
In-Place Parallel-Partition
Algorithms using Exclusive-Read-and-WriteMemory

An In-Place AlgorithmWith Provably Optimal Cache Behavior

William Kuszmaul
∗

Massachusetts Institute of Technology

kuszmaul@mit.edu

AlekWestover
†

alek.westover@gmail.com

Abstract
We present an in-place algorithm for the parallel partition

problem that has linear work and polylogarithmic span. The

algorithm uses only exclusive read/write shared variables,

and can be implemented using parallel-for-loops without any

additional concurrency considerations (i.e., the algorithm

is EREW). A key feature of the algorithm is that it exhibits

provably optimal cache behavior, up to small-order factors.

We also present a second in-place EREW algorithm that

has linearwork and spanO(logn ·loglogn), which iswithin an
O(loglogn) factor of the optimal span. By using this low-span

algorithm as a subroutine within the cache-friendly algo-

rithm, we are able to obtain a single EREW algorithm that

combines their theoretical guarantees: the algorithmachieves

spanO(logn ·loglogn) and optimal cache behavior. As an im-

mediate consequence,wealsoget an in-placeEREWquicksort

algorithmwith workO(nlogn), spanO(log2n ·loglogn).
Whereas the standard EREW algorithm for parallel par-

titioning is memory-bandwidth bound on large numbers of

cores, our cache-friendly algorithm is able to achieve near-

ideal scaling in practice by avoiding the memory-bandwidth

bottleneck. The algorithm’s performance is comparable to

that of the Blocked Strided Algorithm of Francis, Pannan,

Frias, and Petit, which is the previous state-of-the art for par-

allel EREW sorting algorithms, but which lacks theoretical

guarantees on its span and cache behavior.

1 Introduction
A parallel partition operation rearranges the elements in

an array so that the elements satisfying a particular pivot
property appear first. In addition to playing a central role in

parallel quicksort, the parallel partition operation is used as

a primitive throughout parallel algorithms.
1

A parallel algorithm can be measured by itswork, the time

needed to execute in serial, and its span, the time to execute

on infinitely many processors. There is a well-known algo-

rithm for parallel partition on arrays of sizenwith workO(n)
and spanO(logn) [2, 7]. Moreover, the algorithm uses only

exclusive read/write shared memory variables (i.e., it is an

EREW algorithm). This eliminates the need for concurrency

mechanisms such as locks and atomic variables, and ensures

∗
Supported by a Hertz Fellowship and a NSF GRFP Fellowship

†
Supported byMIT PRIMES.

1
In several well-known textbooks and surveys on parallel algorithms [2, 7],

for example, parallel partitions are implicitly used extensively to perform

what are referred to as filter operations.

good behavior even if the time to access a location is a func-

tion of the number of threads trying to access it (or its cache

line) concurrently. EREW algorithms also have the advantage

that their behavior is internally deterministic, meaning that

the behavior of the algorithmwill not differ from run to run,

which makes test coverage, debugging, and reasoning about

performance substantially easier [8].

The parallel-partition algorithm suffers from using a large

amount of auxiliary memory, however. Whereas the serial

algorithm is typically implemented in place, the parallel algo-

rithm relies on the use ofmultiple auxiliary arrays of sizen. To
the best of our knowledge, the only known linear-work and

polylog(n)-span algorithms for parallel partition that are in-

place require the use of atomic operations (e.g, fetch-and-add)

[6, 21, 29].

An algorithm’s memory efficiency can be critical on large

inputs. Thememory consumption of an algorithmdetermines

the largestproblemsize that canbeexecuted inmemory.Many

externalmemory algorithms (i.e., algorithms for problems too

large to fit inmemory) perform large subproblems inmemory;

the size of these subproblems is again bottlenecked by the

algorithm’s memory-overhead [30]. In multi-user systems,

processes with larger memory-footprints can hog the cache

and the memory bandwidth, slowing down other processes.

For sorting algorithms, in particular, special attention to

memory efficiency is often given. This is because (a) a user

calling the sort function may already be using almost all of

the memory in the system; and (b) sorting algorithms, and es-

pecially parallel sorting algorithms, are often bottlenecked by

memory bandwidth. The latter property, in particular, means

that any parallel sorting algorithm that wishes to achieve

state-of-the art performance on a large multi-processor ma-

chine must be (at least close to) in place.

Currently the only practical in-place parallel sorting algo-

rithms either rely heavily on concurrency mechanisms such

as atomic operations [6, 21, 29], or abstain from theoretical

guarantees [14]. Parallelmerge sort [18]wasmade in-place by

Katajainen [22], but has proven too sophisticated for practical

applications. Bitonic sort [9] is naturally in-place, and can

be practical in certain applications on super computers, but

suffers in general from requiring workΘ(nlog2n) rather than
O(nlogn). Parallel quicksort, on the other hand, despite the

many efforts to optimize it [6, 14, 15, 21, 29], has eluded any

in-place EREW (or CREW) algorithms due to its reliance on

parallel partition.
2

Results.Weconsider theproblemofdesigninga theoretically

efficient parallel-partition algorithm that also performs well

in practice. All of the algorithms considered in this paper use

only exclusive read/write shared variables, and can be imple-

mented using CILK parallel-for-loops without any additional

concurrency considerations.

Wegiveasimple in-placeparallel-partitionalgorithmcalled

theSmoothedStridingAlgorithm,which incurs linearwork

and polylogarithmic span. Additionally, the algorithm ex-

hibits provably optimal cache behavior up to low-order terms.

In particular, if the input consists ofm cache lines, then the

algorithm incurs at mostm(1+o(1)) cache misses, with high

probability inm.

We also develop a suite of techniques for transforming

the standard linear-space parallel partition algorithm into

an in-place algorithm. The new algorithm, which we call

the In-Place Prefix-SumBased Algorithm, has workO(n)
and spanO(logn · loglogn), which is within a loglogn factor

of optimal. As an immediate consequence, we also get an

in-place quicksort algorithm with workO(nlogn) and span
O(log2n loglogn). Moreover, we show that, by using the In-

Place Prefix-Sum Based Algorithm as a subroutine within the

Smoothed Striding Algorithm, one can combine the theoret-

ical guarantees of the two algorithms, achieving a span of

O(lognloglogn), while also achieving optimal cache behavior

up to low-order terms.

In addition to analyzing the algorithms, we experimentally

evaluate their performances in practice. We find that an algo-

rithm based on the In-Place Prefix-Sum Based Algorithm is

able to achieve speedups over the standard linear-space algo-

rithm due to increased cache efficiency. The In-Place Prefix-

Sum Based Algorithm does not exhibit optimal cache behav-

ior, however, and as we show in our experimental evaluation,

the algorithm remains bottlenecked by memory throughput.

In contrast, the cache-optimality of the Smoothed Striding

Algorithm eliminates the memory-throughput bottleneck,

allowing for nearly perfect scaling on many processors.

Thememory-bandwidthbottleneckpreviously ledresearchers

[14, 15] to introduce the so-called StridedAlgorithm, which

has near optimal cache behavior in practice, but which ex-

hibits theoretical guarantees only on certain random input

arrays. The Smoothed Striding Algorithm is designed to have

similar empirical performance to the StridedAlgorithm,while

achieving both theoretical guarantees on work/span and on

cache-optimality. This is achieved by randomly perturbing

the internal structure of the Strided Algorithm, and adding

a recursion step that was previously not possible. Whereas

the Strided Algorithm comes with theoretical guarantees

only for certain inputs, the Smoothed Striding Algorithm has

polylogarithmic span, and exhibits provably optimal cache

behavior up to small-order factors for all inputs. In practice,

2
In aCREW algorithm, readsmay be concurrent, but writes may not. CREW

stands for concurrent-read exclusive-write.

the Smoothed Striding Algorithm performs within 15% of the

Strided Algorithm on a large number of threads.

Outline. We begin in Section 2 by discussing background

on parallel algorithms and the Parallel Partition Problem. In

Section 3, we present and analyze the Smoothed Striding Al-

gorithm. In Appendix Awe give an alternative algorithm that

achieves a nearly optimal span ofO(lognloglogn) but is not
cache-optimal; this algorithm can be used as a subroutine

within the Smoothed Striding Algorithm to achieve the same

span. Section 4 implements the algorithms from this paper,

along with the Strided Algorithm and the standard linear-

space algorithm, in order to experimentally evaluate their

performances. Finally, we conclude with open questions in

Section 5. Figures and pseudocode are differed to Appendices

B and C.

2 Preliminaries
We begin by describing the parallelism and memory model

used in the paper, and by presenting background on the par-

allel partition problem.

Workflow Model. We consider a simple language-based

model of parallelism in which algorithms achieve parallelism

through the use of parallel-for-loops (see, e.g., [2, 7, 13]);
function calls within the inner loop then allow for more com-

plicated parallel structures (e.g., recursion). Our algorithms

can also be implemented in the less restrictive PRAMmodel

[2, 7].

Formally, a parallel-for-loop is given a range size R ∈N, a
constant number of arguments arg

1
,arg

2
,...,argc , and a body

of code. For each i ∈ {1, ... ,R}, the loop launches a thread

that is given loop-counter i and local copies of the arguments

arg
1
,arg

2
,...,argc . The threads are then takenupbyprocessors

and the iterations of the loop are performed in parallel. Only

after every iteration of the loop is complete can control flow

continue past the loop.

A parallel algorithmmay be run on an arbitrary number

p of processors. The algorithm itself is oblivious to p, how-
ever, leaving the assignment of threads to processors up to

a scheduler.

TheworkT1 of an algorithm is the time that the algorithm

would require to execute on a single processor. The spanT∞
of an algorithm is the time to execute on infinitely many pro-

cessors. The scheduler is assumed to contribute no overhead

to the span. Inparticular, if each iterationof a parallel-for-loop

has span s , then the full parallel loop has span s+O(1) [2, 7].
The workT1 and spanT∞ can be used to quantify the time

Tp that an algorithm requires to execute onp processors using
a greedy online scheduler. If the scheduler is assumed to con-

tribute no overhead, then Brent’s Theorem [12] states that

for any p,

T1/p ≤Tp ≤T1/p+T∞.

The work-stealing algorithms used in the Cilk extension

of C/C++ realize the guarantee offered by Brent’s Theorem

within a constant factor [10, 11], with the added caveat that

2

parallel-for-loops typically induce an additional additive over-

head ofO(logR).

MemoryModel.Memory is exclusive-read and exclusive-
write. That is, no two threads are ever permitted to attempt to

read orwrite to the same variable concurrently. The exclusive-

read exclusive-write memory model is sometime referred to

as the EREWmodel (see, e.g., [18]).
Note that threads arenot in lockstep (i.e., theymayprogress

at arbitrary different speeds), and thus the EREWmodel re-

quires algorithms to be data-race free in order to avoid the

possibility of non-exclusive data accesses.

In an in-place algorithm, each thread is givenO(polylogn)
memory upon creation that is deallocated when the thread

dies. This memory can be shared with the thread’s children.

However, the depth of the parent-child tree is not permitted

to exceedO(polylogn).
Whereas theEREWmemorymodelprohibits concurrentac-

cesses tomemory, on theother side of the spectrumareCRCW

(concurrent-read-concurrent-write) models, which allow for

both reads and writes to be performed concurrently (and in

somevariants even allow for atomic operations) [2, 7, 25].One

approach to designing efficient EREW algorithms is to simu-

late efficient CRCW algorithms in the EREWmodel [25]. The

known simulation techniques require substantial space over-

head, however, preventing the design of in-place algorithms

[25].
3

In addition to being the first in-place and polylogarithmic-

span EREW algorithms for the parallel-partition problem,

our algorithms are also the first such CREW algorithms. In a

CREW algorithm, reads may be concurrent, but writes may

not – CREW stands for concurrent-read exclusive-write. In
practice, the important property of our algorithms is that they

avoid concurrent writes (which can lead to non-determinacy

and cache ping-pong effects).

TheParallelPartitionProblem.Theparallelpartitionprob-
lem takes an input arrayA= (A[1],A[2],...,A[n]) of size n, and
a decider function dec that determines for each element

A[i] ∈Awhether or notA[i] is a predecessor or a successor .
That is, dec(A[i])=1 ifA[i] is a predecessor, and dec(A[i])=0
ifA[i] is a successor. The behavior of the parallel partition is
to reorder the elements in the arrayA so that the predecessors

appear before the successors. Note that, in this paper, we will

always treat arrays as 1-indexed.

The(Standard)Linear-SpaceParallelPartition.The linear-
space implementation of parallel partition consists of two

phases [2, 7]:

The Parallel-Prefix Phase: In this phase, the algorithm first

creates an arrayD whose i-th elementD[i]=dec(A[i]). Then
the algorithm constructs an array S whose i-th element S[i]=∑i

j=1D[i] is the number of predecessors in the first i elements

3
The known simulation techniques also increase the total work in the

original algorithm, although this can be acceptable if only a small number

of atomic operations need to be simulated.

ofA. The transformation fromD to S is called a parallel pre-
fix sum and can be performed withO(n)work andO(logn)
span using a simple recursive algorithm: (1) First construct

an arrayD ′ of sizen/2withD ′[i]=D[2i−1]+D[2i]; (2) Recur-
sively construct a parallel prefix sum S ′ ofD ′; (3) Build S by
setting each S[i]=S ′[⌊i/2⌋]+A[i] for odd i and S[i]=S ′[i/2]
for even i .
The Reordering Phase: In this phase, the algorithm constructs

an output-array C by placing each predecessor A[i] ∈ A in

positionS[i] ofC . If there are t predecessors inA, then the first
t elements ofC will now contain those t predecessors in the
same order that they appear inA. The algorithm then places

each successor A[i] ∈ A in position t + i −S[i]. Since i −S[i]
is the number of successors in the first i elements ofA, this
places the successors inC in the same order that they appear

inA. Finally, the algorithm copiesC intoA, completing the

parallel partition.

Bothphasescanbe implementedwithO(n)workandO(logn)
span. Like its serial out-of-place counterpart, the algorithm is

stable but not in place. The algorithm uses multiple auxiliary

arrays of size n. Kiu, Knowles, and Davis [24] were able to
reduce the extra space consumption ton+p under the assump-

tion that the number of processorsp is hard-coded; their algo-
rithm breaks the arrayA into p parts and assigns one part to
each thread.Reducing theextra spacebelowo(n)has remained

open until now, even when the number of threads is fixed.

3 A Cache
Efficient In-Place Parallel Partition

In this sectionwepresent theSmoothedStridingAlgorithm,

which exhibits provably optimal cache behavior (up to small-

order factors). The Smoothed Striding Algorithm is fully in-

place and has polylogarithmic span. In particular, this means

that the total amount of auxiliarymemory allocated at a given

moment in the execution never exceeds polylogn per active
worker.

Modeling CacheMisses.We treat memory as consisting of

fixed-size cache lines, each of some size b. Each processor is
assumed tohavea small cacheofpolylogn cache lines.Acache

miss occurs on a processorwhen the line being accessed is not

currently in cache, in which case some other line is evicted

from cache to make room for the new entry. Each cache is

managed with a LRU (Least Recently Used) eviction policy.

We assume that threads are scheduled using work steal-

ing [1], and that the work-stealing itself has no cache-miss

overhead. Note that caches belong to processors, not threads,

meaning that when a processor takes a new thread (i.e., per-

forms work stealing), the processor’s cache contents are a

function of what the processor was previously executing. In

order to keep our analysis of cache misses independent of

the number of processors, we will ignore the cost of warming

up each processor’s cache. In particular, if there are polylogn
global variables that each processor must access many times,

we do not consider the initialp ·polylogn cost of loading those
global variables into the caches (where p is the number of

3

processors). In practice, p ≪ n on large inputs, making the

cost of warming up caches negligible.

Althougheachcache ismanagedwithLRUeviction,wemay

assume for the sake of analysis that each cache is managed by

the optimal off-line eviction strategy OPT (i.e. Furthest in the

Future). This is because, up to resource augmentation, LRU

eviction is (1+1/polylogn)-competitive with OPT. Formally

this is due to the following theorem by Sleator and Tarjan:

Theorem 3.1 (Resource Augmentation Theorem [28]). LRU
operating on a cache of sizeK ·M for someK >1will incur at
most 1+ 1

K−1 times the number of times cache misses of OPT

operating on a cache of sizeM , for the same series of memory

accesses.

Recall that each processor has a cache of size log
cn for c

a constant of our choice. Up to changes in c LRU incurs no

more than a 1+ 1

polylogn factor more cache misses than OPT

incurs. Thus, up to a 1+ 1

polylog(n) multiplicative change in

cachemisses, and a polylog(n) factor change in cache size, we
may assume without loss of generality that cache eviction is

performed by OPT.

Because each processor’s cache is managed by OPT (with-

out loss of generality), we can assume that each processor

pins certain small arrays to cache (i.e., the elements of those

arrays are never evicted). In fact, this is the only property of

OPT we will use; that is, our analyses will treat non-pinned

contents of the cache as being managed via LRU.

The Strided Algorithm [14]. The Smoothed Striding Algo-

rithm borrows several structural ideas from a previous algo-

rithm of Francis and Pannan [14], which we call the Strided

Algorithm. The Strided Algorithm is designed to behave well

on random arraysA, achieving span Õ(n2/3) and exhibiting
only n/b+Õ(n2/3/b) cache misses on such inputs. On worst-

case inputs, however, the Strided Algorithm has span Ω(n)
and incurs n/b + Ω(n/b) cache misses. Our algorithm, the

Smoothed Striding Algorithm, builds on the Strided Algo-

rithm by randomly perturbing the internal structure of the

original algorithm; in doing so, we are able to provide prov-

able performance guarantees for arbitrary inputs, and to add

a recursion step that was previously impossible.

The original Strided Algorithm consists of two steps:

• The Partial Partition Step. Let д∈N be a parameter,

and assume for simplicity thatдb |n. Partition the array
A into

n
дb chunksC1,...,Cn/дb , each consistingofд cache

lines of size b. For i ∈ {1,2,...,д}, define Pi to consist of
the i-th cache line from each of the chunksC1,...,Cn/дb .

One can think of the Pi ’s as forming a strided partition

of arrayA, since consecutive cache lines inPi are always
separated by a fixed stride of д−1 other cache lines.
The first step of the algorithm is to perform an in-place

serial partition on each of the Pi s, rearranging the ele-
ments within the Pi so that the predecessors come first.

This step requires workΘ(n) and spanΘ(n/д).

• TheSerialCleanupStep.ForeachPi , define thesplit-
ting positionvi to be the position inA of the first suc-

cessor in (the already partitioned) Pi . Define vmin =

min{v1,...,vд} and definevmax=max{v1,...,vд}. Then
the second step of the algorithm is to perform a serial

partition on the sub-array

A[vmin],...,A[vmax−1]. This completes the full partition

ofA.

Note that the Cleanup Step of the Strided Algorithm has no

parallelism, and thus has spanΘ(vmax−vmin). In general, this

results in an algorithmwith linear-span (i.e., no parallelism

guarantee). When the number of predecessors in each of the

Pi ’s is close to equal, however, the quantityvmax−vmin can be

much smaller thanΘ(n). For example, if b=1, and if each el-
ement ofA is selected independently from some distribution,

then one can use Chernoff bounds to prove that with high

probability in n, vmax −vmin ≤ O(
√
n ·д ·logn). The full span

of the algorithm is then Õ(n/д+
√
n ·д), which optimizes at

д=n1/3 to Õ(n2/3). Since the Partial Partition Step incurs only
n/b cache misses, the full algorithm incurs n+Õ(n2/3) cache
misses on a random arrayA.

Using Hoeffding’s Inequality in place of Chernoff bounds,

one can obtain analogous bounds for larger values ofb; in par-
ticular for b ∈ polylog(n), the optimal span remains Õ(n2/3)
and the number of cache misses becomes n/b+Õ(n2/3/b) on
an arrayA consisting of randomly sampled elements.

4

TheSmoothedStridingAlgorithm.Toobtainanalgorithm
with provable guarantees for all inputsA, we randomly per-

turb the internal structure of each of the Pi ’s. DefineU1,...,Uд
(which play a role analogous to P1,...,Pд in the Strided Algo-
rithm) so that eachUi contains one randomly selected cache

line from each ofC1,...,Cn/дb (rather than containing the i-th
cache line of eachCj). This ensures that the number of prede-

cessors in eachUi is a sum of independent random variables

with values in {0,1,...,n/д}.
By Hoeffding’s Inequality, with high probability in n, the

number of predecessors in each Ui is tightly concentrated

around
µn
д , where µ is the fraction of elements inA that are

predecessors. It follows that, if we perform in-place partitions

of eachUi in parallel, and then definevi to be the position in
A of the first successor in (the already partitioned)Ui , then

the difference betweenvmin=minivi andvmax=maxivi will
be small (regardless of the input arrayA!).
Rather than partitioning A[vmin], ...,A[vmax−1] in serial,

the Smoothed Striding Algorithm simply recurses on the

subarray. Such a recursion would not have been productive

for the original Strided Algorithm because the strided parti-

tion P ′
1
,...,P ′д used in the recursive subproblemwould satisfy

P ′
1
⊆ P1, ...,P

′
д ⊆ Pд and thus each P ′i is already partitioned.

That is, in the original Strided Algorithm, the problem that

4
The original algorithm of Francis and Pannan [14] does not consider the

cache-line size b . Frias and Petit later introduced the parameter b [15], and

showed that by setting b appropriately, one obtains an algorithm whose

empirical performance is close to the state-of-the-art.

4

wewould recurse on is a worst-case input for the algorithm

in the sense that the partial partition step makes no progress.

The main challenge in designing the Smoothed Striding

Algorithm becomes the construction of U1, ... ,Uд without

violating the in-place nature of the algorithm. A natural ap-

proach might be to store for eachUi ,Cj the index of the cache

line inCj thatUi contains. This would require the storage of

Θ(n/b) numbers as metadata, however, preventing the algo-

rithm from being in-place. To save space, the key insight is to

select a random offsetX j ∈ {1,2,...,д}within eachCj , and then

to assign the (X j+i (mod д))+1-th cache line ofCj toUi for

i ∈ {1,2,...,д}. This allows for us to construct theUi ’s using

onlyO
(
n
дb

)
machinewords storing themetadataX1,...,Xn/дb .

By setting д to be relatively large, so that n
дb ≤polylog(n), we

can obtain an in-place algorithm that incurs n(1+o(1)) cache
misses.

The recursive structure of the Smoothed Striding Algo-

rithm allows for the algorithm to achieve polylogarithmic

span. As an alternative to recursing, one can also use the in-

place algorithm from Appendix A in order to partition

A[vmin],...,A[vmax−1]. This results in an improved span (since

the algorithm from Appendix A has span only

O(lognloglogn)), while still incurring only n(1+o(1)) cache
misses (since the cache-inefficient algorithm from Appendix

A is only used on a small subarray ofA). We analyze both the

recursive version of the Smoothed Striding Algorithm, and

the version which uses as a final step the algorithm from Ap-

pendix A; one significant advantage of the recursive version

is that it is simple to implement in practice.

Formal Algorithm Description. Let b < n be the size of

a cache line, let A be an input array of size n, and let д be a
parameter. (One should think of д as being relatively large,
satisfying

n
bд ≤ polylog(n).) We assume for simplicity that

that n is divisible by дb, and we define s= n
дb .

5

In the Partial Partition Step the algorithm partitions the

cache lines of A into д setsU1, ...,Uд of size s =
n
дb and then

performs a serial partition on eachUi in parallel over theUi ’s.

Todetermine the setsU1,...,Uд , the algorithmuses asmetadata

an arrayX =X [1],...,X [s], where eachX [i] ∈ {1,...,д}.
Formally, the Partial Partition Step performs the following

procedure:

• Set each of X [1],...,X [s] to be uniformly random and

independently selected elements of {1,2,...,д}. For each
i ∈ {1,2,...,д}, j ∈ {1,2,...,s}, define

Gi (j)= (X [j]+i (mod д))+(j−1)д+1.
Using this terminology,wedefineeachUi fori ∈ {1,...,д}
to contain the Gi (j)-th cache line of A for each j ∈
{1,2,...,s}. That is,Gi (j) denotes the index of the j-th
cache line from arrayA contained inUi .

5
This assumption can be made without loss of generality by treatingA as an

array of size n′ =n+(дb−n (mod дb)), and then treating the final дb−n
(mod дb) elements of the array as being successors (which consequently the

algorithm needs not explicitly access). Note that the extran′−n elements are

completely virtual, meaning they do not physically exist or reside inmemory.

Note that, to compute the index of the j-th cache line in
Ui , oneneeds only the value ofX [j]. Thus the onlymeta-

data needed by the algorithm to determine U1, ...,Uд
is the array X . If |X | = s = n

дb ≤ polylog(n), then the

algorithm is in place.

• The algorithm performs an in-place (serial) partition

on eachUi (and performs these partitions in parallel

with one another). In doing so, the algorithm, also col-

lectsvmin=minivi ,vmax=maxivi , where eachvi with
i ∈ {1,...,д} is defined to be the index of the first succes-
sor inA (or n if no such successor exists).6

The array A is now partially partitioned, i.e. A[i] is a
predecessor for all i ≤vmin, andA[i] is a successor for
all i >vmax.

The second step of the Smoothed Striding Algorithm is

to complete the partitioning of A[vmin+1],...,A[vmax]. This

can be done in one of two ways: The Recursive Smoothed
Striding Algorithm partitions A[vmin + 1], ... ,A[vmax] re-

cursively using the same algorithm (and resorts to a serial

base case when the subproblem is small enough that д ≤
O(1)); theHybrid Smoothed StridingAlgorithm partitions

A[vmin+1],...,A[vmax] using the in-place algorithm given in

Theorem A.1 with spanO(lognloglogn). In general, the Hy-
brid algorithm yields better theoretical guarantees on span

than the recursive version; on the other hand, the recursive

version has the advantage that it is simple to implement as

fully in-place, and still achieves polylogarithmic span. We

analyze both algorithms in this section.

Detailed pseudocode for the Recursive Smoothed Striding

Algorithm can be found in Appendix C.

AlgorithmAnalysis.Our first proposition analyzes the Par-
tial Partition Step.

Proposition 3.1. Let ϵ ∈ (0, 1/2) and δ ∈ (0, 1/2) such that

ϵ ≥ 1

poly(n) and δ ≥
1

polylog(n) . Suppose s >
ln(n/ϵ)
δ 2

. Finally, sup-

pose that each processor has a cache of size at least s+c for
a sufficiently large constant c .

Then the Partial-Partition Algorithm achieves workO(n);
achieves span O(b ·s); incurs s+n

b +O(1) cache misses; and

guarantees with probability 1−ϵ that
vmax−vmin<4nδ .

Proof. Since
∑

i |Ui | = n, and since the serial partitioning of
eachUi takes timeO(|Ui |), the total work performed by the

algorithm isO(n).
To analyze cache misses, we assume without loss of gen-

erality that arrayX is pinned in each processor’s cache (note,

in particular, that |X |=s ≤polylog(n), and soX fits in cache).

Thus we can ignore the cost of accesses toX . Note that each

6
One can calculate vmin and vmax without explicitly storing each of

v1, ...,vд as follows. Rather than using a standard д-way parallel for-loop
to partition each of U1, ... ,Uд , one can manually implement the parallel

for-loop using a recursive divide-and-conquer approach. Each recursive

call in the divide-and-conquer can then simply collect the maximum and

minimumvi for theUi ’s that are partitioned within that recursive call. This
addsO (logn) to the total span of the Partial Partition Step, which does not
affect the overall span asymptotically.

5

Ui consists of s = polylogn cache lines, meaning that each

Ui fits entirely in cache. Thus the number of cache misses

needed for a thread to partition a givenUi is just s . Since there
are д = n

sb Uis, the total number of cache misses needed to

partition eachUi is дs=
n
b . Besides these, there are s/b cache

misses for instantiating the arrayX ; andO(1) cache misses

for other instantiating costs. This sums to

n+s

b
+O(1).

The span of the algorithm is O(n/д + s) = O(b · s), since
the eachUi is of sizeO(n/д), and because the initialization of
arrayX can trivially be performed in timeO(|X |)=O(s).

It remains to show that with probability 1−ϵ ,vmax−vmin<
4nδ . Let µ denote the fraction of elements inA that are prede-

cessors. For i ∈ {1,2,...,д}, let µi denote the fractionof elements

inUi that are predecessors. Note that each µi is the average of
s independent random variablesYi (1),...,Yi (s) ∈ [0,1], where
Yi (j) is the fraction of elements in theGi (j)-th cache line of
A that are predecessors. By construction,Gi (j) has the same

probability distribution for all i , since (X [j]+ i) (mod д) is
uniformly random in Zд for all i . It follows thatYi (j) has the
same distribution for all i , and thus that E[µi] is independent
of i . Since the average of the µi s is µ, it follows that E[µi]=µ
for all i ∈ {1,2,...,д}.

Since each µi is the average of s independent [0,1]-random
variables, we can apply Hoeffding’s inequality (i.e. a Chernoff

Bound for a random variable on [0,1] rather than on {0,1})
to each µi to show that it is tightly concentrated around its

expected value µ, i.e.,

Pr[|µi−µ | ≥δ]<2exp(−2sδ
2).

Since s > ln(n/ϵ)
δ 2
≥

ln(2n/(bϵ))
2δ 2

, we find that for all i ∈ {1,...,д},

Pr[|µi−µ | ≥δ]<2exp
(
−2

ln(2n/(bϵ))

2δ 2
δ 2
)
=

ϵ

n/b
<
ϵ

д
.

By the union bound, it follows that with probability at least

1−ϵ , all of µ1,...,µд are within δ of µ.
To complete the proof we will show that the occurrence of

the event that all µy simultaneously satisfy |µ−µy |<δ implies

thatvmax−vmin ≤ 4nδ .
Recall that Gi (j) denotes the index within A of the j th

cache-line contained inUi . By the definition ofGi (j),
(j−1)д+1≤Gi (j)≤ jд.

Note that A[vi] will occur in the ⌈sµi ⌉-th cache-line of Ui
becauseUi is composed of s cache lines. Hence

(⌈sµi ⌉−1)дb+1≤vi ≤ ⌈sµi ⌉дb,
which means that

sµiдb−дb−1≤vi ≤sµiдb+дb .
Since sдb=n, it follows that |vi−nµi | ≤дb. Therefore,

|vi−nµ |<дb+nδ .
This implies that the maximum of |vi −vj | for any i and j is
at most, 2bд+2δn. Thus,

vmax−vmin ≤ 2n

(
δ+

n

bд

)
=2n(δ+s)

≤ 2n

(
δ+

2δ 2

ln(2n/(bϵ))

)
<4n ·δ .

□

Wewill use Proposition 3.1 as a tool to analyze the Recur-

sive and the Hybrid Smoothed Striding Algorithms.

Rather than parameterizing the Partial Partition step in

each algorithm by s , Proposition 3.1 suggests that it is more

natural to parameterize by ϵ and δ , which then determine s .
We will assume that both the hybrid and the recursive

algorithms use ϵ = 1/nc for c of our choice (i.e. with high

probability in n). Moreover, the Recursive Smoothed Strid-

ing Algorithm continues to use the same value of ϵ within
recursive subproblems (i.e., the ϵ is chosen based on the size
of the first subproblem in the recursion), so that the entire

algorithm succeeds with high probability in n.
For both algorithms, the choice of δ results in a tradeoff

between cache misses and span. For the Recursive algorithm,

we allow for δ to be chosen arbitrarily at the top level of recur-
sion, and then fix δ =Θ(1) to be a sufficiently small constant

at all levels of recursion after the first; this guarantees that

we at least halve the size of the problem between recursive

iterations
7
. Optimizing δ further (after the first level of recur-

sion) would only affect the number of undesired cachemisses

by a constant factor.

Next we analyze the Hybrid Smoothed Striding Algorithm.

Theorem 3.2. TheHybrid Smoothed StridingAlgorithmusing

parameter δ ∈ (0,1/2) satisfying δ ≥ 1/polylog(n): has work
O(n); achieves span

O

(
lognloglogn+

blogn

δ 2

)
,

with high probability in n; and incurs fewer than

(n+O(nδ))/b

cache misses with high probability in n.

An interesting corollary of the above theorem concerns

what happens when b is small (e.g., constant) and we choose

δ to optimize span.

Corollary 3.2 (CorollaryofTheorem3.2). Supposeb ≤o(loglogn).
Then the Cache-Efficient Full-Partition Algorithm using δ =

Θ
(√
b/loglogn

)
, achieves workO(n), and with high probabil-

ity in n, achieves spanO(lognloglogn) and incurs fewer than
(n+o(n))/b cache misses.

Proof of Theorem 3.2. Weanalyze the Partial Partition Step us-

ing Proposition 3.1. Note that by our choice of ϵ , s=O
(
logn
δ 2

)
.

ThePartialPartitionStep thereforehasworkO(n), spanO
(
b logn
δ 2

)
,

and incurs fewer than

n

b
+O

(
logn

bδ 2

)
+O(1)

cache misses.

7
In general, setting δ = 1/8 will result in the problem size being halved.

However, this relies on the assumption that дb | n, which is only without

loss of generality by allowing for the size of subproblems to be sometimes

artificially increased by a small amount (i.e., a factor of 1+дb/n =1+1/s).
One can handle this issue by decreasing δ to, say, 1/16.

6

By Theorem A.1, the subproblem of partitioning of

A[vmin+1],...,A[vmax] takesworkO(n).With high probability

inn, the subproblem has size less than 4nδ , which means that

the subproblem achieves span

O(lognδ loglognδ)=O(lognloglogn),
and incurs at mostO(nδ/b) cache misses.

The total number of cache misses is therefore,

n

b
+O

(
logn

bδ 2
+
nδ

b

)
+O(1),

which sinceδ ≥ 1/polylog(n), is atmost (n+O(nδ))/b+O(1)≤
(n+O(nδ))/b, as desired. □

Proof of Corollary 3.2. We use δ =
√
b/loglogn in the result

proved in Theorem 3.2.

First note that the assumptions of Theorem3.2 are satisfied be-

causeO(
√
b/loglogn)>1/polylog(n).The algorithmachieves

workO(n). With high probability in n the algorithm achieves

span

O

(
lognloglogn+

blogn

δ 2

)
=O(lognloglogn).

With high probability in n the algorithm incurs fewer than

(n+O(nδ))/b= (n+O(n
√
b/loglogn))/b

cache misses. By assumption

√
b/loglogn = o(1), so this re-

duces to (n+o(n))/b cache misses, as desired. □

Thenext theoremanalyzes thespanof theRecursiveSmoothed

Striding Algorithm.

Theorem3.3. Withhighprobability inn, theRecursiveSmoothed

Striding algorithm using parameter δ ∈ (0,1/2) satisfying
δ ≥ 1/polylog(n): achieves workO(n), attains span

O

(
b

(
log

2n+
logn

δ 2

))
,

and incurs (n+O(nδ))/b cache misses.

A particularly natural parameter setting for the Recursive

algorithm occurs at δ =1/
√
logn.

Corollary 3.3 (Corollary of Theorem 3.3). With high proba-

bility in n, the Recursive Smoothed Striding Algorithm using

parameter δ = 1/
√
logn: achieves work O(n), attains span

O(blog2n), and incurs n/b ·(1+O(1/
√
logn)) cache misses.

Proof of Theorem 3.3. To avoid confusion, we use δ ′, rather
than δ , to denote the constant value of δ used at levels of

recursion after the first.

By Proposition 3.1, the top level of the algorithm has work

O(n), spanO
(
b
logn
δ 2

)
, and incurs s+n

b +O(1) cache misses. The

recursion reduces the problem size by at least a factor of 4δ ,
with high probability in n.

At lower layers of recursion, with high probability inn, the
algorithm reduces the problem size by a factor of at least 1/2

(since δ is set to be a sufficiently small constant). For each

i >1, it follows that the size of the problem at the i-th level of
recursion is at mostO(nδ/2i).

The sum of the sizes of the problems after the first level of

recursion is therefore bounded above by a geometric series

summing to at mostO(nδ). This means that the total work of

the algorithm is at mostO(nδ)+O(n)≤O(n).

Recall that each level i > 1 uses s = ln(2−inδ ′/b)
δ ′2 , where

δ ′ = Θ(1). It follows that level i uses s ≤ O(logn). Thus, by
Proposition 3.1, level i contributesO(b ·s)=O(blogn) to the
span. Since there are at mostO(logn) levels of recursion, the
total span in the lower levels of recursion is atmostO(blog2n),
and the total span for the algorithm is at most,

O

(
b

(
log

2n+
logn

δ 2

))
.

To compute the total number of cache misses of the algo-

rithm, we add together (n+s)/b+O(1) for the top level, and
then, by Proposition 3.1, at most∑

0≤i<O (logn)

1

b
O
(
2
2−inδ+logn

)
≤O

(
1

b
(nδ+log2n)

)
.

for lower levels. Thus the total number of cache misses for

the algorithm is,

1

b

(
n+

logn

δ 2

)
+O(nδ+log2n)/b= (n+O(nδ))/b .

□

Proof of Corollary 3.3. By Theorem 3.3, with high probability

in n, the algorithm has workO(n), the algorithm has span

O

(
b

(
log

2n+
logn

δ 2

))
=O(log2n),

and the algorithm incurs

(n+O(nδ))/b= (n+O(n/
√
logn))/b= (n+o(n))/b

cache misses. □

4 Performance Comparisons
In this section, we implement the techniques from Appendix

A and Section 3 to build space-efficient and in-place parallel-

partition functions.

Each implementation considers an array of n 64-bit inte-

gers, and partitions them based on a pivot. The integers in the

array are initially generated so that each is randomly either

larger or smaller than the pivot.

In Subsection 4.1, we evaluate the techniques in Appendix

A for transforming the standard parallel-prefix-based parti-

tion algorithm into an in-place algorithm. We compare the

performance of three parallel-partition implementations: (1)

The high-space implementation which follows the standard

parallel-partition algorithm exactly; (2) amedium-space im-

plementation which reduces the space used for the Parallel-

Prefix phase; and (3) a low-space implementation which fur-

ther eliminates the auxiliary space used in the Reordering

phase of the algorithm. The low-space implementation still

uses a small amount of auxiliary memory for the parallel-

prefix, storing everyO(logn)-th element of the parallel-prefix

array explicitly rather than using the implicit-storage ap-

proach in Appendix A. Nonetheless the space consumption

is several orders of magnitude smaller than the original algo-

rithm.

In addition to achieving a space-reduction, the better cache-

behavior of the low-space implementation allows for it to

7

achieve a speed advantage over its peers, in some cases com-

pleting roughly twice as fast as the medium-space implemen-

tation and four times as fast as the low-space implementation.

We show that all three implementations are bottlenecked

by memory throughput, however, suggesting that the cache-

optimal Smoothed Striding Algorithm can do better.

InSubsection4.2,weevaluate theperformanceof theRecur-

sive Smoothed Striding Algorithm and the Strided Algorithm.

Unlike the algorithms described above, the implementations

of both of these algorithms are fully in-place, meaning that

the total space overhead is only polylogn. The cache effi-

ciency of these two algorithms allows for them to achieve

substantially better scaling than their parallel-prefix-based

counterparts. The Strided Algorithm tends to slightly outper-

form the Smoothed Striding Algorithm, though on 18 threads

their performance is within 15% of one-another. We conclude

that the Smoothed Striding Algorithm allows for one to ob-

tain empirical performance comparable to that of the Strided

Algorithm,while simultaneously achieving theprovable guar-

antees on span and cache-efficiencymissing from the original

Strided Algorithm.

Machine Details.Our experiments are performed on a two-

socket machine with eighteen 2.9 GHz Intel Xeon E5-2666

v3 processors. To maximize the memory bandwidth of the

machine,weuse aNUMAmemory-placement policy inwhich

memoryallocation is spreadout evenly across thenodesof the

machine; this is achievedusing the interleave=all option in the
Linux numactl tool [23]. Worker threads in our experiments

are each given their own core, with hyperthreading disabled.

Our algorithms are implemented using the CilkPlus task

parallelism library inC++. The implementations avoid the use

of concurrency mechanisms and atomic operations, but do

allow for concurrent reads to be performed on shared values

such as n and the pointer to the input array. Our code is com-

piled using g++ 7.3.0, withmarch=native and at optimization

level three.

Our implementations are available on GitHub.

4.1 Comparing Parallel-Prefix-Based Algorithms
In this section,wecompare fourpartition implementations, in-

corporating the techniques from SectionA in order to achieve

space efficiency:

• A Serial Baseline: This uses the serial in-place partition im-

plementation from GNU Libc quicksort, with minor adap-

tations to optimize it for the case of sorting 64-bit integers

(i.e., inlining the comparison function, etc.).

• The High-Space Parallel Implementation: This uses the stan-
dard parallel partition algorithm [2, 7], as described in Sec-

tion 2. The space overhead is roughly 2n eight-byte words.

• The Medium-Space Parallel Implementation: Starting with
the high-space implementation, we reduce the space used

by the Parallel-Prefix phase by only constructing every

O(logn)-th element of the prefix-sum arrayB, as in Section
A. (HereO(logn) is hard-coded as 64.) The array B is ini-

tialized to be of size n/64, with each component equal to

∑
64

i=1dec(A[64(i−1)+1]), and then a parallel prefix sum is

computed on the array B. Rather than implicitly encoding

the elements of B in A, we use an auxiliary array of size

n/64 to explicitly store the prefix sums.

The algorithm has a space overhead of
n
32
+n eight-byte

words.
8

• The Low-Space Parallel Implementation: Starting with the
medium-space implementation, we make the reordering

phase completely in-place using the preprocessing tech-

nique in Appendix A.
9
The only space overhead in this

implementation is the
n
32
additional 8-byte words used in

the prefix sum.

We remark that the ample parallelism of the low-space

algorithmmakes it so that for large inputs the value 64 can

easily be increased substantially without negatively effecting

algorithm performance. For example, on an input of size 2
28
,

increasing it to 4096 has essentially no effect on the empiri-

cal runtime while bringing the auxiliary space-consumption

down to a
1

2048
-fraction of the input size. (In fact, the increase

from 64 to 4096 results in roughly a 5% speedup.)

AnAdditionalOptimizationforTheHigh-SpaceImple-
mentation. The optimization of reducing the prefix-sum by

a factor ofO(logn) at the top level of recursion, rather than
simply by a factor of two, can also be applied to the standard

parallel-prefix algorithmwhen constructing a prefix-sum ar-

ray of size n. Even without the space reduction, this reduces
the (constant) overhead in the parallel prefix sum, while keep-

ing the overall span of the parallel-prefix operation atO(logn).
We perform this optimization in the high-space implementa-

tion.

Performance Comparison. Figure 1 graphs the speedup
of the each of the parallel algorithms over the serial algo-

rithm, using varying numbers of worker threads on an 18-

core machine with a fixed input size of n = 230. Both space

optimizations result in performance improvements, with the

low-space implementation performing almost twice aswell as

the medium-space implementation on eighteen threads, and

almost four times as well as the high-space implementation.

Figure 2 compares the performances of the implemen-

tations in serial. Parallel-for-loops are replaced with serial

for-loops to eliminate scheduler overhead. As the input-size

varies, the ratios of the runtimes vary only slightly. The low-

space implementation performs within a factor of roughly

1.9 of the serial implementation. As in Figure 1, both space

optimizations result in performance improvements.

8
In addition to the auxiliary array of size n/64, we use a series of smaller

arrays of sizes n/128,n/256, ... in the recursive computation of the prefix

sum. The alternative of performing the parallel-prefix sum in place, as in

Appendix A, tends to be less cache-friendly in practice.

9
Depending on whether the majority of elements are predecessors or

successors, the algorithm goes down separate (but symmetric) code paths.

In our timed experiments we test only with inputs containing more

predecessors than successors, since this the slower of the two cases (by a

very slight amount) for our implementation.

8

The Source of the Speedup. If we compare the number of

instructions performed by the three parallel implementations,

then the medium-space algorithm would seem to be the clear

winner. Using Cachegrind to profile the number of instruc-

tions performed in a (serial) execution on an input of size

2
28
,
10
the high-space, medium-space, and low-space imple-

mentations perform 4.4 billion, 2.9 billion, and 4.6 billion

instructions, respectively.

Cachemisses tell adifferent story,however.UsingCachegrind

to profile the number of top-level cache misses in a (serial)

execution on an input of size 2
28
, the high-space, medium-

space, and low-space implementations incur 305 million, 171

million, and 124 million cache misses, respectively.

To a first approximation, the number of cache misses by

each algorithm is proportional to the number of times that

the algorithm scans through a large array. By eliminating the

use of large auxiliary arrays, the low-space implementation

has the opportunity to achieve a reduction in the number of

such scans. Additionally, the low-space algorithm allows for

steps from adjacent phases of the algorithm to sometimes be

performed in the same pass. For example, the enumeration

of the number of predecessors and the top level of the Prepro-

cessing phase can be performed together in a single pass on

the input array. Similarly, the later levels of the Preprocessing

phase (which focus on only one half of the input array) can be

combined with the construction of (one half of) the auxiliary

array used in the Parallel Prefix Sum phase, saving another

half of a pass.

TheMemory-Bandwidth Limitation. The comparison of

cache misses suggests that performance is bottlenecked by

memory bandwidth. To evaluate whether this is the case, we

measure for each t ∈ {1, ...,18} the memory throughput of

t threads attempting to scan through disjoint portions of a

large array in parallel. We measure two types of bandwidth,

the read-bandwidth, in which the threads are simply trying

to read from the array, and the read/write bandwidth, in
which the threads are attempting to immediately overwrite

entries to the array after reading them.Given read-bandwidth

r bytes/second and read/write bandwidth w bytes/second,

the time needed for the low-space algorithm to perform its

memory operations on an input ofm bytes will be roughly

3.5m/w+.5m/r seconds.11 We call this the bandwidth con-
straint. No matter how optimized the implementation of the

low-space algorithm is, the bandwidth constraint serves as

a hard lower bound for the running time.
12

10
This smaller problemsize is used to compensate for the fact thatCachegrind

can be somewhat slow.

11
A naive implementation of the algorithm would require roughlym/r time

to count the number of predecessors, followed by 2m/w time to perform

the Preprocessing Phase, followed by roughly m/r time to perform the

Parallel Prefix Sum Phase, and then roughly 1.5m/w time for the In-Place

Reordering Phase. As described in the previous paragraph, however, the

counting of predecessors and the Parallel Prefix Sum phase can both

be overlapped with the Preprocessing phase so that their total added

contribution to the Memory-Bandwidth Limitation is only .5m/r .
12
Empirically, on an array of size n=228, the total number of cache misses

is within 8% of what this assumption would predict, suggesting that the

Figure 3 compares the time taken by the low-space algo-

rithm to the bandwidth constraint as the number of threads t
varies from 1 to 18. As the number of threads grows, the algo-

rithm becomes bandwidth limited, achieving its best possible

parallel performance on the machine. The algorithm scales

particularly well on the first socket of the machine, achieving

a speedup on nine cores of roughly six times better than its

performance on a single core, and then scales more poorly

on the second socket as it becomes bottlenecked by memory

bandwidth.

Implementation Details. In each implementation, the par-

allelism is achieved through simple parallel-for-loops, with

one exception at the beginning of the low-space implemen-

tation, when the number of predecessors in the input array is

computed. Although CilkPlus Reducers (or OpenMP Reduc-

tions) couldbeused toperformthis parallel summationwithin

a parallel-for-loop [16], we found a slightly more ad-hoc ap-

proach to be faster: Using a simple recursive structure, we

manually implemented a parallel-for-loop with Cilk Spawns

andSyncs, allowing for the summation tobeperformedwithin

the recursion.

4.2 Comparing
the Smoothed Striding and Strided Algorithms

In this section we consider the performance of the Strided Al-

gorithmand theRecursive SmoothedStridingAlgorithm.Past

work [15] found that, on large numbers of threads, the Strided

Algorithm has performance close to that of other non-EREW

state-of-the art partition algorithms (i.e., within 20% of the

best atomic-operation based algorithms). The Strided Algo-

rithm does not offer provable guarantees on span and cache-

efficiency, however; and indeed, the reason that the algorithm

cannot recurse on the subarrayA[vmin+1],...,A[vmax] is that

the subarray has been implicitly constructed to be worst-case

for the algorithm. In this subsection, we show that, with only

a small loss in performance, the Smoothed StridingAlgorithm

can be used to achieve provable guarantees on arbitrary in-

puts.We remark that we do notmake any attempt to generate

worst-case inputs for the Strided Algorithm (in fact the ran-

dom inputs that we use are among the only inputs for which

the Strided Algorithm does exhibit provable guarantees!).

Figures 2 and 1 evaluate the performance of the Smoothed

Striding and Strided algorithms in serial and in parallel. On a

single thread, the Smoothed Striding and Strided algorithms

perform approximately 1.5 times slower than the Libc-based

serial implementation baseline. When executed on multi-

ple threads, the performances of the Smoothed Striding and

Strided Algorithms scale close to linearly in the number of

threads. On 18 threads, the Smoothed Striding Algorithm

achieves a 9.6× speedup over the Libc-based Serial Baseline,
and the Strided Algorithm achieves an 11.1× speedup over
the same baseline.

bandwidth constraint is within a small amount of the true bandwidth-limited

runtime.

9

The nearly-ideal scaling of the two algorithms can be ex-

plained by their cache behavior. Whereas the parallel-prefix-

based algorithms were bottlenecked by memory bandwidth,

Figure3showsthat thesameisno longer true for theSmoothed

Striding Algorithm. The figure compares the performance

of the Smoothed Striding Algorithm to the minimum time

needed simple to read and overwrite each entry of the input

array using 18 concurrent threads without any other compu-

tation (i.e., thememory bandwidth constraint). On 18 threads,

the time required by the memory bandwidth constraint con-

stitutes 58% of the algorithm’s total running time.

NUMAEffects.We remark that the use of the Linux numactl
tool [23] to spreadmemory allocation evenly across the nodes

of the machine is necessary to prevent the Smoothed Striding

Algorithm and the Strided Algorithm from being bandwidth

limited. For example, if we replicate the 18-thread column

of Figure 3 without using numactl, then the speedup of the

Smoothed Striding Algorithm is 8.2, whereas the memory-

bandwidth bound for maximum possible speedup is only

slightly larger at 10.2.

Implementation Details. Both algorithms use b=512. The
Smoothed Striding Algorithm uses slightly tuned ϵ,δ parame-

ters similar to those outlined in Corollary 3.3. Althoughvmin

and vmax could be computed using CilkPlus Reducers [16],

we found it advantageous to instead manually implement the

parallel-for-loop in thePartial Partition stepwithCilk Spawns

and Syncs, and to computevmin andvmaxwithin the recursion.

Example Application: A Full Quicksort. In Figure 4, we

graph the performance of a parallel quicksort implementa-

tion using the low-space parallel-prefix-based algorithm, the

Smoothed Striding Algorithm, and the Strided Algorithm.We

compare the algorithm performances with varying numbers

of worker threads and input sizes to GNU Libc quicksort; the

input array is initially in a random permutation.

Our parallel quicksort uses the parallel-partition algorithm

at the top levels of recursion, and then swaps to the serial-

partitioningalgorithmonce the input sizehasbeen reducedby

at least a factor of 8p, wherep is the number ofworker threads.

By using the serial-partitioning algorithm on the small recur-

sive subproblems we avoid the overhead of the parallel algo-

rithm, while still achieving parallelism between subproblems.

Small recursive problems also exhibit better cache behavior

than larger ones, reducing the effects of memory-bandwidth

limitations on the performance of the parallel quicksort, and

further improving the scaling.

5 Conclusion and Open Questions
Parallel partition is a fundamental primitive in parallel al-

gorithms [2, 7]. Achieving faster and more space-efficient

implementations, even by constant factors, is therefore of

high practical importance. Until now, the only space-efficient

algorithms for parallel partition have relied extensively on

concurrency mechanisms or atomic operations, or lacked

provable performance guarantees. If a parallel function is

going to be invoked within a large variety of applications,

then provable guarantees are highly desirable. Moreover, al-

gorithms that avoid the use of concurrency mechanisms tend

to scale more reliably (and with less dependency on the par-

ticulars of the underlying hardware).

In this paper, we have shown that, somewhat surprisingly,

one can adapt the classic parallel algorithm to completely

eliminate the use of auxiliary memory, while still using only

exclusive read/write shared variables, andmaintaining a poly-

logarithmic span. Although the superior cache performance

of the low-space algorithm results in practical speedups over

its out-of-place counterpart, both algorithms remain far from

the state-of-the art due tomemory bandwidth bottlenecks. To

close this gap, we also presented a second in-place algorithm,

the Smoothed Striding Algorithm, which achieves polylog-

arithmic span while guaranteeing provably optimal cache

performance up to low-order factors. The Smoothed Strid-

ing Algorithm introduces randomization techniques to the

previous (blocked) Striding Algorithm of [14, 15], which was

known to performwell in practice but which previously ex-

hibited poor theoretical guarantees. Our implementation of

the Smoothed Striding Algorithm is fully in-place, exhibits

polylogarithmic span, and has optimal cache performance.

Our work prompts several theoretical questions. Can fast

space-efficientalgorithmswithpolylogarithmicspanbe found

for other classic problems such as randomly permuting an

array [4, 5, 27], and integer sorting [3, 17, 19, 20, 26]? Such

algorithms are of both theoretical and practical interest, and

might be able to utilize some of the techniques introduced in

this paper.

Another important direction of work is the design of in-

place parallel algorithms for sample-sort, the variant of quick-

sort in which multiple pivots are used simultaneously in each

partition. Sample-sort can be implemented to exhibit fewer

cache misses than quicksort, which is especially important

when the computation is memory-bandwidth bound. The

known in-place parallel algorithms for sample-sort rely heav-

ily on atomic instructions [6] (even requiring 128-bit compare-

and-swap instructions). Finding fast algorithms that use only

exclusive-read-write memory (or concurrent-read-exclusive-

write memory) is an important direction of future work.

10

A An In-Place
Algorithmwith SpanO(lognloglogn)

In this section, we present an in-place algorithm for paral-

lel partition with span O(logn loglogn). Each thread in the

algorithm requires memory at mostO(logn).
Prior to beginning the algorithm, the first step implicit step

of the algorithm is to count the number of predecessors in the

array, in order to determinewhether themajority of elements

are either predecessors or successors. Throughout the rest

of the section, we assume without loss of generality that the

total number of successors inA exceeds the number of pre-

decessors, since otherwise their roles can simply be swapped

in the algorithm. Further, we assume for simplicity that the

elements ofA are distinct; this assumption is removed at the

end of the section.

Algorithm Outline.We begin by presenting an overview

of the key algorithmic ideas needed to construct an in-place

algorithm.

Consider how to remove the auxiliary array C from the

Reordering Phase. If one attempts to simply swap in parallel

each predecessor A[i] with the element in position j = B[i]
of A, then the swaps will almost certainly conflict. Indeed,

A[j]may also be a predecessor that needs to be swapped with

A[B[j]]. Continuing like this, there may be an arbitrarily long

list of dependencies on the swaps.

To combat this, we begin the algorithmwith a Preprocess-

ing Phase in which A is rearranged so that every prefix is

successor-heavy, meaning that for all t , the first t elements

contain at least
t
4
successors. Then we compute the prefix-

sum array B, and begin the Reordering Phase. Using the fact
that the prefixes of A are successor-heavy, the reordering

can now be performed in place as follows: (1) We begin by

recursively reordering the prefix P ofA consisting of the first

4/5 ·n elements, so that the predecessors appear before the

successors; (2) Then we simply swap each predecessorA[i]
in the final 1/5·n elements with the corresponding element

B[A[i]]. The fact that the prefix P is successor-heavy ensures

that the final
1

5
·n elements of the reordered P will consist of

successors. This implies that for each of the swaps between

predecessors A[i] in the final 1/5 ···n elements and earlier

positions B[A[i]], the latter element will be a successor. In

other words, the swaps are now conflict free.

Next consider how to remove the array B from the Parallel-

Prefix Phase. At face value, this would seem quite difficult

since the reordering phase relies heavily on B. Our solution
is to implicitly store the value of everyO(logn)-th element

of B in the ordering of the elements ofA. That is, we breakA
into blocks of sizeO(logn), and use the order of the elements

in each block to encode an entry of B. (If the elements are

not all distinct, then a slightly more sophisticated encoding is

necessary.) Moreover, wemodify the algorithm for buildingB
to only construct everyO(logn)-th element. The new parallel-

prefix sum performsO(n/logn) arithmetic operations on val-

ues that are implicitly encoded in blocks; since each such op-

eration requiresO(logn)work, the total work remains linear.

In the remainder of the section, we present the algorithm

in detail, and prove the key properties of each phase of the

algorithm.We also provide detailed pseudocode in Appendix

C. The algorithm proceeds in three phases.

APreprocessingPhase.Thegoalof thePreprocessingphase
is to make every prefix ofA successor-heavy. To perform the

Preprocessing phase onA, we begin with a parallel-for-loop:
For each i=1,...,⌊n/2⌋, ifA[i] is a predecessor andA[n−i+1]
is a successor, then we swap their positions inA. To complete

the Preprocessing phase onA, we then recursively perform
a Preprocessing phase onA[1],...,A[⌈n/2⌉].

Lemma A.1. The Preprocessing Phase has work O(n) and
spanO(logn). At the end of the Preprocessing Phase, every
prefix ofA is successor-heavy.

Proof. Recall that for each t ∈ 1, ... ,n, we call the t-prefix
A[1], ... ,A[t] of A successor-heavy if it contains at least

t
4

successors.

The first parallel-for-loop ensures that at least half the

successors in A reside in the first ⌈n/2⌉ positions, since for
i = 1, ..., ⌊n/2⌋, A[n− i +1] will only be a successor if A[i] is
also a successor. Because at least half the elements inA are

successors, it follows that the first ⌈n/2⌉ positions contain at
least ⌈n/4⌉ successors, making every t-prefix with t ≥ ⌈n/2⌉
successor-heavy.

After theparallel-for-loop, thefirst ⌈n/2⌉ positionsofAcon-

tain at least asmany successors as predecessors (since ⌈n/4⌉ ≥
⌈n/2⌉
2

). Thus we can recursively apply the argument above

in order to conclude that the recursion onA[1],...,A[⌈n/2⌉]
makes every t-prefix with t ≤ ⌈n/2⌉ successor-heavy. It fol-
lows that, after the recursion, every t-prefix ofA is successor-

heavy.

Each recursive level has constant span and performs work

proportional to the size of the subarray being considered. The

Preprocessing phase therefore has total workO(n) and span
O(logn). □

An Implicit Parallel Prefix Sum. Pick a block-size b ∈
Θ(logn) satisfying b ≥ 2⌈log(n+1)⌉. ConsiderA as a series of

⌊n/b⌋ blocks of size b, with the final block of size between b
and 2b−1. Denote the blocks byX1,...,X ⌊n/b ⌋ .

Within each blockXi , we can implicitly store a value in the

range 0,...,n through the ordering of the elements:

Lemma A.2. Given an array X of 2⌈log(n + 1)⌉ distinct el-
ements, and a value v ∈ {0, ... ,n}, one can rearrange the

elements ofX to encode the bits ofv using workO(logn) and
span O(log logn); and one can then later decode v from X
using workO(logn) and spanO(loglogn).

Proof. Observe thatX can be broken into (at least) ⌈log(n+1)⌉
disjoint pairs of adjacent elements (x1,x2),(x3,x4),..., and by
rearranging the order in which a given pair (x j ,x j+1) occurs,
the lexicographic comparisonofwhetherx j <x j+1 canbeused
to encodeonebit of information.Valuesv ∈ [0,n] can therefore
be read and written toX with workO(b)=O(logn) and span

11

O(logb) = O(log logn) using a simple divide-and-conquer

recursive approach to encode and decode the bits ofv . □

To perform the Parallel Prefix Sum phase, our algorithm

begins by performing a parallel-for loop through the blocks,

and storing in each blockXi a valuevi equal to the number

of predecessors in the block. (This can be done in place with

workO(n) and spanO(loglogn) by Lemma A.2.)

The algorithm then performs an in-place parallel-prefix

operation on the values v1, ... ,v ⌊n/b ⌋ stored in the blocks.

This is done by first resetting each even-indexed value v2i
to v2i +v2i−1; then recursively performing a parallel-prefix

sumon the even-indexed values; and then replacing each odd-

indexedv2i+1 withv2i+1+v2i , wherev0 is defined to be zero.
Lemma A.3 analyzes the phase:

LemmaA.3. The Parallel Prefix Sum phase uses workO(n)
and spanO(logn loglogn). At the end of the phase, each Xi
encodes a valuevi counting the number of predecessors in

the prefixX1◦X2◦···◦Xi ; and each prefix of blocks (i.e., each

prefix of the formX1◦X2◦···◦Xi) is successor-heavy.

Proof. If thevi ’s could be read and written in constant time,

then the prefix sum would take work O(n/logn) and span

O(logn), since there areO(n/logn)vi ’s. Because eachvi actu-
ally requires workO(logn) and spanO(loglogn) to read/write
(by Lemma A.2), the prefix sum takes work O(n) and span

O(logn ·loglogn).
Once the prefix-sum has been performed, every blockXi

encodes a valuevi counting the number of predecessors in

the prefix X1 ◦X2 ◦ ··· ◦Xi . Moreover, because the Parallel

Prefix Sum phase only rearranges elements within eachXi ,

LemmaA.1 ensures that eachprefixof the formX1◦X2◦···◦Xi
remains successor-heavy. □

In-PlaceReordering. In the final phase of the algorithm,we

reorderA so that the predecessors appear before the succes-

sors. Let P =X1◦X2◦···◦Xt be the smallest prefix of blocks

that contains at least 4/5 of the elements inA. We begin by

recursively reordering the elements in P so that the prede-

cessors appear before the successors; as a base case, when

|P | ≤ 5b=O(logn), we simply perform the reordering in serial.

To complete the reordering of A, we perform a parallel-

for-loop through each of the blocksXt+1,...,X ⌊n/b ⌋ . For each
block Xi , we first extract vi (with work O(logn) and span

O(loglogn) using LemmaA.2).We then create an auxiliary ar-

rayYi of size |Xi |, usingO(logn) thread-localmemory.Using a

parallel-prefix sum (with workO(logn) and spanO(loglogn)),
we set eachYi [j] equal tovi plus the number of predecessors

inXi [1],...,Xi [j]. In other words,Yi [j] equals the number of

predecessors inA appearing at or beforeXi [j].
AftercreatingYi ,we thenperformaparallel-for-loopthrough

the elementsXi [j] ofXi (note we are still within another par-

allel loop through the Xi ’s), and for each predecessor Xi [j],
we swap it with the element in positionYi [j] of the arrayA.
This completes the algorithm.

LemmaA.4. The Reordering phase takes workO(n) and span
O(lognloglogn). At the end of the phase, the arrayA is fully

partitioned.

Proof. After P has been recursively partitioned, it will be of

the form P1 ◦ P2 where P1 contains only predecessors and

P2 contains only successors. Because P was successor-heavy

before the recursive partitioning (by Lemma A.3), we have

that |P2 | ≥ |P |/4, and thus that |P2 | ≥ |Xt+1◦···◦X ⌊n/b ⌋ |.
After the recursion, the swaps performed by the algorithm

will swap the i-th predecessor in Xt+1 ◦ ··· ◦X ⌊n/b ⌋ with the

i-th element in P2, for i from 1 to the number of predecessors

in Xt+1 ◦ ··· ◦X ⌊n/b ⌋ . Because |P2 | ≥ |Xt+1 ◦ ··· ◦X ⌊n/b ⌋ | these
swaps are guaranteed not to conflict with one-another; and

since P2 consists of successors, the final state of arrayAwill

be fully partitioned.

The total work in the reordering phase isO(n) since each
Xi appears in a parallel-for-loop at exactly one level of the

recursion, and incurs O(logn) work. The total span of the

reordering phase isO(logn ·loglogn), since there areO(logn)
levels of recursion, and within each level of recursion each

Xi in the parallel-for-loop incurs spanO(loglogn). □

Combining the phases, the full algorithm has workO(n)
and spanO(loglogn). Thus we have:

TheoremA.1. Thereexistsan in-placealgorithmusingexclusive-

read-write variables that performs parallel-partition with

workO(n) and spanO(logn ·loglogn).

Allowing forRepeatedElements. In provingTheoremA.1

we assumed for simplicity that the elements ofA are distinct.

To remove this assumption, we conclude the section by prov-

inga slightlymore complexvariantofLemmaA.2, eliminating

the requirement that the elements of the arrayX be distinct:

LemmaA.5. LetX be an array ofb=4⌈log(n+1)⌉+2 elements.

The there is an encode function, and a decode function such
that:

• The encode function modifies the array X (possibly

overwriting elements in addition to rearranging them)

to store a valuev ∈ {0,...,n}. The first time the encode

function is called on X it has work and spanO(logn).
Any later times the encode function is called onX , it has

workO(logn) and spanO(loglogn). In addition to being
given an argument v , the encode function is given a

boolean argument indicating whether the function has

been invoked onX before.

• The decode function recovers the value ofv from the

modified arrayX , and restoresX to again be an array

consistingof the samemultiset of elements that it began

with. The decode function has workO(logn) and span
O(loglogn).

Proof. Consider the first b letters ofX as a sequence of pairs,

givenby (x1,x2),...,(xb−1,xb). If at least half of thepairs (xi ,xi+1
satisfy xi ,xi+1, then the encode function can reorder those
pairs to appear at the front ofX , and then use them to encode

12

v as in Lemma A.2. Note that the reordering of the pairs will

only be performed the first time that the encode function is

invoked on X . Later calls to the encode function will have

workO(logn) and spanO(loglogn), as in Lemma A.2.

If, on the other hand, at least half the pairs consist of equal-

value elements xi =xi+1, then we can reorder the pairs so that
the first ⌈log(n+1)⌉+1 of them satisfy this property. (This

is only done on the first call to encode.) To encode a valuev ,
we simply explicitly overwrite the second element in each

of the pairs (x3,x4),(x5,x6),... with the bits ofv , overwriting
each element with one bit. The reordering performed by the

first call to encode has work and spanO(logn); the writing
ofv’s bits can then be performed in workO(logn) and span
O(loglogn) using a simple divide-and-conquer approach.

Toperformadecodeandread thevaluev ,wecheckwhether
x1=x2 in order to determine which type of encoding is being

used, and then we can unencode the bits of v using work

O(logn) and spanO(loglogn); if the encoding is the second
type (i.e., x1=x2), then the decode function also restores the
elements x2,x4,x6,... of the arrayX as it extracts the bits ofv .
Note that checking whether x1=x2 is also used by the encode
function each time after the first time it is called, in order

determine which type of encoding is being used. □

The fact that the first call to the encode function on each

Xi has spanO(logn) (rather thanO(loglogn)) does not affect
the total span of our parallel-partition algorithm, since this

simply adds a step withO(logn)-span to the beginning of the
Parallel Prefix phase. Lemma A.5 can therefore used in place

of Lemma A.2 in order to complete the proof of Theorem A.1

for arraysA that contain duplicate elements.

B Figures
See figures below.

C Pseudocode
See figures below.

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

2

4

6

8

10

12

Number of Threads

S
p
e
e
d
u
p
O
v
e
r
S
e
r
i
a
l
P
a
r
t
i
t
i
o
n

Speedup Versus Number of Threads

Low-Space Med-Space

High-Space Smoothed-Striding

Strided

Figure 1. For a fixed table-size n = 230, we compare each implementation’s runtime to the Libc serial baseline, which takes

3.9 seconds to complete (averaged over five trials). The x-axis plots the number of worker threads being used, and they-axis
plots the multiplicative speedup over the serial baseline. Each time (including the serial baseline) is averaged over five trials.

23 24 25 26 27 28 29 30

0

1

2

3

4

5

6

Log Input Size

S
l
o
w
d
o
w
n
O
v
e
r
S
e
r
i
a
l
P
a
r
t
i
t
i
o
n

Slowdown Versus Input Size in Serial

Low-Space Med-Space

High-Space Smoothed Striding

Strided

Figure 2. We compare the performance of the implementations in serial, with no scheduling overhead. The x-axis is the
log-base-2 of the input size, and the y-axis is the multiplicative slowdown when compared to the Libc serial baseline. Each

time (including the baseline) is averaged over five trials.

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

5

10

15

20

Number of Threads

S
p
e
e
d
u
p
O
v
e
r
S
e
r
i
a
l
P
a
r
t
i
t
i
o
n

Speedup Versus Number of Threads

Low-Space Low-Space Bandwidth Constraint

Smoothed Striding Smoothed Striding Bandwidth Constraint

Figure 3.We compare the performances of the low-space and Smoothed Striding parallel-partition algorithms to their ideal

performance determined by memory-bandwidth constraints on inputs of size 2
30
. The x-axis is the number of worker threads,

and they-axis is the multiplicative speedup when compared to the Libc serial baseline (which is computed by an average over

five trials). Each data-point is averaged over five trials.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

2

4

6

8

10

12

14

Number of Threads

S
p
e
e
d
u
p
O
v
e
r
S
e
r
i
a
l
P
a
r
t
i
t
i
o
n

Speedup Versus Number of Threads

Low-Space Smoothed Striding

Strided

Figure 4.We compare the performance of the low-space and high-span sorting implementations running on varying numbers

of threads and input sizes. The x-axis is the number of worker threads and the y-axis is the multiplicative speedup when

compared to the Libc serial baseline. Each time (including each serial baseline) is averaged over five trials.

15

Figure 5. The Smoothed Striding Algorithm

Recall:
A is the array to be partitioned, of length n.
We breakA into chunks, each consisting of д cache lines of size b.
We create д groupsU1,...,Uд that each contain a single cache line from each chunk,

Ui ’s j-th cache line is the (X [j]+i mod д+1)-th cache line in the j-th chunk ofA.

procedureGet Block Start Index(X , д, b, i , j) ▷ This procedure returns the index inA of the start ofU ′i s j-th block.
return b ·((X [j]+i mod д)+(j−1)·д)+1

end procedure

procedure ParallelPartition(A, n, д, b)
if д<2 then

serial partitionA
else

for j ∈ {1,2,...,n/(дb)} do
X [j]← a random integer from [1,д]

end for
for all i ∈ {1,2,...,д} in parallel do ▷We perform a serial partition on allUi ’s in parallel

low←GetBlockStartIndex(X ,д,b,i ,1) ▷ low← index of the first element inUi
high←GetBlockStartIndex(X ,д,b,i ,n/(дb)) + b−1 ▷ high← index of the last element inUi
while low < high do

whileA[low] ≤ pivotValue do
low← low+1

if low mod b≡0 then ▷ Perform a block increment once low reaches the end of a block

k← number of block increments so far (including this one)

low←GetBlockStartIndex(X ,д,b,i ,k) ▷ Increase low to start of block k ofGi
end if

end while
whileA[high] > pivotValue do

high← high−1

if high mod b≡1 then ▷ Perform a block decrement once high reaches the beginning of a block

k← number of block decrements so far (including this one)

k ′←n/(дb)−k
high←GetBlockStartIndex(X , д,b,i ,k ′) +b−1 ▷Decrease high to end of block k ′ ofGi

end if
end while
SwapA[low] andA[high]

endwhile
end for
Recurse onA[vmin],...,A[vmax−1]

end if
end procedure

16

Figure 6. Section A’s Prefix-Sum Based Parallel Partition Pseudocode: Helper Functions

procedureWriteToBlock(A, b, i ,v) ▷Write valuev to the i-th blockXi ofA, whereA=X1◦X2◦···◦X ⌊n/b ⌋
for all j ∈ {1,2,...,⌊b/2⌋} in parallel do

if 1Xi [2j]<Xi [2j+1], (the j-th binary digit ofv) then
SwapXi [2j] andXi [2j+1]

end if
end for

end procedure

procedure ReadFromBlock(A, i , j) ▷ Reads the valuev stored inA[i],A[i+1],...,A[j]
if j−i=2 then

return 1A[i]<A[i+1]
else

Parallel-Spawnv0← ReadFromBlock(A, i , i+(j−i)/2)
Parallel-Spawnvf ← ReadFromBlock(A, i+(j−i)/2+1, j)
Parallel-Sync
returnvf ·2

j−i
4 +v0

end if
end procedure

Require: A has more successors than predecessors

Ensure: Each prefix ofA is “successor heavy”

procedureMakeSuccessorHeavy(A, n)
for all i ∈ {1,2,...,⌊n/2⌋} in parallel do

if A[i] is a predecessor andA[n−i+1] is a successor then
SwapA[i] andA[n−i+1]

end if
end for
MakeSuccessorHeavy(A, ⌈n/2⌉) ▷ Recurse onA[1],A[2],...,A[⌈n/2⌉]

end procedure

17

Figure 7. Section A’s Prefix-Sum Based Parallel Partition Pseudocode: Main Functions

Require: Each prefix ofA is “successor heavy”

Ensure: Each blockXi stores howmany predecessors occur inX1◦X2◦···◦Xi
procedure ImplicitParallelPrefixSum(A, n)

Pick b ∈Θ(logn) to be the "block size" ▷We now think ofA as being composed of blocks, withA=X1◦X2◦···◦X ⌊n/b ⌋
for all i ∈ {1,2,...,⌊n/b⌋} in parallel do

vi←0 ▷vi will store number of predecessors inXi
for all a ∈Xi in serial do

if a is a predecessor then
vi←vi+1

end if
end for
WriteToBlock(A, b, i ,vi) ▷Nowwe encode the valuevi in the blockXi

end for
Perform a parallel prefix sum on the valuesvi stored in theXi ’s

end procedure

Require: Each blockXi stores howmany predecessors occur inX1◦X2◦···◦Xi
Ensure: A is partitioned

procedure Reorder(A, n)
t← least integer such that t ·b >n ·4/5
Reorder(A, t) ▷ Recurse onA[1],A[2],...,A[t]
for all i ∈ {t+1,t+2,...,⌊n/b⌋} do

vi← ReadFromBlock(A, b ·i+1, b ·(i+1))
Instantiate an arrayYi with |Yi |= |Xi | ∈Θ(logn),
In parallel, setYi [j]←1 ifXi [j] is a predecessor, andYi [j]←0 otherwise.

Perform a parallel prefix sum onYi , and addvi to eachYi [j]
for all j ∈ {1,2,...,b} do

if Xi [j] is a predecessor then
SwapXi [j] andA[Yi [j]]

end if
end for

end for
end procedure

procedure ParallelPartition(A, n)
k← count number of successors inA in parallel

if k <n/2 then
Swap the role of successors and predecessors in the algorithm (i.e. change the decider function)

At the end we considerA′[i]=A[n−i+1], the logically reversed array, as output
This basically means thatWLOG the number of successors inA is greater than the number of predecessors inA

end if
MakeSuccessorHeavy(A, n) ▷ prepreocessing phase
ImplicitParallelPrefixSum(A, n) ▷ Implicit Parallel Prefix Sum
Reorder(A, n) ▷ In-Place Reordering Phase

end procedure

18

References
[1] Blelloch Acar and Blumofe. 2000. The Data Locality ofWork Stealing.

(2000).

[2] Umut A Acar and Guy Blelloch. 2016. Algorithm design: Parallel and

sequential.

[3] Susanne Albers and Torben Hagerup. 1997. Improved parallel integer

sorting without concurrent writing. Information and Computation 136,
1 (1997), 25–51.

[4] Laurent Alonso and René Schott. 1996. A parallel algorithm for the

generation of a permutation and applications. Theoretical Computer
Science 159, 1 (1996), 15–28.

[5] R_Anderson. 1990. Parallel algorithms for generating randompermuta-

tions on a shared memory machine. In Proceedings of the second annual
ACMSymposiumonParallelAlgorithmsandArchitectures.ACM,95–102.

[6] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders.

2017. In-place Parallel Super Scalar Samplesort. arXiv preprint
arXiv:1705.02257 (2017).

[7] Guy E Blelloch. 1996. Programming parallel algorithms. Commun.
ACM 39, 3 (1996), 85–97.

[8] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun.

2012. Internally deterministic parallel algorithms can be fast. InACM
SIGPLAN Notices, Vol. 47. ACM, 181–192.

[9] Guy E. Blelloch, Charles E. Leiserson, Bruce MMaggs, C Greg Plaxton,

Stephen J Smith, and Marco Zagha. 1998. An experimental analysis of

parallel sorting algorithms. Theory of Computing Systems 31, 2 (1998),
135–167.

[10] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E

Leiserson, Keith H Randall, and Yuli Zhou. 1996. Cilk: An efficient

multithreaded runtime system. Journal of parallel and distributed
computing 37, 1 (1996), 55–69.

[11] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling

multithreaded computations by work stealing. Journal of the ACM
(JACM) 46, 5 (1999), 720–748.

[12] Richard P Brent. 1974. The parallel evaluation of general arithmetic

expressions. Journal of the ACM (JACM) 21, 2 (1974), 201–206.
[13] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. 2009. Introduction to algorithms. MIT press.

[14] Rhys S. Francis and LJH Pannan. 1992. A parallel partition for enhanced

parallel quicksort. Parallel Comput. 18, 5 (1992), 543–550.
[15] Leonor Frias and Jordi Petit. 2008. Parallel partition revisited. In

International Workshop on Experimental and Efficient Algorithms.
Springer, 142–153.

[16] Matteo Frigo, Pablo Halpern, Charles E Leiserson, and Stephen

Lewin-Berlin. 2009. Reducers and other Cilk++ hyperobjects. In

Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures. ACM, 79–90.

[17] Alexandros V Gerbessiotis and Constantinos J Siniolakis. 2004.

Probabilistic integer sorting. Information processing letters 90, 4 (2004),
187–193.

[18] Torben Hagerup and Christine Rüb. 1989. Optimal merging and sorting

on the EREW PRAM. Inform. Process. Lett. 33, 4 (1989), 181–185.
[19] Yijie Han. 2001. Improved fast integer sorting in linear space. In

Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 793–796.

[20] Yijie Han and Xin He. 2012. More efficient parallel integer sorting. In

Frontiers in Algorithmics and Algorithmic Aspects in Information and
Management. Springer, 279–290.

[21] Philip Heidelberger, Alan Norton, and John T. Robinson. 1990. Parallel

quicksort using fetch-and-add. IEEE Trans. Comput. 39, 1 (1990),

133–138.

[22] Jyrki Katajainen, Christos Levcopoulos, and Ola Petersson. 1993.

Space-efficient parallel merging. RAIRO-Theoretical Informatics and
Applications 27, 4 (1993), 295–310.

[23] Andi Kleen. 2005. A numa api for linux. Novel Inc (2005).
[24] Jie Liu, Clinton Knowles, and Adam Brian Davis. 2005. A cost

optimal parallel quicksorting and its implementation on a shared

memory parallel computer. In International Symposium on Parallel and

Distributed Processing and Applications. Springer, 491–502.
[25] E Matias and Uzi Vishkin. 1995. A note on reducing parallel model

simulations to integer sorting. In Parallel Processing Symposium, 1995.
Proceedings., 9th International. IEEE, 208–212.

[26] Sanguthevar Rajasekaran and Sandeep Sen. 1992. On parallel integer

sorting. Acta Informatica 29, 1 (1992), 1–15.
[27] Julian Shun, Yan Gu, Guy E Blelloch, Jeremy T Fineman, and Phillip B

Gibbons. 2015. Sequential random permutation, list contraction and

tree contraction are highly parallel. In Proceedings of the twenty-sixth
annual ACM-SIAM symposium on Discrete algorithms. Society for

Industrial and Applied Mathematics, 431–448.

[28] Daniel D Sleator and Robert E Tarjan. 1985. Amortized efficiency of

list update and paging rules. Commun. ACM 28, 2 (1985), 202–208.

[29] Philippas Tsigas and Yi Zhang. 2003. A simple, fast parallel implemen-

tation of quicksort and its performance evaluation on SUN enterprise

10000. In Proceedings of the Eleventh Euromicro Conference on Parallel,
Distributed and Network-Based Processing. IEEE, 372.

[30] Jeffrey Scott Vitter. 2008. Algorithms and data structures for external

memory. Foundations and Trends® in Theoretical Computer Science 2,
4 (2008), 305–474.

19

	1 Introduction
	2 Preliminaries
	3 A Cache Efficient In-Place Parallel Partition
	4 Performance Comparisons
	4.1 Comparing Parallel-Prefix-Based Algorithms
	4.2 Comparing the Smoothed Striding and Strided Algorithms

	5 Conclusion and Open Questions
	A An In-Place Algorithm with Span O(logn loglogn)
	B Figures
	C Pseudocode
	References

