Cache-Efficient Parallel Partition Algorithms

Alek Westover

MIT PRIMES

October 20, 2019
THE PARTITION PROBLEM

An unpartitioned array:
The Partition Problem

An unpartitioned array:

An array partitioned relative to a pivot value:
What is a Parallel Algorithm?

Fundamental primitive: *Parallel for loop*

Parallel-For i from 1 to 4:
Do X_i
What is a Parallel Algorithm?

More complicated parallel structures can be made by combining parallel for loops and recursion.
\(T_p: \) **Time to run on \(p \) processors**

Important extreme cases:

Work: \(T_1 \)
- time to run in serial
- "sum of all work"

Span: \(T_\infty \)
- time to run on infinitely many processors
- "height of the graph"
Bounding T_p with Work and Span

Brent’s Theorem: [Brent, 74]

$$T_p = \Theta \left(\frac{T_1}{p} + T_{\infty} \right)$$

Take away: Work T_1 and span T_{∞} determine T_p.
The Standard Parallel Partition Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create filtered array</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Compute prefix sums of filtered array</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Use prefix sums to partition array</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Total work: $T_1 = O(n)$
Total span: $T_\infty = O(\log n)$
THE PROBLEM

Standard Algorithm is slow in practice

- Uses extra memory
- Makes multiple passes over array

"bad cache behavior"

Fastest algorithms in practice lack theoretical guarantees

- Lock-based and atomic-variable based algorithms

- The Strided Algorithm
 [Francis and Pannan, 92; Frias and Petit, 08]

No locks or atomic-variables, but no bound on span
Can we create an algorithm with theoretical guarantees that is fast in practice?
Our Result

The Smoothed-Striding Algorithm

Key Features:

- linear work and polylogarithmic span
 (like the Standard Algorithm)

- fast in practice
 (like the Strided Algorithm)

- theoretically optimal cache behavior
 (unlike any past algorithm)
Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- Good cache behavior in practice

- Worst case span is $T_\infty \approx n$

- On random inputs span is $T_\infty = \tilde{O}(n^{2/3})$
Strided Versus Smoothed-Striding Algorithm

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- Good cache behavior in practice
- Worst case span is $T_\infty \approx n$
- On random inputs span is $T_\infty = \tilde{O}(n^{2/3})$

Smoothed-Striding Algorithm

- Provably optimal cache behavior
- Span is $T_\infty = O(\log n \log \log n)$ with high probability in n
- Uses randomization inside the algorithm
SMOOTHED-STRIDING ALGORITHM’S PERFORMANCE

The graph compares the performance of three algorithms: Strided, Smoothed Striding, and Standard. The x-axis represents the number of threads, ranging from 1 to 18, and the y-axis represents speedup over serial partition. The Strided algorithm shows a significant improvement in speedup as the number of threads increases, whereas the Smoothed Striding and Standard algorithms show less improvement. The Smoothed Striding algorithm performs better than the Standard algorithm across all thread counts.
The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]
Logically partition the array into chunks of adjacent elements.
Form groups P_i that contain the i-th element from each chunk.
Perform serial partitions on each P_i in parallel over the P_i's

This step is highly parallel.
Define $v_i =$ index of first element greater than the pivot in P_i
Identify leftmost and rightmost v_i
Final step: Recursively partition the subarray
Final step: Recursively partition the subarray

- Recursion is impossible!
- **Final Step:** Partition the subarray *in serial.*

Subproblem Span $T_\infty \approx v_{\text{max}} - v_{\text{min}}$
Final step: Recursively partition the subarray

- **Recursion is impossible!**
- **Final Step:** Partition the subarray *in serial.*

Subproblem Span $T_{\infty} \approx v_{\text{max}} - v_{\text{min}} \leftarrow n$ in worst case.
The Smoothed-Striding Algorithm
Logically partition the array into chunks of adjacent elements.
Key difference: Form groups U_i that contain a random element from each chunk
Perform serial partitions on each U_i in parallel over the U_i's.

This step is highly parallel.
Define $v_i = \text{index of first element greater than the pivot in } U_i$
Identify leftmost and rightmost v_i
Final step: Recursively partition the subarray
Final step: Recursively partition the subarray

- Recursion is now possible!
- Randomness guarantees that $v_{\text{max}} - v_{\text{min}}$ is small
A Key Challenge

How do we store the U_i’s if they are all random?

Storing which elements make up each U_i takes too much space!

Strided Algorithm P_i.

Smoothed-Striding Algorithm U_i.
An Open Question

Our algorithm: \(\text{span } T_\infty = O(\log n \log \log n) \)

Standard Algorithm: \(\text{span } T_\infty = O(\log n) \).

Can we get optimal cache behavior and span \(O(\log n) \)?
ACKNOWLEDGMENTS

- MIT PRIMES
- William Kuszmaul, my PRIMES mentor
- My parents
Question Slides
HOW TO STORE THE GROUPS

The solution is to make the groups dependent on one another. Let g be the size of a chunk. Then we only need to store a single group and then the elements of the other groups are determined by this group.

Specifically, let X be an array with values chosen uniformly from $\{1, 2, \ldots, g\}$. Then the i-th element of U_j has index

$$1 + ((X[i] + j) \mod g)$$
The Serial Partition Algorithm

| 5 | 9 | 2 | 7 | 8 | 3 |

Pivot value = 6
The Serial Partition Algorithm

Pivot value = 6

5 9 2 7 8 3

low high

low

high
The Serial Partition Algorithm

Pivot value = 6

5 9 2 7 8 3

low high

swap

low

high

Pivot value = 6
The Serial Partition Algorithm

Pivot value = 6
The Standard Parallel Partition Algorithm

Pivot Value
The Standard Parallel Partition Algorithm