
On the Hausdorff Dimension of the Visible Koch Curve
Heidi Lei

Abstract
In geometry, a point in a set is visible from another point if the line segment

connecting two points does not contain other points in the set. We show that the
Hausdorff dimension is 1 for the portion of the Koch curve that is visible from points
at infinity and points in certain defined regions of the plane.

1 Introduction
The Koch curve was first described by Helge von Koch in 1904 as an example of a continuous
but nowhere differentiable curve. It is a bounded fractal on the plane with infinite length.
The Hausdorff dimension was introduced in 1918 by Felix Hausdorff as a generalization of
the usual sense of integral dimension.

In this paper, we concentrate on the Hausdorff dimension of the parts of the Koch
curve visible from a given point. This project was suggested by Prof. Larry Guth. To our
knowledge, there has not been past literature on the study the visibility of a fractal. We
show that the Hausdorff dimension is 1 from points of visibility at infinity and from a set
of points in certain regions of R2. We also show that from any point in R2 the Hausdorff
dimension is bounded below by 1.

In Section 2, we discuss Hausdorff dimension and its properties. In Section 3, we define
Koch curve and the notion of point visibility used in this paper. Finally, we calculate the
Hausdorff dimension of the visible Koch curve from points at infinity and certain points in
R2 in Section 4 and Section 5 respectively.

2 Hausdorff Dimension
In this section, we give the definitions for basic concepts involved in defining the Hausdorff
dimension. Our exposition in the subsections follows [1].

2.1 Hausdorff Measure
Consider a subset U of Rn. The diameter of U is defined to be |U | = sup{|x−y| : x, y ∈ U},
i.e., the least upper bound for the distances between any two points in U . A δ-cover for a
set F ⊂ Rn is a countable collection of sets with diameter at most δ that covers F , i.e.,

F ⊂
∞∪
i=0

Ui

where |U | ≤ δ. We define the Hausdorff measure of a set using covers with increasingly
small radius approaching 0.
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Definition 2.1. The s-dimensional Hausdorff measure of a set F ⊂ Rn is defined to be

Hs = lim
δ→0

Hs
δ(F ),

where Hs
δ(F ) = inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of F
}

.

The Hausdorff measure generalizes the notion of length, area, and volume. More formally,
the n-dimensional Hausdorff measure for a Borel set B ⊂ Rn is a constant multiple of n-
dimensional Lebesgue measure λ, that is,

Hn(B) = Vnλ(B),

where Vn is the volume of the n-ball with diameter 1 [1].
To see how the Hausdorff measure induces the same kind of scaling behavior as familiar

notions of length, area, and volume, we note how the Hausdorff measure of a set F changes
when it undergoes a similarity transformation, that is, a mapping S such that

|S(x)− S(y)| = c|x− y|

for some scaling factor c > 0 for all x, y ∈ F .

Proposition 2.1. Let S be a similarity transformation of scaling factor c, then

Hs(S(F )) = csHs(F ).

Next, we exhibit some useful basic properties of Hausdorff measures. To do that, we first
define several notions related to relative distance for transformations of a set in a metric
space.

Definition 2.2. A function f satisfies the Hölder condition if

|f(x)− f(y)| ≤ c|x− y|α

for non-negative real constants c, α ≥ 0.

Definition 2.3. A function f is Lipschitz if it satisfies the Hölder condition with exponent
α = 1, i.e.,

|f(x)− f(y)| ≤ c|x− y|
where c ≥ 0.

By directly applying the definition of Hausdorff measures, we arrive at the following fact
on the transformation property of Hausdorff measures:

Proposition 2.2. Let F ∈ Rn and f : F → Rm be a mapping that satisfies a Hölder
condition

|f(x)− f(y)| ≤ c|x− y|α

for constants c, α ≥ 0. Then for each s,

H s
α (f(F )) ≤ c

s
aHs(F ).
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2.2 Hausdorff Dimension
Now equipped with the notion of Hausdorff measures, we can finally define the Hausdorff
dimension of a set. We first note that for a set F , the t-dimensional Hausdorff measure
vanishes to 0 when the s-dimensional Hausdorff measure is finite for some s < t. Indeed, let
{Ui} be a δ-cover of F , we have∑

i

|Ui|t =
∑
i

|Ui|t−s|Ui|s ≤ δt−s
∑
i

|Ui|s.

Since taking the infimum preserves the inequality, Ht
δ(F ) ≤ δt−sHs

d(F ). Letting δ → 0,
we have Ht(F ) = 0 when t > s and Hs(F ) < ∞, establishing our claim. We see that
there exists a critical value for the dimension of the Hausdorff measure of a set at which the
measure changes from ∞ to 0. The Hausdorff dimension is defined to be this critical value.
The formal definition follows.

Definition 2.4. The Hausdorff dimension dimHF of a set F ∈ Rn is defined to be

dimHF = inf{s ≥ 0 : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.

Using Proposition 2.2, we can quickly establish the following property of the Hausdorff
dimension which will be helpful later in calculating the Hausdorff dimension of certain fractal
sets.

Proposition 2.3. Let F ∈ Rn and suppose that f : F → Rm satisfies a Hölder condition

|f(x)− f(y)| ≤ c|x− y|α,

then dimHf(F ) ≤ 1
αdimHF .

Corollary 2.3.1. If f : F → Rm is Lipschitz, then dimHf(F ) ≤ dimHF .

Corollary 2.3.2. If f : F → Rm is a bi-Lipschitz transformation such that

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y|,

where 0 < c1 ≤ c2 < ∞, then dimHf(F ) = dimHF .

2.3 Hausdorff Dimension of Self-Similar Fractals
Most commonly seen and studied fractals involve some degree of self-similarity, and the
calculations of Hausdorff dimension for these fractals can be greatly simplified due to the
following result for self-similar fractals.

First, we make rigorous the concept of self-similarity for fractals using contraction maps
and iterated function system.

Definition 2.5. For a closed set D, a mapping S : D → D is a contraction on D if there
exists a constant 0 < c < 1 such that

|S(x)− S(y)| ≤ c|x− y|

for all x, y ∈ D. If equality holds, then S is called a contraction similarity.
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Definition 2.6. An iterated function system (IFS) is a finite family of contraction maps
{S1, S2, . . . , Sm}.

If we repeatedly apply an iterated function system to a set F , then the resulting set
approaches a “limit” set, or the attractor for the IFS. More rigorously put, the attractor of
an IFS is a compact subset F of D such that

F =

m∪
i=1

Si(F ).

It can be shown that the attractor of an IFS is unique (see [1]), so a fractal can be defined
uniquely with an IFS.

Given the concept of contraction similarities, we define a self-similar set as follows.

Definition 2.7. A self-similar set is the attractor of the iterated function system {S1, S2, . . . , Sm}
such that each Si is a similarity, i.e., |Si(x)− Si(y)| = c|x− y| for some 0 < c < 1.

Essentially, a self-similar set is a union of smaller similar copies of itself, and thus it is
unchanged when the iterated function system is applied.

The Hausdorff dimension of a self-similar set is easy to calculate due to the following
theorem provided that the similarity maps Si in the IFS satisfies the open set condition,
which requires the existence of a nonempty bounded open set V such that

m∪
i=1

Si(V ) ∈ V.

Proposition 2.4. If F is a self-similar set, i.e., the attractor of an IFS {S1, S2, . . . , Sm}
where Si are contraction similarities satisfying the open set condition with scaling factor
0 < ci < 1 for all 1 ≤ i ≤ m, then dimHF = s, where s is given by

m∑
i=1

csi = 1.

Moreover, for this value of s, we have 0 < Hs(F ) < ∞.

While a full proof is contained in [1], we include here a short heuristic argument [1]
presented to motivate the result.

Since the set of similarities Si satisfy the open set condition, the similar copies of the set
F do not “overlap too much,” which is to say that the union

∪m
i=1 Si(F ) is “nearly disjoint.”

Then we have
Hs(F ) =

m∑
i=1

Hs(Si(F )) =

m∑
i=1

csiHs(F )

where the last equality is given by the scaling property of Hausdorff measures, Proposition
2.1. Assuming that 0 < Hs(F ) < ∞ at this critical value of dimH = s, we have

∑m
i=1 c

s
i = 1

as in Proposition 2.4.
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3 Koch Curve and Visibility
First, we define the Koch curve K. The Koch curve can be constructed by iteratively
replacing the middle third of each line segment by an equilateral triangle of the same length
with the base removed, as shown in Figure 3.1.

Iteration 0:

Iteration 1:

Iteration 2:

Iteration 3:

Iteration 4:

Iteration 5:

Figure 3.1: The iterative construction of the Koch curve.

Formally as a self-similar fractal, the Koch curve can be defined via an iterated function
system.
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Definition 3.1. The Koch curve K ⊂ C is defined by the following IFS {S1, S2, S3, S4}.
Let ω = e

πi
3 be the sixth root of unity,

S1(z) =
z

3
; S2(z) =

ωz + 1

3
; S3(z) =

ω2x+ 2

3
; S4(z) =

z + 2

3
.

In the following discussion, the Koch curve is positioned in R2 such that the base segment
(Iteration 0) is placed on the interval [0, 1] on the x-axis, so the curve is centered along the
line x = 1

2 .
Since the Koch curve is self-similar, we can apply Proposition 2.4 to calculate to calculate

its Hausdorff dimension. Note that the scaling factor ci for the similarity transformations
Si is 1

3 for each 1 ≤ i ≤ 4. Thus, the Hausdorff dimension of the Koch curve dimH(K) = s
satisfies

4∑
i=1

csi =

4∑
i=1

1

3s
=

4

3s
= 1,

from which we obtain that dimH(K) = log3 4, a classical result in fractal geometry.
Next, we define the concept of visibility for a set from a given a point.

Definition 3.2. A point P in a set S is visible from a point V if there are no other points
in S on the line segment connecting P and V . The collection of all points in S visible from
V is denoted SV . The line connecting the point of visibility V to a point p ∈ S is the line
of visibility through P .

The goal is to calculate the Hausdorff dimension of the portion of the Koch curve visible
from different points in the plane.

4 Visibility from points at infinity
4.1 Visibility from (1/2,∞)

Figure 4.1 gives the portion of the first few iterations of the Koch curve that is visible from
( 12 ,∞), denoted as K( 1

2 ,∞).
The intersection of the Koch curve with the initial line segment (Iteration 0) is visible—it

is the Cantor set.

Iteration 0:

Iteration 1:

Iteration 2:
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Iteration 3:

Iteration 4:

Iteration 5:

Figure 4.1: Iterations of the Koch curve visible from ( 12 ,∞)

We aim to calculate the Hausdorff dimension dimHK( 1
2 ,∞) of the new fractal. Before

then, we first note the similarity of K( 1
2 ,∞) with the Sierpinski gasket from the iterations of

K( 1
2 ,∞) (Figure 4.1). We will formalize this similarity here.
Let us start with a filled triangle with vertices at (0, 0), (1, 0), and ( 12 ,

√
3
6 ), which is

the convex hull of the Koch curve. We define a modified gasket by an iterative process. In
each iteration we start with a triangle. Then we divide each side into three equal segments.
We connect two division points close to one vertices of a triangle by a line. This way the
original triangle is divided into three corner triangle and a hexagon. We now replace the
initial triangle with three corner triangles. Equivalently, we remove the hexagon in the
center. The first few iterations of the modified Sierpinski gasket are shown in Figure 4.2.

Iteration 1:

Iteration 2:

7



Iteration 3:

Iteration 4:

Figure 4.2: Iterations of the modified Sierpinski gasket

It’s clear from the iteration process that the modified gasket can be defined by an IFS
with 3 similarities with scaling factor 1

3 . Applying Proposition 2.1 gives that the Hausdorff
dimension of the modified gasket is 1. Note that the visible portion of the Koch curve from
( 12 ,∞) is the intersection of the Koch curve with the modified gasket.

Proposition 4.1. The Hausdorff dimension of the Koch curve visible from ( 12 ,∞) is 1:

dimHK( 1
2 ,∞) = 1.

Proof. Let Kn denotes the fractal K( 1
2 ,∞) at iteration n. The length, or equivalently, the 1-

dimensional Hausdorff measure H1(K1) of the fractal K1 is 4
3 as it consists of four congruent

segments of length 1
3 . Observe that the length of the fractal Ki is preserved in each iteration

i > 1 since Ki+1 consists of three copies of Ki with scaling factor 1
3 , so H1(Ki+1) = H1(Ki).

Letting i → ∞, we have H1(K( 1
2 ,∞)) =

4
3 . Then 0 < H1(K( 1

2 ,∞)) < ∞, and dimHK( 1
2 ,∞) =

1.

4.2 Visibility from a general point at infinity
After we have discussed a specific point of visibility in section 4.1, we are ready to prove
the theorem for the more general case.

Theorem 4.2. The Hausdorff dimension of the Koch curve from any point of visibility at
a direction of infinity KV∞ is 1:

dimHKV∞ = 1.

Proof. Let l be a line perpendicular to the parallel lines of visibility from the point of
visibility V to KV that separates V from KV , i.e., all the points in KV lies on a different
side of l than V . Consider the map f : KV 7→ l is a orthogonal projection of KV onto l. We
claim that at each iteration of the curve Kn

V , its length is finite and bounded. Note that Kn
V

contains only three sets of parallel line segments, and their projections onto l do not overlap
except at end points. Let I = f(KV ) be the line segment Kn

V is projected onto, and −→ul and
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−→ui be unit vectors in the direction of l and ui with angles of inclination i = 0◦, 60◦, 120◦.
then the length of Kn

V is bounded by:

mH1(Kn
V )I ≤ H1(Kn

V ) ≤ MH1(Kn
V )I

where m = min−→ul·−→ui>0(
−→ul · −→ui) and M = max(−→ul · −→ui). Therefore, we have

0 < H1(Kn
V ) < MH1(Kn

V )I,

as claimed.

5 Lower bound on the Hausdorff dimension for visibility
points in R

In this section, we show that the Hausdorff dimension of the Koch curve visible from a finite
point is bounded below by 1.

Proposition 5.1. The Hausdorff dimension of the Koch curve visible from a point v ∈ R2

that does not lie on the Koch curve is bounded below by 1:

dimHKV ≥ 1.

Proof. Consider the projection map f : KV → Ω where Ω is a circle centered at V that does
not touch nor enclose parts of the Koch curve K. (This is possible because the K is closed
in R2). Each point P ∈ KV is mapped to the intersection of Ω and the line PV as in Figure
5.1 and 5.2.

V

P1

P2

P ′
1 P ′

2f((0, 0)) f((1, 0))

(0, 0) (1, 0)

Q

Figure 5.1

We claim that f is Lipschitz. Let P1, P2 be two points on KV , and P ′
1, P ′

2 be their
projections onto Ω through f . Without loss of generality, let P2 be the closer point than P1
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V

P1 P2
P ′
1 P ′

2

f(( 13 , 0))
f(( 23 , 0))

( 13 , 0) ( 23 , 0)

Q

Figure 5.2

to the line P ′
1P

′
2. Let Q be the intersection of the line through P2 parallel to P ′

1P
′
2 and the

line through V and P1. Then we have

|P ′
1P

′
2| ≤ |QP2| ≤ |P1P2|

where the first inequality is given by similar triangles, and the second inequality comes from
the fact that triangle V P ′

1P
′
2 is isosceles and thus angle P1QP2 is obtuse. Since f is Lipschitz,

by Corollary 2.3.1, we have H1(KV ) ≥ H1(f(KV )) > 0, where the last inequality comes
from the fact that H1(f(KV )) is the length of an arc and thus nonzero. Since H1(KV ) > 0,
dimHKV ≥ 1.

6 Visibility from points in R2

In this section, we calculate the Hausdorff dimension of the Koch curve visible from points
in the shaded region S shown in Figure 6.1.

Proposition 6.1. The Hausdorff dimension of the Koch curve visible from a point V in
region S

dimHKV = 1,

where we define S = R2 − ∪3
i=1Si and

S1 =

{
(x, y) | 0 < y <

√
3

6

}
,

S2 =
{
(x, y) |

√
3x− 1 < y <

√
3x

}
,

S3 =
{
(x, y) | −

√
3x < y < sqrt3x+ 1

}
.

Proof. We prove the theorem for the upper region S1. The proofs for other regions are
nearly identical.

Let V ≡ (xV , yV ). We show that the Hausdorff dimension of the fractal KV is bounded
above by 1 by proving that it has finite length, i.e., H1(KV ) < ∞, from which we can
conclude by the definition of Hausdorff dimension that dimHKV ≤ 1.
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( 12 ,
√
3
2 )

( 12 ,−
√
3
2 )

(0, 0) (1, 0)

Figure 6.1: Shaded region indicates S.

Similar to the proof of Proposition 5.1, consider the projection function f : KV → l

where l is a horizontal line y =
√
3
6 that passes through the apex of KV at ( 12 ,

√
3
6 ). Since

V is above the equilateral triangle it forms an angle θ0 outside of the equilateral triangle
(see Figure 6.2). Our goal is to demonstrate that in each iteration n, the length of Kn

V is
bounded by a constant multiple of |f((0, 0))− f((1, 0))|, that is,

H1(Kn
V ) ≤ M |f((0, 0))− f((1, 0))|

where M is a positive constant. We prove this by bounding the length of each line segment
in the fractal with respect to the length of its image on the line l.

We consider the part of the fractal Kn
V that lies to the left of V , i.e. points on KV with

x-coordinate less than or equal to xV . There are three cases depending on the angle of
inclination of the line segment: 0◦, 60◦, and 120◦.

Case 1: The line segment is horizontal as in Figure 6.3.
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V

l

60◦

( 12 ,
√
3
2 )

θ0

Figure 6.2

Let P1 and P2 be the endpoints of the line segment with coordinates (x1, y) and (x2, y),
for 0 ≤ y ≤

√
3
6 .

By similar triangles,

|P1 − P2| =
yV − y

yV −
√
3
6

|f(P1)− f(P2)| ≤
yV

yV −
√
3
6

|f(P1)− f(P2)|.

Case 2: The line segment has an angle of inclination of 60◦as in Figure 6.4.
Let P1 and P2 be the endpoints of the line segment. We extend the line from V to P2

until its intersects with the horizontal line at Q. Let θ denote the angle formed between the
line of visibility through point P2 and the line connecting P1 and P2 with 60◦of inclination.

By the law of sines,
sin θ

|P1 −Q|
=

sinϕ

|P1 − P2|
.
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v

P1 P2

l
f(P1) f(P2)

Figure 6.3

v

P1

P2

l
f(P1) f(P2)

Q

θ

θ

ϕ60◦

Figure 6.4

Since ϕ = 120◦ − θ, we have

|P1 − P2| =
sin(120◦ − θ)

sin θ
|P1 −Q| ≤ 1

2
(
√
3 cot θ + 1)|P1 −Q|.

Applying the result from Case 1,

|P1 −Q| ≤ a

a−
√
3
6

|f(P1)− f(P2)|.

Since θ0 is the smallest angle a line of visibility can form with lines with 60◦of inclination,
we must have θ ≥ θ0. Since cotx is a decreasing function for 0 ≤ x ≤ π

2 , we have

cot θ ≤ cot θ0.
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Combining the inequalities,

|P1 − P2| ≤
1

2
(
√
3 cot θ + 1)|P1 −Q| ≤ yV (

√
3 cot θ + 1)

2(yV −
√
3
6 )

|f(P1)− f(P2)|

≤ yV (
√
3 cot θ0 + 1)

2(yV −
√
3
6 )

|f(P1)− f(P2)|.

Case 3: The line segment has an angle of inclination of 120◦as in Figure 6.5.

v

P1

P2

l
f(P1) f(P2)

Q

60◦ϕ

θ

Figure 6.5

We label the points similarly as in Case 2. Now let θ denote the angle formed at the
vertex P1. Since P1 lies in the left side of the fractal, we have θ > 30◦ (because θ = 30◦

when the line of visibility through P1 is vertical), and thus cot θ ≤ cot 30◦ =
√
3. Using the

same derivation as in Case 2,

|P1 − P2| ≤
yV (

√
3 cot θ + 1)

2(yV −
√
3
6 )

|f(P1)− f(P2)| ≤
2yV

yV −
√
3
6

|f(P1)− f(P2)|.

To combine the three cases, let

M = max

(
yV

yV −
√
3
6

,
yV (

√
3 cot θ0 + 1)

2(yV −
√
3
6 )

,
2yV

yV −
√
3
6

)
,

which is a fixed constant since yV and θ0 are fixed. Then, for each line segment in the fractal
Kn

V , we have
|P1 − P2| ≤ M |f(P1)− f(P2)|

where P1, P2 are endpoints of the line segment. Since f is a bijection, the projection of
distinct line segments do not overlap. Thus, adding up the lengths of each line segment in

14



Kn
V , we have the following bound on the total length of Kn

V ,

H1(Kn
V ) ≤ M |f((0, 0))− f((1, 0))| =

c(yV −
√
3
6 )

yV
.

Therefore, for the limiting set K( 1
2 ,a), we have

H1(KV ) = lim
n→∞

H1(Kn
V ) ≤

M(yV −
√
3
6 )

yV
< ∞,

establishing our claim.
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