Privacy-Preserving Similarity Search Using Learned Indexes

MIT PRIMES Computer Science Conference
October 20, 2019

By: Patrick Zhang
Mentor: Kyle Hogan
Similarity Search

- matches *items* with similar *features* to the same user *profile*
 - each *item* has a *feature vector* - a vector of numbers determining certain qualities

User profile

\(<1, 0, 2, \ldots>\)

song recommendations
Similarity Search

- Often used for online sites (e-commerce)
 - spotify
 - netflix
 - amazon

Examples of feature vectors for songs:

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>Is pop (genre)</th>
<th>Is jazz (genre)</th>
<th>length (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Song 1</td>
<td>2000</td>
<td>1 (yes)</td>
<td>0 (yes)</td>
<td>120</td>
</tr>
<tr>
<td>Song 2</td>
<td>2010</td>
<td>0 (no)</td>
<td>1 (yes)</td>
<td>200</td>
</tr>
</tbody>
</table>
Why make it private?

- **Scenario**
 - Client wants to get k song recommendations from Server, to match his profile
 - Both the Client and Server want privacy
 - Client doesn’t want the Server to know the profile (can contain very personal information)
 - Server doesn’t want the Client to learn the model that gives the song recommendations
Similarity Search Algorithm

● Each *feature vector* is a point on d-dimensional space where d is the size of a vector
 ○ Feature vector of song 1: \(<2000,1,0,120>\) has 4 dimensions
● k-nearest neighbors = k closest points to a single point
● Higher dimensions make it harder!
 ○ Map the points of d-dimensions to a 1 dimension using a Hilbert curve
 ○ Hilbert curve - a single space-filling line through d-dimensions that guarantees that if 2 points are close in 1 dimension, they will be close in d dimensions
Similarity Search Algorithm

- All the items are on a single “sorted” array
 - <Song 1 (10 units), Song 3 (100 units), Song 5 (101 units),>

- How can we find the index (location) of an item in the sorted vector privately?
What are Learned Index Structures

- Data structures to query information
 - we want to find the index of an item in an array

- How are these different from traditional index structures (i.e. Binary Trees)
 - they utilize the patterns in the data for an APPROXIMATE search that is more efficient in terms of speed and memory
Creating a Learned Index Structure

- want to approximate the position of a key in a sorted array
 - equivalent to approximating the CDF (cumulative distribution function (CDF))
 - x axis = distance
 - y axis = index
Creating a Learned Index Structure

- use linear regression
 - find a line of best fit, x axis is the distance, y value is the position
 - however, there could be too much error
 - the result gives you a bin instead
Creating a Learned Index Structure

- within each bin, you find another line of best fit to find the approximate index
- each set of bins is a *layer*, each bin is represented by the equation of a line: $y=mx+b$
More layers = more bins = more accurate!
Current Protocol (Interactive) - Client Privacy

Client computes and encrypts Hilbert distance for profile \([Hv]\) =

\([\,*[\text{encrypted}]\,\text{means encrypted}\]

using somewhat homomorphic encryption (+ and * work under encryption i.e \([x]^*[y]=[xy]\))
Current Protocol (Interactive) - Client Privacy

Server uses line in layer 1 to get $[L_1]$, the encrypted result

$m[Hv]+b=[L_1]$
Current Protocol (Interactive) - Client Privacy

Client decrypts $[L_1]$ to get L_1, the index of the bin of layer 2

Finds vector $[q] = ([0],..., [1]..., [0])$, array of [0]'s except for a [1] at index L_1

*all the [0] look different so the server can't tell which is the [1]
Current Protocol (Interactive) - Client Privacy

[q'] = ([1],...,[1])-[q] = ([1],....,[0],.....,[1])

W = vector of x intercepts for next set of bins (w₀,w₁,...)
M = vector of slopes for next set of bins (m₀,m₁,...)
B = vector of y intercepts for next set of bins (b₀,b₁,...)

*lines for bins are represented as y=mx+b and mw+b=0

Server computes [s]=[q][Hv]+[q']W
= ([w₀] , [w₁], , [wᵢ₋₁] , [Hv] , [wᵢ₊₁],.....)

An array of the x intercepts except for [Hv] at L₁ (location of the bin we want)
Current Protocol (Interactive) - Client Privacy

Server computes \([s'] = M[s] + B \)
\[
= (m_0[w_0] + b_0, ..., m_i[Hv] + b_i, ..., m_n[w_n] + b_n)
\]
\[
= ([0], ..., m_i[Hv] + b_i, ..., [0])
\]

Remember \(mw + b = 0 \)
Still the server doesn't know what \(L_1 \) is
Current Protocol (Interactive) - Client Privacy

Server computes $[L_2] = \text{sum of } [s'] = m_i[Hv]+b$
Current Protocol (Interactive) - Client Privacy

- Process is repeated until all layers in the model are processed (the last layer gives the final approximate index)
 - In the second layer, L_2 is used instead of L_1
Imminent Work (Adding Server Privacy)

- Server adds random number r to every L value ($L_1,L_2..$)
 - The Client doesn’t know the actual index of the bins or the final index
- When the Server receives $<...>$, it rotates the values by r

Example:

$L_1 = 1$

$r = 1$

Client get $L_1 + r = 2$ and sends: $<[0], [0], [1]...>$

Server rotates the values left by 1: $<[0], [1], [0]...>$
Future work

● Avoid making the Client compute the feature vector
 ○ the feature vector is also something that the Server often spends time making
 ○ we don’t know what features in songs spotify uses to determine similarity

● Decreasing bandwidth
 ○ the size of \([q]\) can be big since it is equal to the number of bins in each layer, however in practice it’s usually around 10 which is not so bad

● A problem to look into - only finds the index on a sorted array quickly, finding the k nearest neighbors requires PIR (Private Information Retrieval) - a really slow process for large databases (grows in speed proportionally to the size of the database)
Other Uses

- Even though similarity search may still be slow overall, privately querying indices of sorted arrays can be used for other things such as range queries.
Acknowledgements

● MIT PRIMES

● My mentor: Kyle Hogan

● Assistance from: Sasha Servan-Schreiber and Hanshen Xiao

● My parents