x-1x-1



More Sticky Notes - What will happen?
● P = number of people with the maximum, M = max
● First round people figure out their number if P=M=1
● Second round, if there are 2 ones they both say yes
● If there are r ones, on round r they say yes
● On round N-1 there are no zeros, if someone sees N-1 ones, they must have 

2
● After round 2(N-1) they realize there are no ones
● After round m(N-1) where m is the minimum, everyone figures out there are 

no numbers less than m.
● Game is over in round m(N-1)+P
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Any Questions?


