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Abstract

We introduce a new game played by two players that generates an (0,1)-matrix of

size n. The first player aims to maximize its resulting rank, while the second player

aims to minimize it. We show that the first player can force almost full rank given

additional power in move possibilities.

1 Introduction

Matrix rigidity is a concept first introduced by Valiant [1] in 1977 to analyze lower bounds

in arithmetic circuits for linear transformations. We say a matrix M is rigid if it retains high

rank even if several entries are changed. More precisely, we define RM (r) as the minimum

number of entries that must be changed in order to reduce its rank to r. Valiant showed

that if RM (O(n)) = O(n1+ε) for some M and any ε > 0, then the linear transformation

f : Fn → Fn that corresponds to M cannot be computed by an arithmetic circuit of minimal

size and depth.

However, while Valiant demonstrates that there exist highly rigid matrices, there is no

known explicit family of matrices that satisfies these conditions. The best known results

are on finite fields and are due to Friedman [2], for which at least Ω
Ä
n2

r log
(
n
r

)ä
entries

must be changed to reduce its rank to r. However, this is still not rigid enough to establish

the desired bounds on arithmetic circuit complexity. More recently, Alman and Williams

[3] proved that the Walsh-Hadamard transformation is not rigid, while Dvir and Liu [4]

showed that the Toeplitz and Fourier transform families of matrices also do not meet

Valiant’s criteria. Surprisingly, all of these were previously conjectured to be rigid.

The idea of rigidity can be viewed as constructing a matrix that maintains high rank

even if an adversary alters several elements. Our interest is in an extension of this idea,

where there is an “ally” of the matrix who attempts to increase its rank instead of decreasing

it.

Consider a game with two players, whom we refer to as the rank maker and the rank

breaker. For brevity, we abbreviate their titles as RM and RB, respectively. The game is

played on a n × n grid, which is initially empty. On his first turn, RM selects an unfilled

entry on the first row and fills it with a 0 or 1. On her turn, RB selects a different unfilled

entry on the first row and fills it with a 0 or 1. When every element of the first row is
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filled, both players then must fill a cell in the second row. Once every cell in the second

row has been filled, both players then must fill a cell in the third row, and so on. The game

ends when every cell on the grid has been filled with a 0 or 1. At that point, the grid is

interpreted as a matrix in R, whose rank is calculated. RM aims to maximize this rank,

while RB aims to minimize it.

This game is not kind towards the first player.

Proposition 1.1. For every n, RB can force the rank to be at most
⌈
n
2

⌉
.

Proof. We arbitrarily group all of the columns into pairs (if n is odd, then we ignore the

last row). Then whenever RM fills a cell in one columns, RB fills an identical value in

the same row of that column’s dual. This means that at the end, there are at most
⌈
n
2

⌉
distinct columns, which means the rank is at most

⌈
n
2

⌉
.

However, we are still interested in conditions that would allow RM to force a higher

rank. This can be achieved by filling two entries on each turn instead of one. We define

a player’s strength as the number of entries they fill at each turn. To distinguish between

the multitude of possibilities, we define the (C1, C2)-game as the game where RM can fill

C1 entries independently each turn and RB can fill C2 entries independently each turn. If

on any given turn their strength is greater than the number of empty cells in the row, then

they independently fill all empty cells in the row, and make their remaining moves in the

next row. Also, let fn(C1, C2) denote the outcome of the the (C1, C2)-game on an n × n

grid under optimal play. For example, our results above pertain to the (1, 1)-game and

shows that fn(1, 1) ≤
⌈
n
2

⌉
.

We next explore if RM is able to perform better given a slight advantage in strength,

where he is given C > 1 entries instead of 1 at each turn. In this case, we show that RM

can achieve almost full rank.

Theorem 1.2. Let C > 1 be an integer. Then fn(C, 1) ≥ n− 1 for all sufficiently large n.

Furthermore, if n is not divisible by C + 1 we in fact have fn(C, 1) = n.

This is proven in the next section. We expect this generalizes as long as RM has the

advantage in strength.

Conjecture 1.3. As long as C1 > C2 we have that fn(C1, C2) ≥ n− 1 for all sufficiently

large n and some fixed constant c dependent on C1 and C2.

Now, we introduce another variation of our game. The rules are mostly the same,

except that each player is allowed to fill any empty entries on their turn. Like before,

we denote gn(C1, C2) by the outcome of this variation under optimal play. Considering

the existing work on matrix rigidity allows us to establish a basic result that shows the

following:

Proposition 1.4. Let C2 be an integer and let ε > 0. Then there exists C = C(ε, C2) such

that gn(C,C2) > n(1− ε) for all values of n.
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Proof. RB’s strategy is to construct a predetermined rigid matrix. Pudlák and Rödl [5]

showed that a majority of (0,1)-matrices in R have RM (εn) = Θ(n2), where ε is sufficiently

small. However, any matrix can be reduced to rank r = Θ(n) by changing at most (n−r)2 =

Θ(n2), a result which follows by considering a nonsingular r×r submatrix of M . RB always

has Θ(n2) moves in total, which means that this approach is limited to the given bound.

Still, although we cannot demonstrate this at present we expect that our strategy from

Theorem 1.2 will work in a modified form.

Conjecture 1.5. There exists C such that gn(C, 1) ≥ n− c for all sufficiently large n and

some fixed constant c.

2 Proof of Theorem 1.2

Our first step is to prove the following lemma:

Lemma 2.1. To extend the rank for the k-th row for any k, it suffices for RM to fill the

last entry in the k-th row that belongs to a column in Ri for some k < i ≤ n.

Proof. Assume that this is possible. We claim that, when the row is full, the (k+1)×(k+1)

submatrix consisting of columns 1, 2, . . . , k, i is nonsingular. Clearly, the first k columns

are linearly independent, so we need to show that Ci is not the sum of some subset of the

first k columns. For the sake of contradiction, assume that this is possible. Then the first

k rows of the sum are zero, which means that this subset must be Ri\{i}. However, since

RM makes the last move in one of these columns, they can just set it so that the sums

of this row are not equal. Thus, all k + 1 columns would be linearly independent, which

means the rank is successfully extended.

Returning to the main problem, our idea is to construct a strategy that ensures there

exists a nonsingular k × k submatrix after the first k rows are completed for each 1 ≤ k ≤
n − 1, which can be informally described as “extending the rank at each row.” Also, we

work over F2, which implies the result for R.

Proof of Theorem 1.2. Let M denote the n×n playing field. We prove our strategy works

by induction. The base case is k = 1, which is trivial because RM can just place a 1 in any

spot. For our inductive assumption, assume that 1 < k < n− 1 and the first k rows have

been completed and a nonsingular k × k submatrix exists, which we call Mk. Our goal is

to prove the existence of a strategy so that the first (k+1) rows, when filled, will contain a

(k+ 1)× (k+ 1) invertible submatrix. By rearranging the columns we can assume without

loss of generality that Mk is contained by columns 1 through k.

Let Ci denote the ith column of M . As each column is dynamically extended as

gameplay progresses, it will always be interpreted as the state of the column at that moment

in time. By definition, every k × 1 vector can be uniquely written as a linear combination
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of columns in Mk. For k < i ≤ n, we define the representation of a Ci as the set Ri =

{i, a1, a2, . . . , aj}, where 1 ≤ a1, a2, . . . , aj ≤ k and

Ci = Ca1 + Ca2 + · · ·+ Caj .

We also define M ′k as the (k + 1)× k submatrix obtained by taking Mk and the elements

immediately below it.

Our strategy is divided into multiple stages. The first stage occurs when 1 < k < n
2 .

We provide a Method A and a Method B, which are used under varying circumstances.

Method A will be used if there exist columns with only zeroes, and Method B will be used

otherwise.

With Method A, RM picks columns with only zeroes and fills them with a 1. In

addition to decreasing the number of all zero columns, this guarantees that the rank has

successfully been extended, as there is no linear combination of the first k columns that

sum to (0, 0, . . . , 0, 1)T .

Because RM has C moves and RB has 1, Method A also reduces the number of all

zero columns to around 1
C+1 of the previous value, so they should disappear completely

after around logC+1(n) rows of gameplay. By making n sufficiently large, this can be made

much less than n
2 , which ensures this task can be fulfilled before the second stage of the

overall strategy.

If such an initial move is not possible (i.e. there is only one column with all zeroes

and RB already claimed it), Method B is used. However, this situation will not happen

consecutively, so for the next row Method A can be used.

With Method B, RM arbitrarily fills spots in the first k columns. Because k < n
2 ,

they will finish this task before all elements of the row have been filled. Then, on their

next move in the same row (which exists), they pick an empty column Ci. We claim that

this column can be made linearly independent from all columns in M ′k, thus creating the

desired submatrix. This is a consequence of Lemma 2.1, because by assumption everything

in Ri\{i} has already been filled.

Thus, by the time that k ≥ n
2 , our strategy has ensured that full rank is maintained

and there are no zero columns remaining. This allows us to proceed with the second stage,

which applies for all subsequent k up to n− 2.

Note that Method B cannot be extended to any k larger than Cn
C+1 , because the assump-

tion that RM can fill up the first k columns quickly becomes false. However, by Lemma

2.1, we only need to fill up the representation of another column as opposed to the entire

space below Mk.

Let

Rk+1 = {a1, . . . , ai, k + 1}

Rk+2 = {b1, . . . , bj , k + 2}

be the representations of columns k + 1 and k + 2. These sets have cardinality of at least

two because we have established that every column is nonzero, so both columns k+1, k+2
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are the sum of a nonzero collection of other columns in Mk. Recall that by Lemma 2.1,

RM just has to fill the last cell belonging to a column in Rk+1 to win the row, and likewise

for Rk+2.

Firstly, if either Rk+1 or Rk+2 have size less than Cn
C+1 , then we can apply Method

B with respect to the smaller one. Otherwise, both of them have size of at least Cn
C+1 ,

so by the Pigeonhole Principle their intersection is nonempty because all elements are in

{1, 2, . . . , n}. Now our goal is to show that Rk+1 ⊕ Rk+2 also has this property, where ⊕
denotes the exclusive-or operation. Without loss of generality, set

Rk+1 ∩Rk+2 = {a1, a2, . . . , at} = {b1, b2, . . . , bt}

Now, we claim that the submatrix obtained by swapping columns k + 1 and a1 is also

nonsingular. Let Nk be the k × k submatrix of M that contains the first k + 1 columns

excluding Ca1 . It suffices to show that every {0, 1} column of height k can be written as a

nonzero sum of some columns in Nk. However, we have that this property is true for Mk

and

Ca1 = Ca2 + Ca3 + · · ·+ Cai + Ck+1

by the definition of a representation, so we can replace Ca1 with this equivalent any time

it appears (if a column is present twice in a sum we can remove it because we’re working

in F2).

Now, by definition we have that

Ck+2 = Cb1 + Cb2 + · · ·+ Cbj

= Ca2 + Ca3 + · · ·+ Cat + · · ·+ Cai + Ck+1

+ Cb2 + Cb3 + · · ·+ Cbt + · · ·+ Cbj

= Cat+1 + · · ·+ Cai + Cbt+1 + · · ·+ Cnj + Ck+1

which implies that Rk+1 ⊕ Rk+2 is the representation set of Ck+2 with respect to Nk, as

desired. Thus, being the last to fill any of Rk+1, Rk+2, Rk+1⊕Rk+2 will allow RM to extend

Mk’s rank. By similar logic to the above, we can assume that |Rk+1 ⊕Rk+2| ≥ Cn
C+1

Now, define pairwise disjoint sets X,Y, Z such that

X = Rk+1 ∩Rk+2

Y = Rk+1\Rk+2

Z = Rk+2\Rk+1.

Clearly,

X ∪ Y = Rk+1

X ∪ Z = Rk+2

Y ∪ Z = Rk+1 ⊕Rk+2.
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At this point we can ignore Rk+1 and Rk+2, as RM’s goal changes to being the last person

to fill out two of X,Y, Z. Without loss of generality, assume that |X| ≤ |Y | ≤ |Z|. Note

that their union is large because A,B are by assumption. Furthermore, at most one of

X,Y, Z can have size less than 4, because |X ∪ Y | ≥ Cn
C+1 and vice versa. RM’s strategy is

to start by filling X with arbitrary values. Because X is the smallest set and |Y |, |Z| ≥ 4,

neither Y nor Z will have been filled by RB once he is finished.

From here, RM’s strategy is to fill whichever of Y or Z has more unclaimed columns.

The exception, of course, is if one of Y,Z has one or two elements remaining, in which case

he takes them for the immediate win.

To show this works, assume that RB is the first to take the last element of one of Y,Z

under optimal play, say Y . For RM’s turn before, Y could have one, two, or three elements

left. But having one or two elements means RM wins, so there must have been three left,

and he took two from Y . The only case where this is allowed in our strategy is if Z also

has 3 unclaimed elements. In this case, RM can just take 1 from each set, which is clearly

a winning position. Thus, this never happens, as desired.

This process allows RM to maintain full rank throughout the first n − 1 rows, which

establishes the inequality. To prove the equality, we note that in those cases (where C +1 -
n), RM moves last. When filling out the nth row, it is not hard to show that there is only

one representation set among all possible choices of Mn−1 (they all overlap), so making the

last move in the row guarantees RM has an easy strategy to claim its last element. On

the other hand, if RB has the last move and the representation set is large, then the rank

stays at n− 1.
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