Random Graphs and All-to-All Communication

Linda Chen
Mentored by Jun Wan
Graphs and Random Graphs

Graph $G = (V, E)$

$V = \text{set of vertices}, \ E = \text{set of edges}$

Degree: number of edges coming out of vertex

Random graph: properties are randomly generated
The Problem

Graphs represent a communication network, vertices represent users

Users exchange messages

All-to-all communication: all users exchange with all other users

How to make communication more efficient and require less cost?

- Cryptocurrency
- Consensus protocols
- etc.
Example of Communication
Goals

Using random graphs: reduce number of exchanges from n to $d \times \text{(round #)}$

Part I: compare different random graph models to reduce **round number**: # of rounds needed to receive all messages

Part II: reduce overall **communication cost**: # of bits received by a user
Part I: Comparison of Random Graph Models

Random graph models:

- Model 1: each edge exists with probability p
- Model 2: graph has total of m edges
- Model 3: each vertex has degree d undirected edges
- Model 4: each vertex has degree d directed edges
Giant Component

Giant component: largest connected component of a graph

Average degree for the giant component to include more than \((1-\varepsilon)n\) vertices…

Previous results:
- Model 1 (probability \(p\)): \(d > \frac{1 - \ln \varepsilon}{1 - \varepsilon}\)
- Model 3 (\(d\) undirected): \(d > 1\)

Our results:
- Model 2 (\(m\) edges): \(d > \frac{2\ln \left((1 - \varepsilon)^{1-\varepsilon} \cdot \varepsilon^\varepsilon \right)}{\ln (1 - 2\varepsilon(1 - \varepsilon))}\)
- Model 4 (\(d\) directed): \(d > 1 + \frac{\varepsilon \ln \varepsilon}{(1 - \varepsilon) \ln \varepsilon}\)
Giant Component Proof Process

Split the set of V vertices into subsets V' and $V - V'$

$$\epsilon n \leq |V'| \leq (1-\epsilon)n$$

Find probability that the two subsets are disconnected

Apply a union bound for all subsets V'

Determine what d must be in order for this probability to be negligible
Diameter and Round Number

Diameter longest shortest path between any two vertices of the graph

\[\delta = 6 \]

Diameter = round number

Round \(i \): users receive messages from users that are a distance \(i \) from them
Diameter

For each user to receive...

From 1 to $\log(n)$ messages: $\log(n)$ rounds

From $\log(n)$ to $0.1n$ messages: $\log\left(\frac{0.1n}{\log n}\right)$ rounds

From $0.1n$ to $(1-\varepsilon)n$ messages: $O(1)$ rounds

Upper bound of diameter = $\log n + \log\left(\frac{0.1n}{\log n}\right) + O(1)$
Diameter

- \(d = 6 \) directed edges
- \(m = 3n \) undirected edges
- \(d = 3 \) undirected edges
- Probability \(p = 3/n \) undirected edges

![Graph showing diameter](image)
Part II: Communication Cost

Communication cost: total number of bits received by a user

Each round, users send to each other an **aggregate signature**

- Consists of *message set*, *signature*, and *multiset* storing components
- Aggregates signatures from multiple distinct users into one signature
Aggregate Signatures

\[M_1, \text{sig}_1 \]
\[M_2, \text{sig}_2 \]
\[M_1, \text{sig}_1 \]
\[M_3, \text{sig}_3 \]

\[\{M_1, M_2, M_3\} \]
\[\{\text{sig}_1, \text{sig}_2, \text{sig}_3\} \]
\[\{1: 2, 2: 1, 3: 1\} \]

\[\{M_1, M_2, M_3\} \]
\[\text{sig}_{1,2,3} \]
\[\{1: 2, 2: 1, 3: 1\} \]
Protocol

Randomly generate graph $G = (V, E)$

n users each start with their own message and signature on that message

For 1 to k (round number) rounds, each user...

- Exchanges messages with d neighbors
- Verifies messages using aggregate signature
- Updates their current messages and aggregate signature with the new messages received
Communication Cost

Using aggregate signatures, **signature cost** is reduced to (# of rounds) * (degree) * (sig size)

Less than the **message cost**, so we can just focus on the messages when considering communication cost
Communication Cost - Messages

A user’s set of messages can be expressed as multisets

Multiset: a modification of a set that can have multiple instances of the same element

EX:

User 1’s multisets:

Start: \{1\}

Round 1: \{2, 3\}

Round 2: \{4, 5, 5, 6\}
Communication Cost - Messages

Multisets assigned numbers in order of probability of appearing

EX: \{1, 2, 3, 4\} is assigned a smaller number than \{2, 2, 2, 2\}

Reduces communication cost: more likely to send smaller numbers (less bits)

Final cost: \(\frac{|\ln \varepsilon| n \log n}{k} \)

\(k = \) round number
Communication Cost

- Actual Results
- Theoretical Results

Communication Cost (kilobytes) vs. # of Vertices
Communication Cost

As n gets bigger, the ratio between actual cost to theoretical cost gets smaller.
Adversaries

Crash model: each user fails with probability p

Is similar to original model, but with reduced degree

When generating graph, increase degree by a factor of $\frac{1}{1-p}$

Can still follow original method of assigning numbers to multisets

Open questions - What else can the adversary do?
Conclusion

Found "good" model of random graph: minimizes diameter and maximizes giant component size

We show an all-to-all communication protocol with:

\[
\log n + \log\left(\frac{0.1n}{\log n}\right) + O(1) \# \text{ of rounds}
\]

\[
\frac{|\ln \varepsilon| \cdot n \log n}{k} \quad \text{communication complexity}
\]

In contrast, previous work does:

\[
|\ln \varepsilon| \cdot n \log n \quad \text{communication complexity}
\]
Thank you!

Questions?