Analysis of the One Line Factoring Algorithm on Large Semiprimes

Tejas Gopalakrishna
Mentor: Yichi Zhang

May 18th, 2019
MIT PRIMES Conference
Introduction

What is a factoring algorithm?

Find a divisor of N.
Factoring N

Divide by every prime in $[1 \ldots \sqrt{N}]$
The Naïve Algorithm – Trial Division

Factoring N

Example: $N = 119$

Divide by every prime in $[1 \ldots \sqrt{N}]$
The Naïve Algorithm – Trial Division

Factoring \(N \)

Divide by every prime in \([1 \ldots \sqrt{N}]\)

Example: \(N = 119 \)

Divide by primes \([2, 3, 5, 7]\)
The Naïve Algorithm – Trial Division

Factoring N

Divide by every prime in $[1 \ldots \sqrt{N}]$

Example: $N = 119$

Divide by primes $[2, 3, 5, 7]$

$119/2$ not an integer.
The Naïve Algorithm – Trial Division

Factoring N

Divide by every prime in $[1 \ldots \sqrt{N}]$

Example: $N = 119$

Divide by primes $[2, 3, 5, 7]$

119/2 not an integer.

119/3 not an integer.
The Naïve Algorithm – Trial Division

Factoring \(N \)

Divide by every prime in \([1 \ldots \sqrt{N}]\)

Example: \(N = 119 \)

Divide by primes \([2, 3, 5, 7]\)

119/2 not an integer.

119/3 not an integer.

119/5 not an integer.
The Naïve Algorithm – Trial Division

Factoring N

Divide by every prime in $[1 \ldots \sqrt{N}]$

Example: $N = 119$

Divide by primes $[2, 3, 5, 7]$

$119/2$ not an integer.

$119/3$ not an integer.

$119/5$ not an integer.

$119/7 = 17$ is an integer!
Simple Factoring Algorithm: Fermat

Factoring N

Let $a := \lceil \sqrt{N} \rceil$

Let $b := a^2 - N$

Repeat until b is a square:

Increase a by 1 ($a := a + 1$)

$b := a^2 - N$

When b is a square, then $(a - \sqrt{b})$ is a factor.

$a := \lceil \sqrt{119} \rceil = 11$

$b := 11^2 - 119 = 2$

$b(2)$ is not a square:

$a := a + 1 = 12$

$b := 12^2 - 119 = 25$

$b = 25$ is a square, so $12 - \sqrt{25} = 7$ is a factor.

Works because of square difference $x^2 - y^2 = (x + y)(x - y)$.
Simple Factoring Algorithm: Fermat

Factoring N

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 - N$
- Repeat until b is a square:
 - Increase a by 1 ($a := a + 1$)
 - $b := a^2 - N$
- When b is a square, then $(a - \sqrt{b})$ is a factor.
Simple Factoring Algorithm: Fermat

Factoring \(N \)

- Let \(a := \lceil \sqrt{N} \rceil \)
- Let \(b := a^2 - N \)
- Repeat until \(b \) is a square:
 - Increase \(a \) by 1 \((a := a + 1)\)
 - \(b := a^2 - N \)
- When \(b \) is a square, then \((a - \sqrt{b})\) is a factor.

\[a := \lceil \sqrt{119} \rceil = 11 \]

Works because of square difference

\[x^2 - y^2 = (x + y)(x - y) \]
Simple Factoring Algorithm: Fermat

Factoring N

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 - N$
- Repeat until b is a square:
 - Increase a by 1 ($a := a + 1$)
 - $b := a^2 - N$
- When b is a square, then $(a - \sqrt{b})$ is a factor.

Example:

- $a := \lceil \sqrt{119} \rceil = 11$
- $b := 11^2 - 119 = 2$

Works because of square difference $x^2 - y^2 = (x + y)(x - y)$.
Simple Factoring Algorithm: Fermat

Factoring N

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 - N$
- Repeat until b is a square:
 - Increase a by 1 ($a := a + 1$)
 - $b := a^2 - N$
- When b is a square, then
 - $(a - \sqrt{b})$ is a factor.

- $a := \lceil \sqrt{119} \rceil = 11$
- $b := 11^2 - 119 = 2$
- b (2) is not a square:
 - $a := a + 1 = 12$
 - $b := 12^2 - 119 = 25$

Tejas Gopalakrishna
OLF on Large Semiprimes
May 2019 4 / 16
Simple Factoring Algorithm: Fermat

Factoring N

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 - N$
- Repeat until b is a square:
 - Increase a by 1 ($a := a + 1$)
 - $b := a^2 - N$
- When b is a square, then $(a - \sqrt{b})$ is a factor.

- $a := \lceil \sqrt{119} \rceil = 11$
- $b := 11^2 - 119 = 2$
- b (2) is not a square:
 - $a := a + 1 = 12$
 - $b := 12^2 - 119 = 25$
- $b = 25$ is a square, so $12 - \sqrt{25} = 7$ is a factor.
Simple Factoring Algorithm: Fermat

Factoring N

- Let $a := \lceil \sqrt{N} \rceil$
- Let $b := a^2 - N$
- Repeat until b is a square:
 - Increase a by 1 ($a := a + 1$)
 - $b := a^2 - N$
- When b is a square, then
 - $(a - \sqrt{b})$ is a factor.

Works because of square difference $x^2 - y^2 = (x + y)(x - y)$

Example:

- $a := \lceil \sqrt{119} \rceil = 11$
- $b := 11^2 - 119 = 2$
- $b (2)$ is not a square:
 - $a := a + 1 = 12$
 - $b := 12^2 - 119 = 25$
- $b = 25$ is a square, so
 - $12 - \sqrt{25} = 7$ is a factor.
One Line Factoring Algorithm?

Slower than the leading algorithms

Less space required

Tejas Gopalakrishna

OLF on Large Semiprimes

May 2019
One Line Factoring Algorithm?

Slower than the leading algorithms
One Line Factoring Algorithm?

Slower than the leading algorithms

Much less space required
One line of PARI/GP...

OLF(x)=; i=1; while (i<x, if (issquare(ceil(sqrt(i*x))^2)%x), return(gcd(x, floor(ceil(sqrt(i*x))-sqrt((ceil(i*x))^2)%x)))); i++)
The One Line Factoring Algorithm

Factoring N

Repeat for $k = 1$ to $k = N$:

Let $m := \lceil \sqrt{N \cdot k} \rceil^2 \% N$

If m is a square:

Factor is $\text{GCD}(N, \lceil \sqrt{N \cdot k} \rceil - \sqrt{m})$

Example:

$N = 119$

When $k = 1$, $m = 2$

When $k = 2$, $m = 18$

When $k = 3$, $m = 4$

Factor: $\text{GCD}(119, \lceil \sqrt{119 \cdot 3} \rceil - \sqrt{4})$

$\text{GCD}(119, 17) = 17$
Factoring N

Repeat for $k = 1$ to $k = N$:

Let $m := \lceil \sqrt{N \cdot k} \rceil^2 \mod N$

If m is a square:

Factor is $\gcd(N, \lceil \sqrt{N \cdot k} \rceil - \sqrt{m})$

Example:

$N = 119$

When $k = 1$, $m = 2$

When $k = 2$, $m = 18$

When $k = 3$, $m = 4$

Factor: $\gcd(119, \lceil \sqrt{119 \cdot 3} \rceil - \sqrt{4}) = \gcd(119, 17) = 17$
The One Line Factoring Algorithm

Factoring N

Repeat for $k = 1$ to $k = N$:

- Let $m := \left\lceil \sqrt{N \cdot k} \right\rceil^2 \mod N$
- If m is a square:
 - Factor is $\text{GCD}(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$
The One Line Factoring Algorithm

Factoring N

Repeat for $k = 1$ to $k = N$:

- Let $m := \left\lceil \sqrt{N \cdot k} \right\rceil^2 \mod N$
- If m is a square:
 - Factor is $\text{GCD}(N, \left\lfloor \sqrt{N \cdot k} \right\rfloor - \sqrt{m})$

Example: $N = 119$

When $k = 1$, $m = 2$

When $k = 2$, $m = 18$

When $k = 3$, $m = 4$

Factor: $\text{GCD}(119, 17) = 17$
The One Line Factoring Algorithm

Factoring N

Repeat for $k = 1$ to $k = N$:

- Let $m := \left\lceil \sqrt{N \cdot k} \right\rceil^2 \% N$
- If m is a square:
 - Factor is $\text{GCD}(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

Example: $N = 119$

- When $k = 1$, $m = 2$
The One Line Factoring Algorithm

Factoring N

Repeat for $k = 1$ to $k = N$:

- Let $m := \left\lceil \sqrt{N \cdot k} \right\rceil^2 \mod N$
- If m is a square:
 - Factor is $\text{GCD}(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

Example: $N = 119$

- When $k = 1, m = 2$
- When $k = 2, m = 18$
The One Line Factoring Algorithm

Factoring N

Repeat for $k = 1$ to $k = N$:

- Let $m := \left\lceil \sqrt{N \cdot k} \right\rceil^2 \% N$
- If m is a square:
 Factor is
 $\gcd(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

Example: $N = 119$

- When $k = 1$, $m = 2$
- When $k = 2$, $m = 18$
- When $k = 3$, $m = 4$
The One Line Factoring Algorithm

Factoring N

Repeat for $k = 1$ to $k = N$:

- Let $m := \left\lceil \sqrt{N \cdot k} \right\rceil^2 \% N$
- If m is a square:
 - Factor is $\text{GCD}(N, \left\lceil \sqrt{N \cdot k} \right\rceil - \sqrt{m})$

Example: $N = 119$

- When $k = 1$, $m = 2$
- When $k = 2$, $m = 18$
- When $k = 3$, $m = 4$
- Factor: $\text{GCD}(119, \left\lceil \sqrt{119 \cdot 3} \right\rceil - \sqrt{4})$
The One Line Factoring Algorithm

Factoring N

Repeat for $k = 1$ to $k = N$:

- Let $m := \left\lfloor \sqrt{N \cdot k} \right\rfloor^2 \mod N$
- If m is a square:
 - Factor is $\gcd(N, \left\lfloor \sqrt{N \cdot k} \right\rfloor - \sqrt{m})$

Example: $N = 119$

- When $k = 1$, $m = 2$
- When $k = 2$, $m = 18$
- When $k = 3$, $m = 4$
- Factor: $\gcd(119, \left\lfloor \sqrt{119 \cdot 3} \right\rfloor - \sqrt{4})$

 $\gcd(119, 17) = 17$
Factor numbers $N = pq$
Factor numbers $N = pq$

Applications in cryptography (like RSA)
Factoring pq:

- X-coordinate is prime p,
- Y-coordinate is prime q,
- p, q are first 1600 primes

Green: Smaller prime returned

If p, q are close: Smaller prime returned

Probability of green is $\sim 50\%$
Factoring pq:

- X-coordinate is prime p,
- Y-coordinate is prime q.

p, q are first 1600 primes.

Green: Smaller prime returned.

If p, q are close, smaller prime returned.

Probability of green is $\sim 50\%$.

Tejas Gopalakrishna
OLF on Large Semiprimes
May 2019 9/16
Factoring pq:

- X-coordinate is prime p,
- Y-coordinate is prime q,
- p, q are first 1600 primes
Factoring pq:

- X-coordinate is prime p,
 Y-coordinate is prime q,
 p, q are first 1600 primes
- Green: Smaller prime returned
Factoring pq:

- X-coordinate is prime p,
- Y-coordinate is prime q,
- p, q are first 1600 primes
- Green: Smaller prime returned
- If p, q are close: Smaller prime returned

Pretty Picture: Result of factoring pq
Factoring pq:

- X-coordinate is prime p,
- Y-coordinate is prime q,
- p, q are first 1600 primes
- Green: Smaller prime returned
- If p, q are close: Smaller prime returned
- Probability of green is $\sim 50\%$
Performance of OLF on semiprimes

- X-coordinate is prime p, Y-coordinate is prime q,
- p, q are first 1600 primes
- Points colored from black to white; Whiter means more iterations required
Number of iterations to factor pq:

- X-coordinate is prime p,
- Y-coordinate is prime q,
- p, q are first 1600 primes
Number of iterations to factor pq:

- **X-coordinate is prime p,**
- **Y-coordinate is prime q,**
- p, q are first 1600 primes
- Points colored from black to white; Whiter means more iterations required
The algorithm required trying **every number** from $k = 1$ to (at most) $k = N$.
Improving Efficiency: Reduce Iterations?

The algorithm required trying every number from \(k = 1 \) to (at most) \(k = N \).

Can we skip some \(k \)?
The algorithm required trying every number from $k = 1$ to (at most) $k = N$.

Can we skip some k?

What if we just use squarefree k?
Pretty Picture: Where is squarefree OLF better?

Green: Squarefree approach faster (fewer iterations). Distinct regions where this is more efficient. Better on roughly $\sim 35.5\%$ of semiprimes.

Tejas Gopalakrishna
OLF on Large Semiprimes
May 2019
Pretty Picture: Where is squarefree OLF better?

- **Green:** Squarefree approach faster (fewer iterations)
Green: Squarefree approach faster (fewer iterations)
Distinct regions where this is more efficient
Pretty Picture: Where is squarefree OLF better?

- Green: Squarefree approach faster (fewer iterations)
- Distinct regions where this is more efficient
- Better on roughly $\sim 35.5\%$ of semiprimes
How many iterations to factor a general integer?

- k^{th} bar: Amount of integers that requires k iterations to factor.

Decreases rapidly, therefore skipping k will not always help.
How many iterations to factor a general integer?

- k^{th} bar: Amount of integers that requires k iterations to factor
- Decreases rapidly
How many iterations to factor a general integer?

- k^{th} bar: Amount of integers that requires k iterations to factor
- Decreases rapidly
- Therefore, skipping k will not always help.
How many iterations to factor semiprimes?

- However, the picture is different if only factoring semiprimes
How many iterations to factor semiprimes?

- However, the picture is different if only factoring semiprimes
- Many k not used.
How many iterations to factor semiprimes?

- However, the picture is different if only factoring semiprimes
- Many k not used.
- (Conjecture:) k only has to be $\{0, 1, 3, 5, 7\}$ modulo 8
Further Research

- What causes the strange bands?
Further Research

- What causes the strange bands?
- Can we precisely define when the lower prime is returned?
Further Research

- What causes the strange bands?
- Can we precisely define when the lower prime is returned?
- Prove the semiprime iterations conjecture.

Tejas Gopalakrishna
OLF on Large Semiprimes
May 2019
Further Research

- What causes the strange bands?
- Can we precisely define when the lower prime is returned?
- Prove the semiprime iterations conjecture.
- When can we skip \(k \) in the general algorithm (not just semiprimes)?
Further Research

- What causes the strange bands?
- Can we precisely define when the lower prime is returned?
- Prove the semiprime iterations conjecture.
- When can we skip k in the general algorithm (not just semiprimes)?
- Anything else to make it faster!
Acknowledgements

Thanks a lot to...

- Mentor Yichi Zhang
Acknowledgements

Thanks a lot to...

- Mentor Yichi Zhang
- Dr. Stefan Wehmeir
Acknowledgements

Thanks a lot to...

- Mentor Yichi Zhang
- Dr. Stefan Wehmeir
- Dr. Tanya Khovanova
Acknowledgements

Thanks a lot to...

- Mentor Yichi Zhang
- Dr. Stefan Wehmeir
- Dr. Tanya Khovanova
- The PRIMES Program
Acknowledgements

Thanks a lot to...

- Mentor Yichi Zhang
- Dr. Stefan Wehmeir
- Dr. Tanya Khovanova
- The PRIMES Program
- My Family