Probing the Structure of Deep Neural Networks with Universal Adversarial Perturbations

Sanjit Bhat (Acton-Boxborough RHS), Mentor: Dimitris Tsipras (MIT)
PRIMES Conference, May 18, 2019
Acknowledgements

Thank you to:

● My parents
● Dimitris Tsipras, for the useful discussions and guidance
● The Madry Lab, for making me feel at home at MIT
● Prof. Srini Devadas, for the PRIMES CS track
● Dr. Slava Gerovitch, for the PRIMES program
Introduction
Deep Learning (DL) can surpass humans

<table>
<thead>
<tr>
<th>Input sentence:</th>
<th>Translation (PBMT):</th>
<th>Translation (GNMT):</th>
<th>Translation (human):</th>
</tr>
</thead>
<tbody>
<tr>
<td>李克強此行將啟動中加總理年度對話機制，與加拿大總理杜魯多舉行兩國總理首次年度對話。</td>
<td>Li Keqiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau.</td>
<td>Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.</td>
<td>Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.</td>
</tr>
</tbody>
</table>
DL in security-critical applications
Is DL ready for this?
Deep Neural Network (DNN) - Natural Setting

V. Fischer, M. Kumar, J. Metzen, T. Brox
“Adversarial Examples for Semantic Image Segmentation”
DNN - Adversarial Setting
Why do we need robust DNNs?

Robustness to real-world perturbs

- Some natural perturbations (e.g., rain) can trick classifiers
- Train models that are more reliable in the natural world

Alignment with human intelligence

- Goal of ML: Make intelligent systems
- Most humans wouldn’t get fooled, but these systems do
Background
How do we train robust DNNs?
Adversarial Training - A robust training method

\[
\min_{\theta} \mathbb{E}_{(x,y) \sim \hat{D}} L(x, y, \theta)
\]

Natural Training Set

\[
\max_{\delta \in \mathcal{S}} L(x + \delta, y, \theta)
\]

Model Parameters
Adversarial Training - A robust training method

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \hat{D}} \left[\max_{\delta \in \mathcal{S}} \mathcal{L}(x + \delta, y, \theta) \right]$$

Adversarial Training Set

$$\max_{\delta \in \mathcal{S}} \mathcal{L}(x + \delta, y, \theta)$$

Model Parameters
Universal Adversarial Perturbations (UAPs)

Regular Adversarial Perturbations

\[
\max_{\delta \in \mathcal{S}} \mathcal{L}(x + \delta, y, \theta)
\]

- Image-specific (one perturbation per image)
- Stronger, more targeted

UAPs

\[
\max_{\delta \in \mathcal{S}} \left[\sum_{i=1}^{n} \mathcal{L}(x_i + \delta, y, \theta) \right]
\]

- Class-specific (one perturbation for all images in a particular class)
- More general
- Location-invariant
Goal: Use UAPs to study the general dynamics of Adversarial Training
Methodology
UAP Generation

Averaging

- Simplest, most obvious method

Singular Value Decomposition (SVD)

- Goal: Explain away variance
- Inputs: Data
- Outputs: Vectors that explain the most variance in data (eigenvectors) and their associated eigenvalues
UAP Generation Cont.

- Pre-trained natural and adversarial models from Madry et al.
- UAPs generated and evaluated on MNIST (handwriting recognition) and CIFAR-10 (image recognition) test sets
- Focus on adversaries bounded in L2 norm - more interpretable perturbations
Experiments
Adversarial Training Induces More Human-Interpretable Features
MNIST

Naturally Trained

Adversarially Trained
CIFAR-10

Naturally Trained

Adversarially Trained
Multiple UAP Directions Exist for MNIST
The Eigenvalue Spectra

MNIST

| 2.7 | 2.5 | 2.1 | 2.0 | 1.8 |

- No large drop
- Multiple universal directions
- Cause: Linear separability

CIFAR-10

| 54.4 | 4.5 | 4.1 | 3.4 | 3.0 |

- Order of magnitude drop
- One main universal direction
- Cause: No linear separability, images mesh together
Adversarial Training Causes Local Loss Landscape Smoothening
Optimization Trajectories - MNIST

Naturally Trained

Adversarially Trained
Optimization Trajectories - CIFAR-10

Naturally Trained

Adversarially Trained
Distribution of Cos Similarities for Single Image

Naturally Trained

Adversarially Trained
Thank You!

Questions?