
Analyzing Visualization and Dimensionality-Reduction Algorithms

Oliver Haymana and Ashwin Narayanb

(a) Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA

(b) Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

In order to find patterns among high dimensional data sets in scientific studies, scientists use mapping

algorithms to produce representative two-dimensional or three-dimensional data sets that are easier to

visualize. The most prominent of these algorithms is the t-Distributed Stochastic Neighbor Embedding

algorithm (t-SNE). In this project, we create a metric for evaluating how clustered a data set is, and use

it to measure how the perplexity parameter of the t-SNE algorithm affects the clustering of outputted

data sets. Additionally, we propose a modification in which improved how well randomness is preserved

in outputted data sets. Finally, we create a separate metric to test whether a group of points contains

one or multiple clusters in a data set of centered clusters.

1 Introduction

1.1 Dimension-Reduction Algorithms

One of the largest steps of any scientific study is finding patterns from collected data that can be used to

support a general claim. For two or three-dimensional data sets, we can find patterns through sight alone:

we can easily determine whether points lie in a line or are grouped into clusters just by plotting the data

set. However, many data sets in scientific studies depend on more than just two or three variables, and we

can’t think about four-dimensional distributions as easily as two or three-dimensional ones. This inability

to visualize high-dimensional data sets creates a huge obstacle in drawing conclusions from data.

In order to resolve this issue, we use mapping algorithms to generate two-dimensional or three-dimensional

representations of high dimensional data sets that preserve relationships between data points like clusters.

For example, if we pass a data set consisting of points lying on the surface of a sphere through a dimension-

reduction algorithm, the outputted two-dimensional data set would ideally look like a circle.

Some information about data is lost when mapping it to a lower dimension, so these algorithms aim at

preserving only useful information. It is important for scientists to know what kinds of information is lost

when using these algorithms.

1.2 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is currently the most prominent dimension-reduction

algorithm.

1

In t-SNE, we map a set of high dimensional points X = {x1,x2, · · · ,xn} to low dimensional points Y =

{y1,y2, · · · ,yn} such that for all i, yi is a two-dimensional representation of the point xi.

Initially, we map the distances between pairs of points in X to a probability distribution, which we can

define by using a Gaussian distribution.

Definition 1.1. A Gaussian distribution is a probability distribution with the probability density function

f (x) =
1√

2πσ2
e−

x−x̄
2σ2 ,

where σ and x̄ are parameters. For a Gaussian-distributed data set, σ is its standard deviation and x̄ is its mean.

For each point xi, we let the conditional probability p j|i denote the probability of choosing the point

x j from X , where the probability of choosing each point is proportional to its probability density under a

Gaussian distribution centered at xi. This gives the equation

p j|i =
exp
(
−||xi−x j ||2

2σ2
i

)
∑k 6=i exp

(
−||xi−xk||2

2σ2
i

) ,
where ||xi− x j|| denotes the distance between points xi and x j [1]. Conceptually, p j|i gives the probability of

xi choosing point x j as a “neighbor”, because p j|i is high when x j is close to xi and low if they are far apart.

It is important to note that in t-SNE, every Gaussian distribution centered at some point xi has a different

variance σ2
i . This can be explained by the interpretation of p j|i as the probability of xi choosing x j as a

neighbor. If xi is surrounded by many close points, it would make sense for xi to be highly unlikely to choose

a neighbor that isn’t close to it, whereas if xi is in a sparse region with few close neighbors it would choose a

far away neighbor with much higher probability. We can account for this by increasing the value of σ2
i for xi

in sparse regions, as it increases the probability density for points that are far away from xi in the Gaussian

distribution under xi, and would in turn increase p j|i for far x j.

Sparser regions in a data set tend to reveal more about its overall distribution that small packets of dense

points. Therefore, we can choose each value of σ2
i by quantifying how much information is given by a region

of points.

Definition 1.2. The entropy of a discrete random variable is a measure of the average rate at which it produces

information. The entropy of a random variable X is computed by

H(X) = ∑
x∈X
−p(x) log p(x),

where p(x) denotes the probability of x. The conditional entropy between two random variables X ,Y is given by

H(X |Y) = ∑
x∈X ,y∈Y

−p(x,y) log
p(x,y)
p(x)

.

In order to find each variance σ2
i , we define a parameter of t-SNE called the perplexity. Conceptually, the

perplexity parameter can be thought of as the expected number of neighbors around each point in X that

should be grouped together. Lower perplexities tend to result in data sets with small bundles of points, while

higher perplexities display larger groups of points. However, we don’t know the exact effect of perplexity on

t-SNE’s output.

2

We define the random variable Pi such that Pi gives point x j with probability p j|i for each x j ∈ X . Because

p j|i depends on σ2
i , for each Pi we can choose a value of σ2

i such that s = 2H(Pi). These chosen values are used

in t-SNE [1].

We define

pi j :=
pi| j + p j|i

2n

to be the probability of receiving the pair of points xi,x j from a randomly selected pair of points in X . Note

that for any i, ∑ j pi j >
1
2n . This prevents any outlier points xi from being difficult to map, as if we select a

pair of points according to this probability distribution, each point has at least a 1
2n chance of being in the

selected pair.

We can use a Student’s t-Distribution to define a similar probability qi j associated with each low dimen-

sional pair of points (yi,y j).

Definition 1.3. A Student’s t-Distribution is a probability distribution with a probability density function

f (x) =
Γ
(

υ+1
2

)
√

υπΓ
(

υ

2

) (1+
x2

υ

)− υ+1
2

,

where υ is a parameter referred to as the degree of freedom of the distribution.

We can view a Student’s t-Distribution as a Gaussian distribution with “heavy” tails - that is, the

distributions look similar except in rare events, which have a higher probability of occurring under a Student’s

t-Distribution.

We define a probability qi j associated with each pair of low dimensional points yi,y j using a Student’s

t-distribution (with υ = 1) instead of a Gaussian distribution like so:

qi j =
(1+ || yi− y j ||2)−1

∑k 6=l(1+ || yk− yl ||2)−1 .

We use a Student’s t-Distribution for qi j instead of a Gaussian distribution because mappings given by a

Gaussian distribution make it difficult to visualize every data point. More specifically, when some structures

are mapped to two-dimensional or three-dimensional spaces using a Gaussian distribution, points that are

close to one another in X are mapped extremely close to one another in Y , making them indistinguishable

[1]. This means that in order to prevent this crowding, the distances between some points in Y will need to

be increased, which can be accomplished by a Student’s t-Distribution as its heavier tails mean that farther

distances between points have a higher probability of occurring.

In order to find the optimal mapping of X , we want to find the set Y that minimizes how “different” the

low-dimensional and high-dimensional data sets are. We define a cost function to minimize for each of the

points—that is, a function that evaluates how well the low dimensional distribution preserves structure in

the high dimensional distribution. In t-Distributed Stochastic Neighbor Embedding, we use the cost function

[1]

C = ∑
i

∑
j

pi j log
pi j

qi j
.

3

We use this function because if points xi and x j are close to one another in X , the cost of mapping yi and

y j far away from one another is high, so structures like clusters are preserved. However, if points xi and x j

are far away from one another, mapping yi and y j close to each other does not cost much. This means that

t-SNE is good at preserving clusters, but does not preserve the distances between clusters.

We can find the minimum value of C using the gradient descent method. The gradient of the cost function

can be computed to be1

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)(1+ ||yi− y j||)−1.

In order to approximate the minimum cost, we initially choose each of the points y1,y2, ...,yn randomly

from an isotropic Gaussian distribution centered at the origin with a small variance. We then iterate each

of the points to approach this minimum through the equation

γ
(t) = γ

(t−1)+η
δC
δγ

+α(t)
(

γ
(t−1)− γ

(t−2)
)
,

where α(t) is a function such that each iteration’s points are equal to an exponentially decaying sum of the

points in previous iterations, and η is a constant that controls the “learning” rate [1].

1.3 Barnes-Hut t-SNE

One major drawback of t-SNE is that the computation of δC
δyi

requires computing pi j log pi j
qi j

between all

pairs of points (xi,x j) and (yi,y j), giving a computational run time of O(N2) [2]. Therefore, an accelerated

implementation of t-SNE, called Barnes-Hut t-Distributed Stochastic Neighbor Embedding, is more

commonly used.

In Barnes-Hut t-SNE, we define ηi to be the set of the closest b3sc data points to xi, where s denotes the

perplexity. Note that points outside of ηi are far away from xi, and therefore contribute very little to pi j.

Finding ηi can be found in O(sN logN) through the use of vantage point trees [4].

Now, we can redefine

p j|i =


exp
(
−||xi−x j ||2

2σ2
i

)
∑k∈ηi exp

(
−||xi−xk ||2

2σ2
i

) x j ∈ ηi

0 x j /∈ ηi

.

We keep that pi j =
p j|i+pi| j

2N .

We break apart the gradient of C into

δC
δyi

= 4

(
∑
i6= j

pi j(yi− y j)
(
1+ ||yi− y j||2

)−1
)
−4

(
∑
i6= j

qi j(yi− y j)
(
1+ ||yi− y j||2

)−1
)
.

Because we modified pi j, we can find 4
(
∑i6= j pi j(yi− y j)(1+ ||yi− y j||2)−1

)
by simply summing over the

nonzero values of pi j, which can be done in O(sN) time [2]. However, the computation of

4
(
∑i 6= j qi j(yi− y j)(1+ ||yi− y j||2)−1

)
still has time complexity O(N2).

We can use the Barnes-Hut algorithm to compute 4
(
∑i6= j qi j(yi− y j)(1+ ||yi− y j||2)−1

)
in O(N logN) time.

In the Barnes-Hut algorithm, we create a quadtree in order to carry out one computation for each group of
1For an explanation of how to calculate the gradient of C, refer to [1]

4

similar data points. A quadtree is a tree which consists of rectangular regions, or cells, of a data set where

the children of non-leaf nodes are four cells 1
4 the size of their parent in northwest, northeast, southwest, and

southeast locations of their parent’s center. For each cell, we find its center of mass, ycell and its number of

points Ncell . A quadtree can be constructed in O(N) time [3].

For some point yi, a cell is considered a good estimate for computing forces between its points and yi if

lcell

||yi− ycell ||2
< θ ,

where θ is a parameter of the algorithm and lcell is the length of the diagonal of the cell. If a cell is

considered a good estimate, then the sum of qi j(yi− y j)(1+ ||yi− y j||2)−1 for y j in the cell is replaced by

Ncellqicell(yi− ycell(1+ ||yi− ycell ||2)−1, where qicell =
(1+||yi−ycell ||2)

−1

∑k 6=l(1+||yk−yl ||2)
−1 . This modification allows the forces

4
(
∑i 6= j qi j(yi− y j)(1+ ||yi− y j||2)−1

)
to be computed in O(N logN) time, allowing the gradient to also be

computed in O(N logN) time [3].

1.4 Research Overview

Because t-SNE is used widely across all scientific fields to analyze data sets, we aim to quantify how well

certain characteristics of data sets are preserved by the algorithm. This project aims at utilizing metrics

to better understand the specific behaviour of t-SNE, and to propose modifications to the algorithm that

address its failures of preserving structures of certain types of data sets.

In Section 2, we propose a metric measuring how clustered a data set is and use this metric to determine

how the perplexity parameter of t-SNE affects its outputted data sets. We then propose a method for

computing the theoretical value of this metric. The effect of the perplexity parameter of t-SNE needs to be

better understood, so creating some way to quantify the optimal perplexity for a data set would be very

beneficial.

In Section 3, we propose a modification of t-SNE so that regions of high dimensional data sets that appear

to be uniformly distributed also appear less clumped in low dimensional data sets. This greatly improves the

interpretation of both uniform data sets and clustered data sets, because it removes the question of whether

a perceived cluster in any low dimensional data set was actually part of the original data set or was created

by t-SNE in an attempt to map random data.

In Section 4, we propose a metric that evaluates whether a region of a high concentration of data points

that would be interpreted as a cluster will actually consist of multiple centrally-distributed clusters. This

aims at finding important structures of clusters that could be lost when inputted into t-SNE, and also

aims at addressing failures of cluster-detection algorithms like db-SCAN [5] which would interpret multiple

close-together clusters as a single cluster.

Barnes-Hut t-SNE is used in Section 2 and Section 4, while regular t-SNE is used in Section 3 as its

cost function is easier to modify (although theoretically the modification could also be made to Barnes-Hut

t-SNE).

5

(a) Perplexity = 10 (b) Perplexity = 30 (c) Perplexity = 80

Figure 1: t-SNE plots for points in a circle in the xy-plane.

(a) Perplexity = 30 (b) Perplexity = 50

Figure 2: t-SNE plots for points in a trefoil knot in the xy-plane.

2 Evaluating the Effect of Perplexity on t-SNE

In order to modify t-SNE, we want to first develop a process to measure what specific types of inputs cause

t-SNE to fail. t-SNE has two main parameters: a high-dimensional data set and a value for the perplexity.

Therefore, we want to see what types of high-dimensional data sets cause t-SNE to fail and find a method

to choose the best perplexity for a given data set.

We initially want to see the successes and failures of running t-SNE on data sets that form specific

objects or patterns. All data sets we use are three-dimensional, because three-dimensional objects are easy

to visualize, making it easy to understand what output to expect from t-SNE.

Plots of t-SNE plots with different parameters are shown for toy data sets, where points are arranged in

a circle (Figure 1), a trefoil (Figure 2), and a spiral (Figure 3)

(a) Perplexity = 10 (b) Perplexity = 30

Figure 3: t-SNE plots for points in a spiral in the xy-plane.

6

It becomes apparent that dense structures such as points lying in a line could be pulled apart in

t-SNE. This is likely because the heavier tails in the Student’s t-Distribution make separating points by long

distances less costly and more likely to occur, so the algorithm is more likely to separate points that are

close to one another in a line.

It also becomes apparent that lower perplexities are generally weak at returning plots that resemble the

expected output for a data set. The default value for the perplexity of 30 would seem like a fairly low and

unreliable perplexity based off of the patterns we see, though this default could be caused by the fact that

there is a cap for the highest perplexity of data sets depending on the number of points in them. In order to

further investigate the behaviour of t-SNE, we focus on looking at how changing the perplexity affects the

algorithm.

In order to analyze how the perplexity effects the mapping algorithm, we define a metric to measure how

“clustered” a data set is, or more specifically, how well different groups of data points tend to center around

some other data point.

Let X = {x1,x2, · · · ,xn} denote a high-dimensional data set inputted into t-SNE, and Y = {y1,y2, · · · ,yn}

denote its low-dimensional output. Before we describe a clustering metric, we need to introduce some

notation:

Definition 2.1. The function α(X ,xi,a) is defined to be

α(X ,xi,a) :=
∣∣{x j : x j ∈ X ,0 < ||x j− xi|| ≤ a}

∣∣ .
In other words, α(X ,xi,a) gives the number of points in X whose distance from xi is less than a.

Definition 2.2. The function β (X ,xi,a) is defined to be

β (X ,xi,a) := min{N : N ∈ R,α(X ,xi,N) = a}.

In other words, β (X ,xi,a) gives the distance from xi to the ath closest point to xi in X .

Definition 2.3. For a finite set X = {x1,x2, · · · ,xn} of d-dimensional data points and some positive integer parameter

c, the metric Mclust is defined as:

Mclust(X ,c) :=
1
|X | ∑

xi∈X
α

(
xi,

(
2
c

) 1
d

β (xi,c)

)
.

The intuition behind Mclust is as follows:

• First, around each point we find the radius of the smallest ball containing its c closest points (the value

of β).

• We scale down this radius so that the number of points in a ball with the scaled down radius is expected

to be 2. We find the actual number of data points in this ball (given by α).

• We average across all data points. This means the metric will be higher for clustered distributions,

since more points are expected to lie towards the center of a ball around xi.

7

Figure 4: (Colored online) Plotting the value of our metric for various values of perplexities and number of points.

We give intuition for why this is true.

Note that the number of points captured by a d−ball of radius r in a d-dimensional uniform distribution

is directly proportional to its volume, and is therefore directly proportional to rd . Let’s say the number of

points in a uniform distribution inside a d−ball of radius r is c (which is the case if we set r = β (xi,c)). Then,

the number of points inside the same distribution inside a d−ball of radius
(2

c

) 1
d r is c ·

(
(2

c)
1
d r
)d

rd = c · 2rd

crd = 2.

This means that for uniformly distributed X ,

α

(
xi,

(
2
c

) 1
d

β (xi,c)

)
≈ 2.

Since Mclust is approximately 2 for all uniform distributions, the value of Mclust should be approximately

independent of the dimension and size of any data set X , just like how how “clustered ” a data set is shouldn’t

depend on either. This also means that the metric is very low for distributions that are close to uniform.

However, for clustered distributions, since more points generally lie towards the center of a cluster, the value

of this metric should be higher.

We use the value c = 20 for tests, as c should not be too small, or else the metric would be too small to

distinguish between “clustered” and “not clustered” data sets, and it couldn’t be too large or it would start

looking at data points outside of clusters.

In order to empirically see if this metric gives similar values for similar data sets, we find Mclust values

for t-SNE mappings of three-dimensional uniform data sets with different numbers of points for perplexities

from 5 to 100, shown in Figure 4.

Since the graphs appear similar, this metric should be valid at evaluating how clustered the two-

dimensional mappings given by t-SNE are.

When graphing the effect of perplexity on the metric for different data sets, we find that the metric lowers

as perplexity increases, and changes in perplexity effect t-SNE’s output much more for lower perplexities.

Additionally, as the perplexity increases, the value returned by the metric appears to approach the metric

value returned by the original data set. An example is shown in Figure 5.

8

Figure 5: (Colored online) Plotting the value of our metric compared to that of a uniform data set.

Figure 6: (Colored online) Plotting the value on our metric for variable types of data sets.

9

Figure 7: (Colored online) Metric value on clustered data sets.

Further evidence for this can be shown through graphs of the difference between the metric values of

high-dimensional and low-dimensional data sets for different types of data sets, as evidenced by Figure 6.

In order to test how the number of clusters in a data set affects Mclust , we create a perplexity vs. Mclust

graph for a 1000 point uniformly distributed data set and 1000 point data sets with 2, 3, 4, and 5 clusters.

The Mclust values appear to be similar for distributions with at least one cluster, but look different from the

values given by the uniform distribution. These results are displayed in Figure 7.

In order to get a better idea of how the perplexity behaves, we propose a general equation to approximate

the perplexity and returned metric values for uniform distributions. We aim to find the best possible function

F(s) = ec+as +b that models the data, where F(s) is the value returned by the metric and s is the perplexity

used to generate a t-SNE plot. Because it appears that the value of Mclust for t-SNE’s output approaches

the metric value given by the inputted data set as the perplexity increases, b is set to be equal to the input’s

Mclust value. Taking the natural log of both sides gives ln(F(s)−b) = as+ c. Linear regression can be used

to find values for a and c for each data set. Then, we can create a plot of the number of data points in

inputted uniform data sets and the values of a and c given by regression. Using linear regression on this plot

gives that c = 0.0002796x+1.073 and a = 0.00000951x−0.07147, where x is the number of data points of the

inputted distribution, are good models for the values.

To determine the exact behaviour of the metric on data sets and what metric values we might expect

from mappings given by t-SNE, we want to find a method to theoretically evaluate the value of the metric for

uniformly distributed data sets. We can approximate the expected value of Mclust for D-dimensional uniform

distributions of n points inside the unit hypercube by making the assumption that a ball centered around a

point will intersect no more than one of the faces of the hypercube (capital D is used to denote dimension in

order to avoid confusion with dx terms in integrals). In this method it is assumed that any ball or hypercube

mentioned is D-dimensional, and the value c is referring to the value used in the described metric.

Let the function f (x,r) give the volume of a D-dimensional ball of radius r with a cap cut off of it from

10

a distance x from its center. For example, in two dimensions,

f (x,r) = x
√

r2− x2 +

(
1−

arccos x
r

π

)
(πr2)

gives the area of a disk with some segment cut off with a chord of a distance x from the center of the disk.

Let the function VD(r) denote the volume of a D-dimensional ball with radius r. It is well known that

Vn(r) =
π

D
2 rD

Γ
(D

2 +1
) .

The function

g(r) = (1−2r)D(V (r))c−1(1−V (r))n−c−1 +

(
D
2

)
2D−2

∫ r

0
f (x,r)c−1(1− f (x,r))n−c−2(1−2x)D−1dx

is proportional to the probability of the smallest ball containing the c closest points to a fixed center in this

data set having radius r, as c−1 points need to lie in this ball and n− c−1 other points need to lie outside

of it2. The integral represents the “frame” in which if the point that the ball is centered around lies within

this frame, some of the ball around it is cut off from the unit hypercube, so the volume of the ball needs to

be adjusted accordingly.

3 t-SNE Modification to Preserve Randomness

One of the largest failures of t-SNE is that when uniform random data sets are mapped to low dimensional

data sets, their mappings look clustered and less random. This can become especially problematic when

some areas of data sets are approximately uniform while other are clustered, because this could allow the

misinterpretation of uniform regions of data as clustered or clustered regions of data as uniform.

The following modification to the t-SNE algorithm allows uniform distributions to look somewhat more

unstructured, while the mapping of regions that are not uniform stays the same:

Definition 3.1. For a finite set X of d-dimensional datapoints {x1,x2, · · · ,xn}, the function γ(m,X ,xi) gives:

γ(m,X ,xi) :=
(m

10

) 1
d · d +1

d
·

∑xk∈X ||xk− xi||
|X |

.

Consider the sets

Sim =
{

x j : x j ∈ X ,γ(m,X ,xi)> ||x j− xi||> γ(m−1,X ,xi)
}

and sequences of sets

Ai, j =


Si j ∪Ai, j+1

|X |
10 −

|X |
80 < |Si j|< |X |

10 + |X |80

∅ otherwise

.

To show that this sequence is well defined, we need to prove the following claim:

Claim. For a finite set X of d-dimensional data points x1,x2 · · · ,xn, for every value of 1≤ i≤ n, there exists

some value Ni such that for all ε > Ni, Ai,ε =∅
2the other two points are the cth closest point, which lies on the boundary of the ball, and the ball’s center

11

Proof. Note that since X is finite, we can define the value M = max{||xi− x j|| : xi,x j ∈ X}. For each xi, let the value

Ni =
⌈

10
(

M · d
d+1 ·

|X |
∑k ||xk−xi||

)⌉
+ 1. Note that γ(Ni− 1,X ,xi) ≥ M. Consider some positive integer ε > Ni. This

means that

Si(ε) =
{

x j : x j ∈ X ,γ(ε,X ,xi)> ||x j− xi||> γ(ε−1,X ,xi)
}
.

However, for x j in this set, ||x j− xi||> γ(ε−1,X ,xi)> γ(Ni−1,X ,xi)≥M, which contradicts M = max{||xi− x j|| :

xi,x j ∈ X}. This means that Siε =∅, so |Siε |= 0 and |Siε |< |X |
10 −

|X |
80 . Therefore, Ai,ε =∅ for all ε > Ni.

In other words, if you try to compute Ai,1 and have to keep computing Ai,k for progressively higher values

of k due to the recursion Ai, j = Si j ∪Ai, j+1, eventually you will find some value k such that Ai,k =∅.

Let

T (i, j) =


0.7 xi ∈ A j,1 and x j ∈ Ai,1

1 otherwise

.

We now define

qi j =
(1+ ||xi− x j||2)−T (i, j)

∑k 6=l(1+ ||xi− x j||2)−T (i, j)
.

We want to give some intuition as to why this modification will help at preserving randomness.

We can show that the number of points lying in the set Sim =
{

x j : x j ∈ X ,γ(m,X ,xi)> ||x j− xi||> γ(m−1,X ,xi)
}

is approximately |X |10 for small m.

Consider the random variable R representing the distance between a point selected randomly from a

uniform distribution and another fixed point in the distribution. Let’s assume that the uniform distribution

takes place in some ball of radius k (this is clearly an incorrect assumption, but this should provide a

good estimate of the behaviour of the distribution). Note that the surface area of a D−dimensional ball

is proportional to rD−1, where r is its radius, so since the selected point in R would lie on the surface of a

D-dimensional ball, this probability distribution can be described by P(R = r) = crD−1, for some c. Then, we

have that ∫ k

0
crD−1dr = 1,

so c = D
kD . This gives the probability distribution P(R = r) = DrD−1

kd . The average of R over all of the points

is expected to be ∫ k

0
r ·P(R = r)dr =

∫ k

0

DrD

kD dr =
Dk

D+1
.

Therefore, for a given point xi and a randomly selected point x j, the probability that ||xi−x j|| lies between(m−1
10

)
· D+1

D ·
∑k ||xk−xi||

n and
(m

10

)
· D+1

D ·
∑k ||xk−xi||

n is

∫ (m
10)

1
D ·D+1

D ·
Dk

D+1

(m−1
10)

1
D ·D+1

D ·
Dk

D+1

DrD−1

kD dr =
mkD

10kD −
(m−1)kD

10kD =
1

10
.

By linearity of expectation, the expected number of points that lie a distance between(m−1
10

) 1
D · D+1

D ·
∑k ||xk−xi||

n and
(m

10

) 1
D · D+1

D ·
∑k ||xk−xi||

n units away from a point xi is approximately |X |10 .

Therefore, if the number of points in regions of this form is between |X |10 −
|X |
80 and |X |10 + |X |80 , the distribution

likely looks uniform.

12

(a) Uniform Data Set (b) Clustered Data Set

Figure 8: (Colored Online) Regions Tested for Uniformly Distributed Points around the Origin for Uniform and

Clustered Data Sets.

Based on this claim, conceptually we are taking some point xi, and then drawing a ball around this point

that is expected to contain |X |10 points if X is uniformly distributed. If this ball contains close to this number

of points, we extend the radius of the ball so that it contains 2|X |
10 points, and then keep doing this until

eventually a region without the expected number of points is found. An example of this can be shown in

Figure 8, in which the left figure shows regions in which each green region contains the expected number of

points for each iteration of this process (note that the number of points in each region between two circles is

the same), whereas in the clustered distribution in the right figure, the first circle contains too many points

and the point finding process terminates. All of the points that are contained in regions with the expected

number of points are considered uniform around xi. For example, in the left plot of Figure 8, all points in

the green region would be considered uniform. A pair of points xi,x j is considered uniform if xi is uniform

around x j and x j is uniform around xi.

In order to address how to modify t-SNE so that randomness is more faithfully preserved, we need to

find specific steps in the algorithm that cause the preservation of randomness to fail. A property of t-SNE

is that mapping points that are close together in high dimensional data sets to points that are not close

together in low dimensional data sets has a very high cost, whereas mapping points that are far apart in the

high dimensional data set to points that are close together in the low dimensional data set has little effect

on the cost. However, part of the appearance of randomness relies on points having an equal probability of

being far apart or close to one another, so if we primarily preserve groups of points that are close to each

other, the low dimensional data sets naturally look more clustered.

In order to change this, we need to increase the cost of mapping points that are far apart in high

dimensional data sets to points that are close together in low dimensional data sets. In other words, we need

to make the tails of qi j even more “heavier”.

Consider the function f (x) =
(

1
1+x2

)0.7
. If x is close to 0 the value of f (x) is approximately 1

1+x2 , as

1
1+x2 and f (x) would both be close to 1. However, for larger values of x, in which 1

1+x2 << 1, then f (x) is

13

(a) Original t-SNE (b) Modified t-SNE

Figure 9: Comparison of our modification with original data set for uniformly distributed data.

(a) Original t-SNE (b) Modified t-SNE

Figure 10: Comparison of our modification with original data set for clustered data.

significantly larger than 1
1+x2 .

This means that by taking the function qi j to the 0.7th power, we approximately preserve t-SNE’s ability

to map close points in X close to one another in Y . This is because, as explained above, qi j should remain

similar for values of |xi− x j| close to 0 (it would be affected primarily by points that are far apart being

weight more), but should be weighted more for larger values of |xi− x j|.

Therefore, because the function (1+ ||xi− x j||2)−T (i, j) is equal to (1+ ||xi− x j||2)−0.7 if and only if points

xi and x j are considered uniform, setting qi j = (1+ ||xi− x j||2)−T (i, j) allows uniform data sets to be mapped

better while not changing how other data sets are mapped.

Results of this modification on uniform data and on clustered data are shown in Figure 9 and Figure 10,

respectively. In Figure 9, the modified algorithm gives a mapping for a uniform data set that appears more

uniform than the mapping given by unmodified t-SNE. In Figure 10, both modified and unmodified t-SNE

give the same mapping for a clustered data set3.
3The differences between the two mappings has to do with the set of points chosen randomly from an isotropic Gaussian distribution in the

gradient descent method

14

4 Distinguishing Between a Single Normally-Distributed Cluster and Mul-

tiple Close Normally-Distributed Clusters

We have also looked at how to preserve information that is lost in t-SNE. We have looked at measuring if

groups of points that are close to one another in a distribution are made up of two or more groups of points

with similar characteristics. These groups of points in t-SNE will be interpreted as one cluster, making it

difficult to interpret the data correctly once the data set is inputted into the algorithm.

It is impossible to determine if a large cluster is made up of multiple smaller clusters without restricting

what the shape of a cluster may look like. Therefore, we make the assumption that clusters will be more

dense closer to their center.

Consider the following metric used to determine whether some data set X = {x1,x2, · · · ,xn} is made up of

multiple centrally distributed clusters.

Definition 4.1. We define the function A(X ,xi) to be

A(X ,xi) :=
1
|X | ∑

x j∈X , j 6=i
||x j− xi||.

A gives the average distance between the point xi and all other data points in X .

Definition 4.2. We define the function B(X ,xi) to be

B(X ,xi) :=
1

20 ∑
|x j−xi|≤α(X ,xi,20)

||x j− xi||.

B gives the average distance between xi and its twenty closest points, using the definition of α in Section 2.

Definition 4.3. For a finite set X = {x1,x2, · · · ,xn} of d-dimensional data points, the metric Mmulticlust used to deter-

mine whether X consists of smaller clusters is defined as:

Mmulticlust(X) :=
1
|X | ∑

xi∈X

((
20
|X |

) 1
d
· A(X ,xi)

B(X ,xi)

)
.

To show Mmulticlust is independent of the dimension and size of X , we want to show it gives the same

value for any uniformly distributed X . According to results explained in Section 3, the value of A(X ,xi)
B(X ,xi)

is

approximately

A(X ,xi)

B(X ,xi)
≈

d
d+1 k

d
d+1 α(X ,xi,20)

=
k

α(X ,xi,20)
,

where k is the radius of some theoretical ball centered at xi that contains all points in X . Since the expected

number of points that lie in a uniformly distributed region is proportional to the region’s volume and the

volume of a d-dimensional ball with radius r is proportional to rd , the fraction kd

α(X ,xi,20)d gives the approximate

ratio of the number of points in X to the number of points in the ball of radius α(X ,xi,20). This means(
k

α(X ,xi,20)

)d
≈ |X |20 . Therefore,

1
|X | ∑

xi∈X

((
20
|X |

) 1
d
· A(X ,xi)

B(X ,xi)

)
≈ 1
|X | ∑

xi∈X

((
20
|X |

) 1
d
·
(
|X |
20

) 1
d
)

= 1

for all uniform distributions.

15

There is inherent structure in clusters made up of multiple centralized distributions which forces the

value returned by Mmulticlust to be higher than for similar looking clusters that are not made up of multiple

distributions.

For two data sets to look similar, it is likely that their average distance between data points are similar,

meaning their values of A(X ,xi) should be close to one another. As the distance between two or more normal

distributions increases, the values for A increase, so single centralized distributions that look similar will also

have larger values of A. Additionally, if you increase the spread of data in a normal distribution, A(X ,xi)

and B(X ,xi) should remain proportional. However, the value of B(X ,xi) for a cluster made up of multiple

“sub-clusters” should cap at the value of B(X ,xi) for each of its sub-clusters, as the twenty closest points in

each sub-cluster do not change when two clusters are brought further apart. This means the metric will

increase when the distance between two sub-clusters increases, but the metric of similar looking normal

distributions would remain the same.

To demonstrate this, we can find A and B for pairs of similar looking data sets. For example, the ratio

of the average value of A for data set (c) to the average value of A for data set (d) in Figure 12 was 1.010,

whereas the ratios between their average values of B was 1.060 (although these numbers are both very close

to 1, on the scale of thousands of data points a ratio of 1.060 indicates that B changes significantly more

than A).

We can test Mmulticlust on clusters detected by the cluster detection algorithm db-SCAN [5]. We place

some clusters extremely close to one another so db-SCAN interprets them as one cluster, and then use

Mmulticlust to test if it could distinguish between these clusters and clusters that are made up of one centrally

distributed distribution.

Based on the data sets tested, it appears that clusters that did not contain any “sub-clusters” tend to

give Mmulticlust values of 1.23 to 1.26, whereas clusters that are actually a result of two or more clusters being

close together tend to give metric values of 1.28 and above. It also appears that farther distances between

sub-clusters result in higher Mmulticlust values. Results are shown in Figure 11.

This metric is effective at distinguishing whether a cluster is made up of multiple “sub-clusters” when the

human eye cannot, as demonstrated in Figure 12.

5 Further Work

In the future, one could propose different metrics to quantify how well t-SNE preserves characteristics other

than just how clustered a data set is. Metric value vs. perplexity graphs for different distributions could

reveal more about the perplexity’s affect on specific distribution types other than just uniform distributions.

Additionally, experimenting with different cost function modifications could further improve how well

t-SNE preserves uniformity or reduce the modified algorithm’s run time. One could also try to modify

the algorithm to become better at mapping distributions of centered clusters by using the Mmulticlust metric

described in Section 4.

16

(a) Separation = 0.3, metric = 1.332 (b) Separation = 0.4, metric = 1.463

(c) Separation = 0.5, metric = 1.654 (d) Single cluster, metric = 1.245

Figure 11: The metric Mmulticlust is able to differentiate when a data set is actually clustered.

(a) Single centrally distributed, metric = 1.245 (b) Slightly separated, metric = 1.294

(c) Single centrally distributed, metric = 1.257 (d) Four separated distributions, metric = 1.319

Figure 12: The metric Mmulticlust differentiates clustered data sets even when the separation is not easy to see with the

naked eye.

17

6 Acknowledgements

We would like to thank the MIT PRIMES-USA program for providing us with the opportunity to research,

and would like to especially thank Dr. Tanya Khovanova for her feedback and guidance on planning out and

writing research papers.

References

[1] L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of

Machine Learning Research 9 (Nov): 2579-2605, 2008.

[2] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning

Research 15 (Oct): 3221-3245, 2014.

[3] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324 (4):446-449,

1986.

[4] P.N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 311-321, 1993.

[5] Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal

of Statistical Software, 91(1), 1-30. doi: 10.18637/jss.v091.i01.

18

