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Abstract

In a restricted combinatorial mobile sensor network (RCMSN), there are n sensors that continuously
receive and store information from outside. Every two sensors communicate exactly once, and at an event
when two sensors communicate, they receive and store additionally all information the other has stored.
We study the capacity of information diffusion in mobile sensor networks, which was proposed by C. Gu,
I. Downes, O. Gnawali, and L. Guibas. They collected all information received by two sensors between a
communication event and the previous communication events for each of them into one information packet,
and considered the number of sensors a packet eventually reaches. Then they defined the capacity of an
RCMSN to be the ratio of the average number of sensors the packets reach and the total number of sensors.
While they have studied the expected capacity of an RCMSN (when the order of communications is random),
we found the RCMSNs with maximum and minimum capacities. We also studied similar problems for several
related mobile sensor network constructions, such as ones generated from intersections of lines, as well as
complexity results concerning when a mobile sensor network can be generated in such ways.
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§1. Introduction

We consider n sensors that continuously receive and and store information from outside. At a communi-
cation event of two sensors, they receive additionally all information the other has stored. In this paper we
study combinatorial mobile sensor networks (CMSN), in which the communication events and their order are
to be specified. In order to evaluate the capacity of information diffusions in CMSN, the authors of paper [1]
collect into an information packet all information received by a sensor between two successive communication
events, and merge the information packets from the two sensors at a communication event, as afterwards
the information in the packet always goes together. Thus, if there are k communcation events in total, then
k information packets are generated. In an ideal situation, all sensors receive all packets eventually. So the
authors of [1] define the capacity as the ratio of the actual number of packet deliveries and kn, or more
rigorously as the following.

Definition ((R)CMSN). A restricted combinatorial mobile sensor network (RCMSN) of n sensors, numbered
by 1, 2, . . . , n, is a sequence of

(
n
2

)
distinct packets, which are two-element sets {x, y} where 1 ≤ x < y ≤ n.

If we denote this sequence by a1, . . . , an(n−1)/2, then we say that a packet ak1
can reach sensor x (1 ≤ x ≤ n)

if there exist 1 < k2 < · · · < km ≤
(
n
2

)
such that k2 > k1 ≥ 1, akj ∩ akj−1 6= ∅ for each 2 ≤ j ≤ m, and

x ∈ akm
. We say ak1

reaches x in m− 1 hops if m is the minimum number that makes this condition hold.
A combinatorial mobile sensor network (CMSN) is like an RCMSN, except that the length L of the sequence
is arbitrary and the packets may be the same.

Definition (Capacity of (R)CMSN). If the length of an RCMSN or CMSN of n sensors is L (we clearly
have L =

(
n
2

)
for an RCMSN), we define the capacity of the RCMSN or CMSN to be

1

nL

L∑
k=1

#{1 ≤ x ≤ n | ak can reach x}.
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To provide a comparison with RCMSN, we define the absolute capacity of a CMSN to be

1

n
(
n
2

) L∑
k=1

#{1 ≤ x ≤ n | ak can reach x}.

We also study a specific type of RCMSN generated by the intersections of n lines, also considered in
detailed by [1], defined as the following.

Definition (GMSN). A geometric mobile sensor network (GMSN) of n sensors is an RCMSN of n sensors
such that there exist n lines on an Euclidean plane where each line has a finite and distinct slope, no two
intersections have the same x-coordinate, and the RCMSN is given by sorting {{i, j} | 1 ≤ i < j ≤ n}
according to the x-coordinate of the intersection between line i and line j in ascending order.

A variant of the GMSN is restricted GMSN (RGMSN), in which the number of slopes is limited:

Definition (RGMSN). A restricted geometric mobile sensor network (RGMSN) of n sensors and k slopes
is a CMSN of n sensors such that there exist n lines on an Euclidean plane with at most k distinct slopes,
all of them finite, where no two intersections have the same x-coordinate, and the CMSN is given by sorting
{{i, j} | line i and line j intersect} according to the x-coordinate of the intersection between line i and line j
in ascending order.

We note that the geometric mobile sensor network can be considered as the one-dimensional model where
all sensors move with constant velocity, and they communicate whenever they meet. In restricted GMSNs,
the velocities can only be selected from a few possible values.

For random RCMSNs, the authors of [1] claimed that when the size of the network approaches infinity,
the expected capacity approaches one with high probability. However, their proof contains an error, which
has been pointed out in Geneson’s paper [2]. We propose a conjecture which, if proven, would fill the gap.
Nevertheless, Geneson [2] gave the expected capacity of a random CMSN. Also, we found the maximum and
minimum capacities of RCMSNs, which coincide with the maximum and minimum capacity of geometric
MSNs. These results also have been shown before by Geneson [2], but we give simpler proofs in this paper
(§2).

For random geometric MSNs, the authors of [1] found that the expected capacity does not approach one
when the network size approaches infinity; instead, it is between 2/3 and 5/6. In this paper, we show in §2
that the expected capacity of a random GMSN when the size approaches infinity is exactly 5/6.

Following the suggestion by the author of [2], in this paper we also study the restricted geometric MSNs.
We give the maximum absolute capacity of RGMSNs with any number of slopes in §3, as well as an asymptotic
formula for the maximum capacity of RGMSNs with any number of slopes. For the special case of RGMSNs
with only two slopes, the capacity depends only on the size. With only three slopes, we give the exact
expressions of the expected and maximum capacity (§4). With only four slopes, we also give the exact
expression of the maximum capacity (§5). The remaining exact expressions (for expected capacity with ≥ 4
slopes, or maximum capacity with ≥ 5 slopes) are still left open.

Finally, we consider a new question about whether a given RCMSN or CMSN can be “realized” as a
GMSN or RGMSN with a given number of slopes. We show in §6 that deciding if a given RCMSN can be
realized as a GMSN is NP-Hard, using Shor’s result [3] on the NP-Hardness of stretchability of pseudolines.
However, the decision problem of whether a given CMSN can be realized as an RGMSN with s slopes is
easier, and we give an algorithm (§6) to compute it in polynomial time with respect to the size of the
network, although the complexity is exponential in variable s (thus it is still polynomial when s is bounded
independent of network size).
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§2. Geometric and restricted combinatorial MSNs

We first consider the minimum capacity of RCMSNs. We use the idea in [1].

Theorem 1 (RCMSN/GMSN Min. Capacity [2]). The minimum possible capacity of an RCMSN or GMSN
with n sensors is 2(n+ 1)/(3n).

Proof. Clearly, any pair {i, j} can reach both i and j, resulting in 2
(
n
2

)
deliveries. Any ordering of three

pairs whose union contains only three distinct elements can always be expressed as {i, j}, {j, k}, {k, i} in this
order for distinct i, j, k. Here {i, j} can reach k and {j, k} can reach i, resulting in 2

(
n
3

)
deliveries. Therefore

the minimum capacity is at least
2
(
n
2

)
+ 2
(
n
3

)
n
(
n
2

) =
2(n+ 1)

3n
.

Consider the lines lk : kx+(n+1−k)y = k(n+1−k) for 1 ≤ k ≤ n. It can be verified that if max{i, j} < k,
then {i, j} cannot reach line k, so the capacity of this GMSN is at most

1

n
(
n
2

) n∑
k=1

k(k − 1) =
2(n+ 1)

3n
.

Therefore the exact minimum capacity is 2(n+1)
3n . �

Now we consider the maximum capacity of RCMSNs. The idea is to consider those clearly unreachable
sensors, and to construct a GMSN with those the only unreachable sensors.

Theorem 2 (RCMSN/GMSN Max. Capacity [2]). The maximum possible capacity of an RCMSN or GMSN
with n sensors is 2(n+ 1)/(3n).

Proof. Let the sequence of communications be {a1, b1}, {a2, b2}, . . . , {am, bm} where m =
(
n
2

)
. If a graph is

formed with vertices {1, . . . , n} and undirected edges (ak, bk), (ak+1, bk+1), . . . , (am, bm), then the connected
component containing (ak, bk) has at most m− k+ 1 edges and thus at most m− k+ 2 vertices. Therefore,
ak, bk can reach at most m− k + 2 nodes, and the total number of deliveries of a GMSN is no more than

m−n+2∑
k=1

n+

m∑
k=m−n+3

(m− k + 2) = n(m− n+ 2) +
n2 − n− 2

2
=

(n− 1)(n2 − n+ 2)

2
.

So the maximum capacity is at most

(n− 1)(n2 − n+ 2)/2

n2(n− 1)/2
= 1− 1/n+ 2/n2.

Now we place n − 2 nonvertical and pairwise nonparallel lines randomly, put a line with a slope less than
the minimum slope of the previous n− 2 lines to the right of all previous intersections, and then put a line
with a slope greater than the maximum of the previous n− 1 lines to the right of all previous intersections.
Then every intersection of the first n− 1 lines obviously can reach all lines, and the last n− 1 intersections
can reach, from left to right, n, n− 1, . . . , 2 lines. This GMSN reaches our upper bound. �

In this proof, the construction used is called a collector-distributor construction [1, 2]. Similar construc-
tions will be used in the next section.

What about the expected capacity of RCMSNs? It is claimed in [1] that the expected capacity of an
RCMSN with n sensors is 1 − O(log2 n/n). However, their proof is incorrect [2]. They partitioned the

(
n
2

)
communications into groups of size dn log ne, found that the probability that all n sensors appear in one
given group is more than 1− 1/n, and concluded that with high probability, all groups contain all n sensors.
But this is not true as the events of a sensor appearing in the groups are not independent. In order for their
argument to hold, the following conjecture must be proven.
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Open Question. If all pairs (i, j) where 1 ≤ i < j ≤ n are partitioned into groups of size dn log ne, an
expected proportion 1−O(log n/n) of the groups contain all numbers 1, . . . , n.

In [1] it is also showed that the expected capacity of a random GMSN is no more than 5/6 when the
network size approaches infinity, considering some lines with high or low slopes that clearly cannot be reached
by intersections in certain regions. Here, we improve the result by directly computing the expected capacity
using Wolfram Mathematica.

Theorem 3 (Expectation for GMSN). The expected capacity of a GMSN with n sensors is 5/6 when n→∞.

Proof. To randomly form a GMSN with n sensors, we independently choose n pair (ak, bk) from the uniform
distribution in [a−, a+]× [b−, b+], then form the GMSN using the lines lk : y = akx+bk. By applying scaling,
shear transformation, and translation, we may assume that a− = b− = 0 and a+ = b+ = 1 without changing
the probability of each possible GMSN. The process of randomly choosing n lines can also be considered as
the following process: first randomly choose two lines l : y = ax + b and l′ : y = a′x + b′, then randomly
choose a set A of εn lines (0 < ε < 1), then randomly choose a set B of (1 − ε)n − 2 lines. We want to
count the number of triples ({u, v}, w) of lines, among all n

(
n
2

)
such triples, such that u ∩ v can reach w.

Theorem 3.4 in [1] shows that exactly 2
(
n
2

)
+ 2
(
n
3

)
triples satisfy that u ∩ v can reach w in at most one

hop. Therefore, we need only count the expected number of triples where u∩ v can and only can reach w in
exactly two hops, according to Theorem 3.8 of the same paper.

In set A, it is expected that

2

∫ 1

0

∫ 1

0

∫ 1

a

∫ 1

0

∫ 1

a′
max

{
0,min

{
1, b+ (b′ − b) · a− a

′′

a− a′

}}
da′′ db′ da′ dbda =

1

6

of the lines (in the form y = a′′x+b′′) can be reached by l∩ l′ and has slope higher than that of both l and l′.
Among these lines, the line l∗ with the maximum slope is expected to have slope, when n → ∞, equal to
the upper limit of its range, which is one when l∩ l′ is not in the first quadrant, and min{1, slope(O(l∩ l′))}
when it is. In set B, the following expression counts the proportion of lines (i) with slope higher than that
of both l and l′, (ii) cannot be reached by l ∩ l′ in at most one hop, but (iii) can be reached by l ∩ l′ in two
hops via l∗:

2

(∫ 1

0

∫ 1

0

∫ 1

a

(∫ 1

b

∫ 1

a′
+

∫ b

0

∫ min{1, a
′b−ab′
b−b′ }

a′

)
max

{
0,min

{
1, 1− b− (b′ − b) · a− a

′′

a− a′

}}
da′′ db′ da′ dbda

)
=

1

12
.

We can do a similar reasoning for lines with slope lower than that of both l and l′. When ε → 0, we
found that for every randomly chosen two lines l and l′ among the n lines to be chosen, it is expected that
(n− 2)/6 triples ({l, l′}, l′′) require exactly two hops. By linearity of expectation, in total it is expected that(
n
2

)
(n− 2)/6 triples require exactly two hops, so the expected capacity is

2
(
n
2

)
+ 2
(
n
3

)
+
(
n
2

)
(n− 2)/6

n
(
n
2

) =
5

6
+ o(1).

�

Although we know the capacity of GMSNs with size approaching infinity, how concentrated they are is
still left open.

Open Question. What is the variance of the capacity of a GMSN with n sensors when n→∞?

§3. General results for restricted geometric MSNs

Next, we consider the bounds on the capacity of RGMSNs. Clearly, the minimum capacity of any RGMSN
is zero because we can always make all lines parallel. So we only find the maximum capacities. When limited
to only two slopes, the geometric form of any RGMSN is a grid, so the capacity can be directly computed
and is also easy, as shown by the following theorem.
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Theorem 4 (2-Slope RGMSN Max. Capacity). The capacity for any RGMSN of n sensors and 2 slopes is
(n + 1)/(2n). The expected and maximum absolute capacities of an RGMSN of n sensors and 2 slopes are
(n+ 2)/(4n− 4) and (n+ 2)/(4n), respectively.

Proof. Suppose there are m lines with the larger slope and n−m lines with the smaller slope. Without loss
of generality, suppose all slopes are positive. We order the lines with the larger slope by their x-intercepts
from the largest to smallest and label them a1, a2, . . . , am, and order and label the lines with the smaller
slope in the same way as b1, b2, . . . , bn−m. Clearly, the intersection ai ∩ bj can reach lines a1, . . . , ai and
b1, . . . , bj but no other lines. Therefore, the capacity of the RGMSN is

1

nm(n−m)

m∑
i=1

n−m∑
j=1

(i+ j) =
1

nm(n−m)
·
(

(n−m)

( m∑
j=1

j

)
+m

( n−m∑
j=1

j

))
=

1

2
+

1

n
.

The absolute capacity of the RGMSN is

m(n−m)(
n
2

) (
1

2
+

1

n

)
=
m(n−m)(n+ 2)

n2(n− 1)
,

which clearly has maximum (n+ 2)/(4n− 4) and expected value

2−n
n∑

m=0

(
n

m

)
m(n−m)(n+ 2)

n2(n− 1)
= 2−n · n+ 2

n

n−1∑
m=1

(
n− 2

m− 1

)
=
n+ 2

4n
.

�

When there are three or more slopes, we can use a strategy similar to that in Theorem 2: trying to find as
many unreachable lines as possible, and finding an example that attains the upper bound. While Theorem 2
only considers the last n− 1 intersections, we need to consider the lines with the largest and smallest slopes
when the number of slopes is limited.

We first deal with the easier absolute capacity, where the maximum is asymptotically less than one:

Theorem 5 (RGMSN Max. Abs. Capacity). The maximum absolute capacity of an RGMSN of n sensors
and s ≥ 3 slopes is asymptotically

(135s3 − 945s2 + 2232s− 1796) + 4(9s2 − 42s+ 52)3/2

243(s− 2)3
+ o(1).

Proof. We consider the intersections that lie on the a lines with the largest slope k and the b lines with
the least slope k′. For a line whose slope is not equal to k or k′, its any intersection with a line with slope
k or k′ cannot reach all lines with slopes k or k′ to the left of it because of the maximality of k and k′ (for if
it reaches a line to the left, it can only do so via a line with higher absolute value of slope; but there are no
such lines). Thus, for each of these n− a− b lines, the intersections mentioned above cannot reach at least
1 + 2 + · · ·+ (a+ b− 1) lines in total. For intersections of the lines with slopes k or k′, the total number of
lines they cannot reach is at least (0+1+ · · ·+(b−1))+(1+2+ · · ·+b)+ · · ·+((a−1)+a+ · · ·+(a+b−2)).

Suppose the slopes other than k and k′ are k1, . . . , ks−2, and the corresponding numbers of lines are
c1, . . . , cs−2, respectively. Then the total number of information deliveries is at most

n

(
ab+ (a+ b)

s−2∑
j=1

cj +
∑
i 6=j

cicj

)
− (n− a− b)

a+b−1∑
j=1

j −
a−1∑
i=0

b−1∑
j=0

(i+ j).

This is maximized when all the cj ’s are equal and a = b; after that, we have only one free variable in the
sum:

f(a) = n

(
a2 + 2a(n− 2a) +

(s− 2)(s− 3)

2

(
n− 2a

s− 2

)2)
− (n− 2a)a(2a− 1)− a2(a− 1).
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From this it is easy to find by differentiation that the maximum sum divided by n
(
n
2

)
is equal to the formula

given in the theorem statement when n → ∞. It is not difficult to compute that the collector-distributor
construction attains this upper bound—the formulas are almost entirely the same. �

For the maximum capacity of an RGMSN, we need to consider both the largest/smallest slopes and the
last n− 1 intersections. The proof is essentially similar to that in Theorem 5.

Theorem 6 (RGMSN Max. Capacity). The maximum capacity of an RGMSN of n sensors and s ≥ 3 slopes
is asymptotically {

1− s−2
s−3

1
n + Θ(n−2) s ≥ 4

1− 1√
n

+ 9
8n + Θ(n−3/2) s = 3.

Proof. Consider the a lines with the largest slope and the b lines with the smallest slope. They form a grid.
(Note: the word grid below will simply mean these lines in the first two slopes.) Suppose, without loss of
generality, that the largest slope is 1 and the smallest slope is −1. The intersections of lines in the grid
cannot reach at least

∑a−1
i=0

∑b−1
j=0(i+j) lines. The grid can also be seen as a set of a+b curves, where the kth

curve consists of those points on the gridlines such that there are k−1 gridlines on their right. Each of these
curves intersects with all the remaining n− a− b lines with slope 6= ±1; these intersections cannot reach at
least (n− a− b)(1 + 2 + · · ·+ (a+ b− 1)) gridlines. Also, in the arrangement, the kth rightmost intersection
obviously can reach at most k + 1 lines (by induction), so the n− 1 rightmost intersections cannot reach at
least 1 + 2 + · · · + (n − 2) lines. But we may have counted some intersections’ unreachable lines twice. At
worst, we overestimated it by (n− 1)(a+ b) unreachable lines. Therefore, the maximum capacity with only
s slopes is at most

1−
(1 + 2 + · · ·+ (n− 2)) + (n− a− b)(1 + 2 + · · ·+ (a+ b− 1)) +

∑a−1
i=0

∑b−1
j=0(i+ j)− (n− 1)(a+ b)

n(ab+ (a+ b)(n− a− b) + (s−2)(s−3)
2 (n−a−b

s−2 )2)
.

To give an upper bound to this formula, we need only compute the minimum value of

(1 + 2 + · · ·+ (n− 2)) + (n− a− b)(1 + 2 + · · ·+ (a+ b− 1)) +
∑a−1

i=0

∑b−1
j=0(i+ j)− (n− 1)(a+ b)

ab+ (a+ b)(n− a− b) + (s−2)(s−3)
2 (n−a−b

s−2 )2

=
1
2 (n− 1)(n− 2) + 1

2 (n− a− b)(a+ b)(a+ b− 1) + 1
2ab(a+ b− 2)− (n− 1)(a+ b)

ab+ (a+ b)(n− a− b) + s−3
2(s−2) (n− a− b)2

=
1
2 (n− a− b− 1)(n− 2)− 1

2 (a+ b)2 − 1
4 (1− 1

s−2 )(a+ b− 2)(n− a− b)2

ab+ (a+ b)(n− a− b) + s−3
2(s−2) (n− a− b)2

+
a+ b− 2

2
=: κ

When s ≥ 4, we have

κ ≤
1
2 (n− a− b− 1)(n− 2)− 1

2 (a+ b)2 − 1
8 (a+ b− 2)(n− a− b)2

ab+ (a+ b)(n− a− b) + s−3
2(s−2) (n− a− b)2

+
a+ b− 2

2

=
1
8 (n− a− b)(4(n− 2)− (a+ b− 2)(n− a− b))− 1

2 (n− 2 + (a+ b)2)

ab+ (a+ b)(n− a− b) + s−3
2(s−2) (n− a− b)2

+
a+ b− 2

2
,

which is minimized either when 5 < a < n − 6 and b = 1 or when a = b and a + b 6∈ (6, n − 5). In each
case, the formula then has only one variable and an upper bound of the capacity is 1− s−2

s−3
1
n + Θ(n−2) when

s ≥ 4. Again, it is not difficult to compute that the collector-distributor construction attains this upper
bound—the formulas are almost entirely the same.

When s = 3, we have

κ =
(n− a− b− 1)(n− 2)− (a+ b)2

2(ab+ (a+ b)(n− a− b))
+
a+ b− 2

2
,
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which is minimized either

when a = b <

√
5n2 − 16n+ 12− (n− 2)

4
or when b = 1 and a >

√
5n2 − 16n+ 12− n

2
.

Figure 1. An
RGMSN of 3 slopes.
There are a = 3 red
lines, a = 3 green
lines, and b = 2 blue
lines here.

In each case, the formula then has only one variable and an upper bound of the
capacity is 1− 1√

n
+ 9

8n + Θ(n−3/2). However, the collector-distributor construction

does not attain the bound here. That is because unless the previous cases, neither
a nor b is O(1) when the capacity formula is maximized. Instead, we use the following
construction. Let 1 ≤ a ≤ b(n− 1)/2c be an integer whose value will be determined
later, and b = n−2a. In R2 we draw the b lines y = k (0 ≤ k ≤ b−1), the a−1 lines
x = k (1 ≤ k ≤ a− 1), the a lines x+ 2y = a+ 2(b+ k)− 3 (1 ≤ k ≤ a), and the line
x = 3a + 2b, and rotate all lines by π/4 clockwise about the origin (Fig. 1). Then
we get an RGMSN with 3 slopes whose capacity is

1

n(a2 + 2ab)

( b+1∑
k=2

k + (b+ 1)

a+b+1∑
k=b+2

k + (a− 1)

a+b+1∑
k=b+2

k + a

a−1∑
k=1

k + b

2a+b∑
k=a+b+2

k

)
=
a+ b+ 1

n
− n− 1

2n

b

a2 + 2ab
=: f(a, b).

This can attain the upper bound (computed with basic differential calculus) 1−
1√
n

+ 9
8n + Θ(n−3/2) we found when a is allowed to be non-integers. When a must

be an integer, the deviation from the upper bound is at most

f(a, b)− f(a+ 1/2, b− 1) =
1

2n
√
n

+ Θ(n−2),

so this construction attains the upper bound. �

§4. Three-slope geometric MSNs

Theorem 6 only gives the capacity of near-optimal constructions, not the optimal construction. We have
found a method to produce optimal constructions for RGMSNs of no more than four slopes, although it does
not generalize to higher numbers of slopes. We begin with RGMSNs with at most three slopes. The method
is to move lines with the third slope in the “grid” formed by existing lines in two slopes.

Remark. In the proofs below, a grid is a collection of lines with exactly two different slopes. A corner of
a grid is an intersection from which there exists a ray that intersects no other lines in the grid. A path is a
line that intersects the grid. The intersection where a path enters or leaves a grid is one next to a corner,
and the former one can reach the latter one but not vice versa.

Theorem 7 (3-Slope RGMSN Max. Capacity). The maximum capacity of an RGMSN of n sensors with
only three possible slopes allowed is equal to

max

{
(4p− 1)n2 − (10p2 − 6p− 1)n+ (6p3 − 6p2 − 2p)

4pn2 − 6p2n
,

(4q + 1)n2 − (10q2 + 4q − 1)n+ (6q3 + 3q2 − 3q − 2)

(4q + 2)n2 − (6q2 + 6q + 2)n

}
,

where q = b
√
n/2c and either p = q or p = q + 1. This is asymptotically 1 − 1√

n
+ 9

8n + rnn
−3/2, where

lim infn→∞ rn = 15
32 and lim supn→∞ rn = 19

32 .

Proof. Suppose there are a lines in slope k1, b lines in slope k2, and c lines in slope k3, where a+ b+ c = n.
Without loss of generality, suppose the rightmost intersection lies on lines with slopes k1 and k2. All lines
with those two slopes form an a-by-b grid. Now we investigate where we should put the remaining c lines in
between so as to maximize the capacity.
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Because the intercepts of the lines in the grid are not determined, the new lines can be put anywhere
as long as it does not contradict the relations of slopes. Thus, any new line placed into the grid must
start outside a corner adjacent to the corner of the rightmost intersection and end in the opposite corner; it
must go through a sequence of adjacent cells without going in the opposite direction of how it went before.
Equivalently, it intersects any existing line exactly once. For example, the drawing below (Fig. 2) shows
two valid paths and two invalid paths. All diagrams in this proof will uniquely determine an arrangement
because all four corners of the grid are assigned different roles: the corner of the rightmost intersection, the
corner opposite to it, the starting corner, and the ending corner.

Figure 2. (a) and (b) are valid paths. Path (c) is invalid because it intersects an existing line three times.
Path (d) is invalid because it contradicts the given rightmost intersection, even if it can be pulled straight.
Diagrams (e) and (f) show the realizations of (a) and (b) in straight lines, respectively.

We first find the best arrangement when c = 1. In all diagrams below in this proof, the new lines added
have slope k3 < 0 when pulled straight. Also, k3 < k2 < 0 < k1. (Note that the only two possible cases
are this and k2 < 0 < k1 < k3, since otherwise the rightmost intersection would not come from lines with
slopes k1 and k2.) In addition, we will use the following setting: the nearest line the starting corner can
reach without adding new lines is labeled sa; the next line is then labeled sa−1, and so on. Without loss of
generality, those lines are assumed to have slope k1. From the ending corner we similarly label the lines it
can reach tb, tb−1, . . . , t1. Then, without adding new lines, sj ∩ ti can reach exactly i+ j lines. The new line
is labeled l. Lastly, each intersection is labeled the number of lines it can reach.

Step 1. Where should the path leave the grid?

We have included a diagram ((a) and (b) in Fig. 3) to help understand the description below. Suppose
we initially have a path that leaves the grid between ti and ti+1 (that is, it intersects ti, s1, and ti+1 in this
order, as shown in (a)). Now we modify the path and make it leave the grid between ti−1 and ti, assuming
that the path is still valid and the positions of other intersections relative to the grid are not changed. Then
only the labels on s1 ∩ ti and ti ∩ l change. Other intersections are not affected because either they cannot
reach l and are thus unrelated to the change, or they can still travel through l to the lines they previously can
reach. Note that although l ∩ s1 changes its relative position to the grid, its label does not change as it can
still reach l and all tj , but not other lines. The following table shows the changes in the two intersections’
labels:
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Intersection Original Reason New Reason
s1 ∩ ti i+ 1 it cannot reach l b+ 2 it can reach all tj through l and s1
ti ∩ l b+ 2 it can reach all tj through l

and s1 ∩ ti, plus s1

b− i+ 2 it can reach ti, . . . , tb through l

This table tells us that whether the new network has a larger number of information deliveries depends
on whether i > (b+ 1)/2.

Figure 3. In (a) and (b), the place that the path leaves the grid changes; in (c) and (d), the relative
position of the path and one intersection changes. When pulled straight, the new lines all have negative
slope. The number of lines that can be reached from each intersection is labeled.

Step 2. Where should the path cross the grid?

Diagrams (c) and (d) in Fig. 3 are concerned here. Suppose we initially have a path that intersects
ti and sj consecutively in this order (j > 1). Now we switch their order while leaving other intersections
unchanged. Then, for reasons similar to those in the previous paragraph, only the labels on sj ∩ ti and ti ∩ l
change. All other intersections are unrelated. The following table shows the changes in the two intersections’
labels:

Intersection Original Reason New Reason
sj ∩ ti i+ j it cannot reach l b+ j + 1 it can reach all ti through l and sj ,

and also s1, . . . , sj
ti ∩ l b+ j + 1 it can reach all ti through l

and sj∩ti, and also s1, . . . , sj

b+ j it can reach all ti through l and
sj−1 ∩ ti, and also s1, . . . , sj−1

This table tells us that the new network always has a larger or equal number of information deliveries.

Figure 4. The best network and the second best network.

Given any valid path, one can always perform the two operations to transform it to one of the two paths
shown in Fig. 4 above as follows: a path can be mapped to a string of S and T indicating at the current cell
in the grid if the path crosses an sj to another cell or a ti to another cell. For example, the path in Fig. 2(a)
is mapped to the string TSSTSTST. Now, the discussions above tell us that a substring TS can be replaced by
ST without reducing capacity if there exists at least one S following this substring. Repeating this operation,
any string can be transformed to the form SS...STT...TSTT...T. The discussions above also tell us that
the last S may either be moved to the end or the beginning; one of the two choices does not reduce the
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capacity. Therefore any string is transformed to SS...STT...TS or SS...STSTT...T (without violating the
rightmost intersection), which correspond to Fig. 4 (a) and (b) respectively.

Now we consider the case c > 1. For the rightmost line with slope k3, we may apply the same discussions
above to move it to one location in Fig. 4. Then, no matter how other lines with slope k3 move, the total
capacity does not change because each intersection on the left of l can reach l, and thus all the ti’s; it always
can reach all the sj ’s below it and no sj ’s above it; and it always can reach all lines with slope k3 on the
right of it and none on the left. Moving a line with slope k3 across an intersection only exchanges two
intersections’ labels.

It is easy to compute that the total number of information deliveries in Fig. 4(a) is

b+1∑
k=2

k + (b+ 1)

b+c+1∑
k=b+2

k + (a− 1)

b+c+1∑
k=b+2

k + c

a−1∑
k=1

k + b

b+c+a∑
k=b+c+2

k,

and the total number of information deliveries in Fig. 4(b) is

2 + c

b−1∑
k=1

k + (b− 1)

c∑
k=1

k + (a+ 1)

b+c+1∑
k=b+2

k + c

a−1∑
k=1

k + (b− 1)(b+ c+ 1) + b

a+b+c∑
k=b+c+2

k.

The difference between the two sums is (b − 1)(b(c − 1) + 2) ≥ 0, so Fig. 4(a) has no less capacity than
Fig. 4(b). The sum in Fig. 4(a) equals ((2b+ a+ c+ 1)(ab+ bc+ ca) + (ac+ b− b2))/2, so the capacity to
be maximized is

(2b+ a+ c+ 1)(ab+ bc+ ca) + (ac+ b− b2)

2n(ab+ bc+ ca)
=

2b+ a+ c+ 2

2n
− n− 1

2n

b

ab+ bc+ ca
.

If a, b, and c may not be integers, this is maximized when a = c =
√
n/2 + O(n−1/2), so when the

variables must be integers, each of a and c must be equal to p or p + 1; this leads to the formula given
in the theorem. For the asymptotic formula, we observe that the capacity has a maximum value equal to
1− 1√

n
+ 9

8n + 19
32n
√
n

+Θ(n−2), which is achieved when n is an even perfect square and a = c =
√
n/2, giving

the limsup value. Also, when a = c =
√
n/2− t is an integer, the capacity is 1− 1√

n
+ 9

8n + 19−64t2
32n
√
n

+ Θ(n−2),

and when a =
√
n/2− t and c =

√
n/2+1− t are integers, the capacity is 1− 1√

n
+ 9

8n + 3−64t(t−1)
32n
√
n

+Θ(n−2).

If 19−64t2
32 < 15

32 we must have |t| > 1
4 , and in this case 3−64|t|(|t|−1)

32 > 15
32 , so we always have rn ≥ 15

32 ; this
liminf is achieved by n = 4k2 + 2k + 1 for positive integers k. �

Regarding RGMSNs with at most three slopes, we have also found their expected capacity for three
slopes and all intercepts chosen uniformly in some interval. The idea for the proof is similar to the idea in
Theorem 3 (expected capacity for GMSN)—identifying all possible terms that contribute to the capacity
of the RGMSN. We note that the integrals here are also computed using Wolfram Mathematica like in
Theorem 3.

Theorem 8 (Expectation for Three-Slope RGMSN). The expected capacity of an RGMSN with at most
three slopes and n sensors is 23/36 when n→∞.

Proof. To randomly form an RGMSN with at most three slopes and n sensors, we first choose the three
slopes independently from the uniform distribution in [a−, a+]. Let them be u < v < w (the probability that
two of them are equal is zero). Then we choose the slopes of the n lines independently from the three slopes
with equal probability, and choose the intercepts of the n lines independently from the uniform distribution
in [b−, b+]. Like in Theorem 3, we assume a− = b− = 0 and a+ = b+ = 1 without loss of generality. For
a+ b+c = n, the probability that there are a lines with slope u, b lines with slope v, and c lines with slope w
is 3−n

(
n

a,b,c

)
. They form ab+ bc+ ca intersections.

No matter where the lines are, any intersection of a line with slope u and a line with slope w can reach
all lines with slope v. For other intersections, because for two independently randomly chosen lines l and l′

(with random slope), a third independently randomly chosen line with slope not lower than that of both
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l and l′ has equal probability to be reachable or not reachable from l ∩ l′, it is expected that a/2 lines with
slope u are reachable from any intersection of a line with slope v and a line with slope w. Similarly, it is
expected that c/2 lines with slope w are reachable from any intersection of a line with slope u and a line
with slope v.

An intersection cannot reach a line with slope different from both lines that form the intersection because
there are only three different slopes. Because u and w are the minimum and maximum slopes, it is also not
possible for an intersection of lines with slopes u and w to reach another line with slope u or w if it cannot
be reached in one hop. For an intersection of lines with slopes v and w, if it can reach a line with slope w,
then it can do so in one hop because w is the largest slope; for lines with slope v, it can reach all of them if
it can reach the rightmost line with slope u—the one with the largest intercept. The probability that this
happens is∫ 1

0

∫ 1

u

∫ 1

v

∫ 1

0

∫ 1

0

min

{
1,max

{
0, 1− q − (p− q) v − u

v − w

}}
· apa−1 dq dp dw dv du∫ 1

0

∫ 1

u

∫ 1

v

∫ 1

0

∫ 1

0

apa−1 dq dp dw dv du

=
3a+ 1

4(a+ 1)
.

Otherwise, it can only reach those lines with slope v that it can reach in one hop. Similarly, an intersection
of lines with slopes u and v can only reach lines with slope u that it can reach in one hop as u is the smallest
slope. However, if it can reach the rightmost line with slope w, then it can reach all lines with slope v. The
probability that this happens is∫ 1

0

∫ 1

u

∫ 1

v

∫ 1

0

∫ 1

0

min

{
1,max

{
0, q + (p− q) v − u

v − w

}}
· c(1− p)c−1 dq dp dw dv du∫ 1

0

∫ 1

u

∫ 1

v

∫ 1

0

∫ 1

0

c(1− p)c−1 dq dp dw dv du

=
3c+ 1

4(c+ 1)
.

Otherwise, it can only reach those lines with slope v that it can reach in one hop. We have discussed all
cases that require two hops, so by Theorem 3.8 in [1], the expected capacity is

κ = lim
n→∞

1

3n

∑
a+b+c=n

ab+bc+ca6=0

(
n

a, b, c

)
1

n(ab+ bc+ ca)

(
acb+

a∑
i=1

c∑
k=1

(i+ k)

+
bca

2
+

b∑
j=1

c∑
k=1

(
3a− 1

4(a+ 1)
(b+ k) +

a+ 5

4(a+ 1)
(j + k)

)

+
abc

2
+

a∑
i=1

b∑
j=1

(
3c− 1

4(c+ 1)
(i+ b) +

c+ 5

4(c+ 1)
(i+ j)

))
.

This is equal to

lim
n→∞

1

3n

∑
a+b+c=n

ab+bc+ca 6=0

(
n

a, b, c

)
1

n(ab+ bc+ ca)

(
2abc+

ac(a+ c+ 2)

2

+
3a− 1

4(a+ 1)
b

(
bc+

c(c+ 1)

2

)
+

a+ 5

4(a+ 1)

bc(b+ c+ 2)

2
+

3c− 1

4(c+ 1)
b

(
ba+

a(a+ 1)

2

)
+

c+ 5

4(c+ 1)

ba(b+ a+ 2)

2

)
= lim

n→∞

1

3n

∑
a+b+c=n

ab+bc+ca 6=0

(
n

a, b, c

)
1

n(ab+ bc+ ca)

(
2abc+

ac(a+ c)

2

+
3

4
b

(
bc+

c2

2

)
+

1

4

bc(b+ c)

2
+

3

4
b

(
ba+

a2

2

)
+

1

4

ba(b+ a)

2

)
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because the expected value of 1/a is zero when n→∞. Then this is equal to

lim
n→∞

1

3n

∑
a+b+c=n

ab+bc+ca 6=0

(
n

a, b, c

)
1

n(ab+ bc+ ca)

(
2abc+

5

8
(ab(a+ b) + bc(b+ c) + ca(c+ a))

)

because the sum is unchanged when we average over all permutations of {a, b, c}. Then this is equal to

lim
n→∞

1

3n

∑
a+b+c=n

ab+bc+ca 6=0

(
n

a, b, c

)
1

n(ab+ bc+ ca)

(
1

8
abc+

5

8
(a+ b+ c)(ab+ bc+ ca)

)

=
5

8
+

1

8
lim
n→∞

1

3n

∑
a+b+c=n

ab+bc+ca 6=0

(
n

a, b, c

)
1

n(ab+ bc+ ca)

≤ 5

8
+

1

8
lim
n→∞

3−n
∑

a+b+c=n
ab+bc+ca 6=0

(
n

a, b, c

)
a+ b+ c

9n
=

5

8
+

1

8
· 1

9
=

23

36
.

On the other hand, this is also equal to

κ =
5

8
+

1

8
lim
n→∞

3−n
∑

a+b+c=n
ab+bc+ca6=0

(
n

a, b, c

)
abc

n(ab+ bc+ ca)

≥ 5

8
+

1

8
lim
n→∞

3−n
∑

a+b+c=n
ab+bc+ca6=0

(
n

a, b, c

)
abc

n(a+ b+ c)2/3

=
5

8
+

1

8
lim
n→∞

3−n
∑

a+b+c=n
ab+bc+ca6=0

(
n

a, b, c

)
3abc

n3

=
5

8
+

1

8
lim
n→∞

3−n
∑

a+b+c=n
a,b,c≥1

(
n− 3

a− 1, b− 1, c− 1

)
3n(n− 1)(n− 2)

n3

=
5

8
+

1

8
lim
n→∞

3−n · 3n−3 · 3n(n− 1)(n− 2)

n3
=

5

8
+

1

8
· 1

9
=

23

36
.

Therefore, κ = 23/36. �

§5. Four-slope geometric MSNs

As promised before, we give the exact maximum capacity of an RGMSN with at most three slopes. The
idea used is similar to that in Theorem 7, but there are more cases here.

Theorem 9. The maximum capacity of an RGMSN of n sensors with only four possible slopes allowed is
equal to 

n3 + 2n2 − 2n− 4

n(n2 + 4n− 8)
, n is odd,

n3 + 2n2 − 3n− 4

n(n2 + 4n− 9)
, n is even.

Proof. Suppose there are a lines of slope k1, b lines of slope k2, c lines of slope k3, and d lines of slope k4,
and the rightmost intersection lies on two lines of slopes k1 and k2. All lines of slopes k1 and k2 form a grid.
Lines of slopes k3 and k4 can be considered directed paths (or “pseudolines” in the literature [3]) between
two neighboring corners of the rightmost corner; the direction indicates whether the slope is positive. They
also need to satisfy the following conditions: (i) each path must be valid as in Theorem 7’s description; (ii)
paths of the same slope cannot intersect, and two paths with slopes k3 and k4 intersect exactly once; (iii)
the paths’ starting points (at infinity) and ending points must be consistent with the slopes.
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For the convenience of drawing diagrams, we suppose, without loss of generality, that the grid and all
intersections are labeled as in Theorem 7. The paths will be labeled in different ways during the discussion
below. We will divide into two cases: k3k4 > 0 and k3k4 < 0. In the first case the new paths are all in
the same direction and start and end at the same corners of the grid. Thus we will use the words “starting
corner,” “ending corner,” as well as “rightmost corner.” In the second case the two neighboring corners of
the rightmost corner are symmetric. In all diagrams below, if a line is an arrow, then its slope is positive
if the arrow points upward and negative otherwise; if it is not an arrow, then its slope is indicated by the
diagram.

Case One

Step 1. Moving the intersections.

In this paragraph we discuss the effect of moving an intersection across an edge (Fig. 5) while leaving
all other parts of the diagram unchanged. The paths l1 and l2 referred below are labeled in the diagram.
There are two cases: from (a) to (b), the intersection moves across ti; from (c) to (d), the intersection moves
across sj (j > 1). Only the labels listed in the table below are involved in the change.

(a) to (b) Change Reason (c) to (d) Change Reason
l1 ∩ l2 0 It reaches ti via sj in (b) l1 ∩ l2 −1 It cannot reach sj in (d)
l1 ∩ ti 0 It reaches l2 via l1 in (b) l1 ∩ sj 0 It reaches l2 via l1 in (d)
l2 ∩ ti +1 It cannot reach l1 in (a) l2 ∩ sj +1 It cannot reach l1 in (c)

In (c), if j = 1, then the label on l1∩l2 is reduced by at least two (sj and ti−1). Therefore, the intersection
of two paths should never exit the grid, but otherwise it can be freely moved in the k2 direction, or be moved
toward the ending corner in the k1 direction, in order for the capacity to increase.

Figure 5. An intersection is moved (from (a) to (b) and from (c) to (d)) across an edge in the grid. Note
that the intersection moved is of two paths whose directions indicate their slopes, whereas in the grid the
slope is drawn.

Step 2. Moving a non-rightmost path across an intersection.

In this paragraph we discuss the case shown in Fig. 6. The path l1 is “non-rightmost” because there
is another path l2 to the right of it. If l1 and l2 have the same slope, then the capacity does not change
no matter how l1 moves on the left of l2 according to the discussion in Theorem 7. When they intersect,
there are two cases: from (a) to (b), l1 crosses a cell when it has already intersected with l2; from (c) to (d),
l1 crosses a cell when it has not intersected with l2. Only the labels listed in the table below are involved in
the change.

(a) to (b) Change Reason (c) to (d) Change Reason
ti ∩ sj +1 It cannot reach l1 in (a) ti ∩ sj 0 It reaches l1 via l2 in (c)
l1 ∩ ti −1 It cannot reach sj in (b) l1 ∩ ti −1 It cannot reach sj in (d)
l1 ∩ sj 0 It reaches ti via l1 in (b) l1 ∩ sj 0 It reaches ti via l1 in (d)

Therefore, a non-rightmost path can be moved freely across an intersection if it has already intersected
with a path on its right. Before the intersection with that path, it should move farther from the rightmost
corner in order to increase the capacity. How a rightmost path should move across intersections in the grid
or exit the grid has been discussed in Theorem 7.
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Figure 6. A non-rightmost path l1 is moved across an intersection in the grid (from (a) to (b) and from (c)
to (d)). The diagram does not indicate where the path l2 is; only where l1 ∩ l2 is relative to the intersection
ti ∩ sj .

Figure 7. The best arrangement for Case One, where a = 5, b = 4, and c = d = 2.

Now our tools are enough to deal with Case One. All the added paths (with slopes k3 and k4 form
another grid with its own rightmost, starting, and ending corners. We can first move the ending corner
to the last row (between s1 and s2) of the k1-k2 grid using our transformations above that do not reduce
the capacity. This is possible because we can move together the parts of the two paths that are after their
intersection, and then move the intersection along the route. Then we repeat the operation for the closest
corner (to the ending corner), and so on, until all intersections of the paths are in the cell closest to the
ending corner of the k1-k2 grid. After that, the paths can be moved in the grid without considering the
intersections using our transformations to their best locations shown in Fig. 7.

We can compute that the number of deliveries in Fig. 7 is

b+c+d+1∑
k=2

k + c

b+c+d+1∑
k=b+c+2

k + b

a+b+c+1∑
k=b+c+2

+

d

a+b+c∑
k=b+c+2

k + (a− 1)

d∑
k=1

k + c

a+b+c+d∑
k=b+c+d+2

k + b

a+b+c+d∑
k=a+b+c+2

k + bc(a+ b+ c+ d).

Case Two

In this case, k3 and k4 have different signs. All lines (shown as paths) of slopes k3 and k4 form another
grid. The lines l, l′ on which the rightmost intersection of this k3-k4 grid lies on divide the plane into four
regions. We will call the region on the left of both l and l′ the first region, that between the two lines the
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second region, and that on the right of both lines the third region. We assume that the part of l∪ l′ that can
reach both lines is in the first region, and the part of l∪ l′ that can reach only one of l and l′ is in the second
region. Fig. 8 shows the regions. Depending on the arrangement, the intersections in the k1-k2 grid might
belong to any of the three regions (except the rightmost one, which must be in the third region); however,
any intersection cannot reach an intersection in another region with smaller index, otherwise one of l and l′

would intersect some line with slope k1 or k2 more than once.

Figure 8. In this arrangement, the first regions are painted red, the second regions are painted green, and
the third regions are painted blue. The lines should be included in the regions, but to be visible, they are
not painted.

Because k3k4 < 0, the intersection l∩l′ can reach any line with slope k1 or k2, and so does any intersection
in the first region. The number of lines that an intersection in the first region can reach is then n minus
the number of lines in the k3-k4 grid that the intersection cannot reach. This is a fixed number for any
intersection in the k3-k4 grid in the first region, and at most n for other intersections. It is clear that by
moving paths across intersections in the k1-k2 grid, we can produce an arrangement with no less capacity
where any intersection in the k1-k2 grid in the first region can reach all lines with slopes k3 and k4.

Step 1. Moving all lines with slopes k3 and k4 together.

We have the following two operations: (i) move a line in the k3-k4 grid across an intersection in the k1-k2
grid; (ii) move an intersection in the k3-k4 grid across an edge in the k1-k2 grid. These operations are shown
in Fig. 9 and Fig. 10.

Figure 9. From (a) to (b), the rightmost intersection l ∩ l′ in the k3-k4 grid is moved below ti; from (c)
to (d) it is moved above sj . Only the number of lines the marked point can reach changes.

Because l∩ l′ is the rightmost intersection in the k3-k4 grid, there cannot be any intersections in this grid
in the second region. So we need only discuss operation (i) on l∩ l′ (Fig. 9), which is the only intersection on
the boundary between the second region and the third region. (The discussion on the boundary between the
first region and the second region is similar, except the same number of new lines in the k3-k4 grid can be
reached in each arrangement which do not change the result). In the diagrams, only the intersection painted
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red may change its number of lines it can reach because the other two intersections involved in the change
are both on either l or l′, and we know that each of them can reach all lines in the k1-k2 grid and only the
lines l and l′ in the k3-k4 grid. The lines that the red point can reach are listed in the table below.

Diagram Lines it can reach Number Diagram Lines it can reach Number
(a) t1, . . . , tb, s1, . . . , sj , l

′ b+ j + 1 (b) t1, . . . , ti, s1, . . . , sa, l a+ i+ 1
(c) t1, . . . , ti, s1, . . . , sa, l a+ i+ 1 (d) t1, . . . , tb, s1, . . . , sj , l

′ b+ j + 1

Therefore, the intersection l∩ l′ can be moved either above ti or below sj . Because moving from Fig. 9(b)
to Fig. 9(a) changes the number of deliveries by (j − i) + (b − a), and moving from Fig. 9(d) to Fig. 9(c)
changes the number of deliveries by (i− j) + (a− b), one of the changes must be nonnegative (as they sum
to zero). And this movement makes the capacity no less.

Figure 10. The line u of slope k3 or k4 is moved across an intersection sj ∩ ti. We assume that u 6= l and
u 6= l′.

Operation (ii) is much simpler. On the boundary between the first region and the second region, it
always increases the capacity because one intersection in the second region is moved into the first region,
and intersections initially in the first region still remain in the first region. At other locations (the second
region and the third region), only the lines in the k3-k4 grid whose directions are away from l∩ l′ can occur,
so the discussion is essentially the same as Case One, which we omit. Now, we notice that every operation
(i) can be immediately followed by an operation (ii) that puts one more intersection in the k1-k2 grid in
a region with smaller index. Therefore, after a series of operations, the arrangement is transformed to an
arrangement with no less capacity such that there are no intersections in the k1-k2 grid between lines in the
k3-k4 grid. Note that in this step we do not alter where l or l′ leaves the k1-k2 grid; it will be discussed in
Step 3.

Step 2. Moving the intersections.

In this step, only operation (i) is needed to move the intersections in the k3-k4 grid. From right to left,
we label the lines with slope k3 by u1, u2, . . . , uc and the lines with slope k4 by v1, v2, . . . , vd. Suppose we
want to move the intersection uk∩vl across either a ti (from Fig. 11(a) to Fig. 11(b)) or a sj (from Fig. 11(c)
to Fig. 11(d)). Only the red point in the diagrams needs discussion because the other two points involved
in the movement can directly reach uk ∩ vl, and thus all lines in the k1-k2 grid. And clearly the movement
cannot change the number of lines these points can reach in the k3-k4 grid. We have several cases.
Case i. k 6= 1 and l 6= 1. The red point can always reach an intersection in the k3-k4 grid and thus all lines
in the k1-k2 grid. So the capacity does not change.
Case ii. k = 1 and l 6= 1. Moving from (a) to (b) and from (c) to (d) always results in an arrangement with
no less capacity because the red points in (b) and (d) can reach uk ∩ l1, and thus all lines in the k1-k2 grid.
Case iii. k 6= 1 and l = 1. This case is symmetric to Case ii, so similarly moving from (b) to (a) and from
(d) to (c) always results in an arrangement with no less capacity.
Case iv. k = l = 1. This case has already been discussed in Case One.
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Figure 11. From (a) to (b), the intersection uk ∩ vl in the k3-k4 grid is moved below sj ; from (c) to (d)
it is moved below ti. Only the number of lines the marked point can reach changes. Here the index l is not
related to the rightmost line l mentioned before.

It is not hard to see that the operations above that result in no less capacity can move all intersections
in the k3-k4 grid outside the k1-k2 grid, transforming the arrangement to the form in Fig. 12 (where the
enclosed region in (a) should be topologically equivalent (for the locations of the lines) to the enclosed region
in (b)).

Figure 12. An arrangement can be obtained if the enclosed region in (b) is embedded as the enclosed region
in (a). In this diagram, a = b = d = 4, c = i = 3, and j = 2.

Step 3. Where l and l′ leave the k1-k2 grid.

Suppose lines l and l′ intersect s1 between ti and ti+1, and intersect t1 between sj and sj+1. We directly
compute the total number of deliveries.

Intersections Total deliveries

s1 ∩ t1, . . . , s1 ∩ ti, s2 ∩ t1, . . . , sj ∩ t1
∑i+1

k=2 k +
∑j+1

k=3 k

v1 ∩ sk, v1 ∩ tk
∑b−i+1

k=2 k + (b+ 2)i+
∑b+j+1

k=b+3 k + (b+ j + 1) +
∑a+b+1

k=b+j+2 k

v1 ∩ uk
∑a+b+c+1

k=a+b+2 k

uk ∩ sl, uk ∩ tl (a+ b)
∑a+b+c+1

k=a+b+2 k

uk ∩ v2, . . . , uk ∩ vd (d− 1)
∑a+b+c+1

k=a+b+2 k + c
∑d−1

k=1 k

vk ∩ sl, vk ∩ tl (a+ b)
∑a+b+c+d

k=a+b+c+2 k

Other sk ∩ tl (a+ b+ c+ d)(ab− i− j + 1)

In the formula for the total number of deliveries, the terms depending on i and j are

2(i2 − (n− 2)i) + (j2 − (2n− 5)j).

When this is maximized, we must have i = j = 1 due to the range of i and j. However, even when i = j = 1,
the formula is smaller than that in Case One by 2(n − 3) > 0 when expanded, so Case One gives the
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maximum capacity, which is the maximum of

a+ d+ 2(b+ c) + 1

2n
+
ad+ bc(a+ d− 1) + (b+ c)− (b+ c)2

2n(ad+ bc+ (a+ d)(b+ c))
.

To maximize this, we observe that for given a + d and b + c, ad must be minimized while bc must be
maximized, so we have d = 1 and |b − c| ≤ 1. In this case basic calculus methods (omitted) show that the
capacity is decreasing with a increasing, so a = 1 or a = 2. If we split into two cases according to the parity
of n, in each case we need only compare two numbers, and we found that in each case one number is always
larger than the other. The larger number is thus the maximum capacity, which is

n3 + 2n2 − 2n− 4

n(n2 + 4n− 8)
, n is odd,

n3 + 2n2 − 3n− 4

n(n2 + 4n− 9)
, n is even.

�

Unfortunately, the casework method above can only give the exact maximum capacity for at most four
slopes. For five or more slopes, it fails to work.

Open Question. What is the maximum capacity of an RGMSN of n sensors with only s slopes allowed
(s ≥ 5)? We conjecture it to be

1− (n− 1)(n− 2)

n((s− 2)(s− 3)k2 + 2(s− 3)kt+ t(t− 1) + 4n− 6)

where n = (s− 2)k + t+ 2, 0 ≤ t ≤ s− 3, and k and t are integers.

We have also attempted to compute the expected capacity of an RGMSN of n sensors with at most
four slopes by adapting the method in Theorem 8. However, the definite integrals we encountered are out
of reach of our computational power. For example, let four lines be l1 : y = a1x + b1, l2 : y = a2x + b2,
l3 : y = a3x+ b3, and l4 : y = a4x+ b4, and assume that a1 > a2 > a3 > a4. The probability that l4 can be
reached by l1 ∩ l2 while b4 being the largest of m lines, and the probability that both l4 can be reached by
l1 ∩ l2 while b4 being the largest of m lines and l3 cannot be reached by l1 ∩ l2 in one hop are the following
integrals, respectively.

Open Question. We have∫ 1

0

∫ 1

0

∫ 1

0

∫ a1

0

∫ a2

0

∫ 1

max{0,min{1,
b1+(b2−b1) a1−a4

a1−a2
}}

mbm−14 db4 da4 da2 db2 db1 da1 =
3m+ 1

24(m+ 1)
,

∫ 1

0

∫ 1

0

∫ 1

0

∫ a1

0

∫ a2

0

∫ max{0,min{1,
b1+(b2−b1) a1−a3

a1−a2
}}

0

∫ a3

0

∫ 1

max{0,min{1,
b1+(b2−b1) a1−a4

a1−a2
}}

mbm−14 db4 da4 db3 da3 da2 db2 db1 da1 =

13m2 + 18m+ 2

1728(m+ 1)(m+ 2)
.

(Note: we are unable to compute these in Mathematica.)

Besides these integrals, we also need the probability that l1 ∩ l2 can reach neither l3 nor l4 while b3 being
the largest of k lines and b4 being the largest of m lines is the following.

Open Question. Compute the integral

∫ 1

0

∫ 1

0

∫ 1

0

∫ a1

0

∫ a2

0

∫ max{0,min{1,
b1+(b2−b1) a1−a3

a1−a2
}}

0

∫ a3

0

∫ max{0,min{1,
b1+(b2−b1) a1−a4

a1−a2
}}

0

kmbk−13 bm−14 db4 da4 db3 da3 da2 db2 db1 da1.

Below is a list of conjectured integral values, but we are unable to compute any of them in Mathematica.
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k Conjectured integral value

1
23m2 + 90m+ 70

1728(m+ 1)(m+ 2)

2
223m3 + 1526m2 + 3069m+ 1782

17280(m+ 1)(m+ 2)(m+ 3)

3
363m4 + 3915m3 + 14530m2 + 21700m+ 10752

28800(m+ 1)(m+ 2)(m+ 3)(m+ 4)

4
1247m5 + 19623m4 + 115657m3 + 316033m2 + 394560m+ 176000

100800(m+ 1)(m+ 2)(m+ 3)(m+ 4)(m+ 5)

The expected capacity of an RGMSN of n sensors with at most four slopes can be computed if all of
these integrals are computed.

§6. Realizability of (R)CMSNs as (R)GMSNs

Although many RCMSNs can be generated from a geometric construction (GMSN), most cannot. Knuth

proved in [4] that the number of GMSNs of n sensors is less than 3(n+1
2 ), but clearly the number of RCMSNs

of n sensors is
(
n
2

)
!. Therefore, we propose the following question: which RCMSNs are GMSNs? However, a

result on pseudoline arrangements by P. Shor implies that there is unlikely an efficient algorithm:

Theorem 10 (GMSN Realizability is NP-Hard). Given an RCMSN, deciding whether it is generated from
a GMSN is NP-Hard.

(Note: below, a pseudoline means a simple curve that is not closed; and we do not allow two pseudolines,
or one pseudoline and one line, to intersect more than once.)

Proof. Shor [3] showed that deciding the stretchability of a pseudoline arrangement is NP-Hard. Because all
pseudoline arrangements in his paper contain only pseudolines that intersect any additional vertical line at
most once, we shall consider only such pseudolines. We also assume that any additional vertical line contains
at most one intersection of the pseudolines. Because of this, it is possible to draw two vertical lines such
that all intersections of the pseudolines fall between them, and each pseudoline “starts” (at infinity) on the
left of the two vertical lines and “ends” on the right of the two vertical lines.

Suppose the arrangement contains n pseudolines, each two of them intersect exactly once between the
two vertical lines. We convert this arrangement to a finite sequence of numbers as follows. Let all the
intersections ordered by their x-coordinate be p1, . . . , p(n

2)
. For each 1 ≤ k ≤

(
n
2

)
, we draw a vertical ray

upward from pk and let ak be the total number of intersections this ray form with all the pseudolines. Then

ak ∈ [n− 1], and we have a sequence {ak}n(n−1)/2k=1 .

Let σ be any permutation of {1, . . . , n}. We can convert the sequence {ak} to an RCMSN using the
following algorithm:

1 τ ← σ
2 for k from 1 to

(
n
2

)
3 ck ← {τ(ak), τ(ak + 1)}
4 (τ(ak), τ(ak + 1))← (τ(ak + 1), τ(ak))

5 return {ck}n(n−1)/2k=1

Here σ is the labels of the pseudolines at the vertical line on the left of all intersections (ordered by their
y-coordinates), and τ stores the current labels of the pseudolines at an additional vertical line immediately
before and after each intersection, such that the labels are consistent with σ (guaranteed by line 4). Now,
the geometric realizabilities of all n! RCMSNs that can be generated from the pseudoline arrangement are
equivalent by a relabeling of lines using σ. Therefore, we need to prove that the pseudoline arrangement (if
exists) is uniquely determined from an RCMSN up to a relabeling of lines and isomorphism (two arrangements
are isomorphic if the graphs, where the vertices are the regions in the arrangement and the edges are adjacency
of regions, are isomorphic).

The following algorithm converts an RCMSN {ck = {xk, yk}}n(n−1)/2k=1 (where each xk, yk ∈ [n]) into a se-

quence {ak}n(n−1)/2k=1 (where each ak ∈ [n−1]) as described before, and also reports some clearly nonrealizable
RCMSNs:
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1 τ ← identity ∈ Sn

2 T ← linked list of [n] with no links
3 for k from 1 to

(
n
2

)
4 if T .degree(τ(xk)) = 2 or T .degree(τ(yk)) = 2
5 return non-realizable
6 else if not T .linked(τ(xk), τ(yk))
7 T .link(τ(xk), τ(yk))
8 (τ(xk), τ(yk))← (τ(yk), τ(xk))
9 σ(1)← T .head
10 for k from 2 to n
11 σ(k)← T .next(σ(k − 1))
12 τ ← σ
13 for k from 1 to

(
n
2

)
14 if |τ−1(xk)− τ−1(yk)| 6= 1
15 return non-realizable
16 else
17 ak ← min{τ−1(xk), τ−1(yk)}
18 (τ−1(xk), τ−1(yk))← (τ−1(yk), τ−1(xk))

19 return σ and {ak}n(n−1)/2k=1

In lines 1–8 we first determine which two numbers in the given RCMSN might represent adjacent pseudo-
lines on the left of both vertical lines we inserted in a GMSN. T is a list of consecutive lines, and τ represents
that “the current kth pseudoline from the top is the τ(k)-th pseudoline on the left of both vertical lines
we inserted.” Only adjacent pseudolines are allowed to intersect because otherwise the pseudolines between
them cannot extend across the intersection. Thus, if we fail to build a whole list T , no such GMSN exists. On
the other hand, if the list T is built, it represents the relabeling of lines discussed in the previous algorithm
and is thus stored in σ (lines 9–11). In lines 12–18, the meaning of τ is the same as that in the previous
algorithm, and we reverse the previous algorithm to find {ak}. If we fail to reverse it, then at some point
there must be two nonadjacent lines that are required to intersect, so clearly no such GMSN exists.

From this algorithm, we see that if an RCMSN is geometrically realizable, it corresponds to at most two
pairs (σ, {ak}) (because T can be read from both sides), and their corresponding pseudoline arrangements
are isomorphic as they are mirror images of each other. We shall ignore σ because it does not change the
pseudoline arrangement.

Now we need to prove that every sequence {ak}n(n−1)/2k=1 where ak ∈ [n−1] describes at most one pseudoline
arrangement. First, it describes one arrangement naturally: Consider all points (k, j) where 0 ≤ k ≤

(
n
2

)
and 1 ≤ j ≤ n are integers. We draw a ray from each (0, j) horizontally to the left and from each (

(
n
2

)
, j)

horizontally to the right. Then, for each k we connect (k−1, ak) to (k, ak +1) by a segment, (k−1, ak +1) to
(k, ak) by a segment, and (k− 1, j) to (k, j) by a segment for all j 6∈ {ak, ak + 1}. If this is not a pseudoline
arrangement, then two curves must have intersected twice, and the RCMSN corresponds to no pseudoline
arrangement. Otherwise, the RCMSN is generated by at least one pseudoline arrangement.

Given a pseudoline arrangement whose sequence is {ak}, we need to prove that it is isomorphic to the
pseudoline arrangement above. We give a region color 1 if it is adjacent to the region above all pseudolines.
Then we give a region color r if it is adjacent to an already colored region with color r−1. By definition, the
number of regions with color r is equal to the number of r’s in {ak}. So in our two arrangements the number
of regions with each color is equal. Also, it is clear that in both arrangements, the leftmost and rightmost
regions with color r must be adjacent to the leftmost and rightmost regions with color r± 1, respectively. If
a region immediately on the left of intersection pj and a region immediately on the right of intersection pk
have colors differing by one (which is the only case they might be adjacent, by definition), then they are
adjacent if and only if k < j because the pseudoline connecting the two intersections is either a shared edge
or an edge that separates the two regions. There are no other possible cases of adjacent regions, so the
graph of adjacent regions is determined by the sequences {ak}. Therefore the two pseudoline arrangements
we have are isomorphic.

Hence, if we have an algorithm for the geometric realizability of RCMSNs, then for every pseudoline
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arrangement we can convert it to an RCMSN in polynomial time and determine if it is generated from a
GMSN; and the GMSN as a pseudoline arrangement must be isomorphic to the given one because they
correspond to the same RCMSN, as discussed above. �

Although it is hard to determine if an RCMSN is generated from a GMSN, we may consider the similar
problem of determining if a CMSN is generated from an RGMSN with limited number of slopes. For example,
this problem is easy when the RGMSN has only one or two slopes, because the only possible shape of the
network is a grid in this case. It turns out that for three or more slopes we can also solve this problem
in polynomial time, as shown in the theorem below. We reduce the problem into linear programming and
problems with a smaller number of slopes. However, our algorithm has complexity that is exponential on
the number of slopes.

Theorem 11 (RGMSN Realizability is Polynomial). Given a CMSN and an integer s ≥ 3, we can decide
in polynomial time whether it is generated from an RGMSN with at most s slopes, and construct the GMSN
when possible.

Proof. First, we use the method in Theorem 10 to convert a CMSN into a pseudoline arrangement when
possible. If this is not possible, then the CMSN is clearly not realizable. Now we construct a graph where
the vertices represent the pseudolines, and two vertices are connected by an edge if the two pseudolines do
not intersect. If any component in this graph is not a complete graph, then the pseudoline arrangement is
clearly not stretchable since being parallel is transitive. If this graph has more than s connected components,
then the CMSN is also not realizable with at most s slopes because we can find four pairwise intersecting
pseudolines. If this graph has less than three connected components, then the CMSN is clearly realizable as
a grid.

Base Case: s = 3.

We assume that the graph has three connected components A, B, and C. Also, we assume that all
pseudolines in the arrangement we get are monotone, meaning that each pseudoline intersects any vertical
line or horizontal line exactly once. We can easily modify Theorem 10’s method so that it always gives
monotone pseudolines. Now we label the pseudolines in A as a1, a2, . . . in their order from top to bottom
when intersecting with a vertical line, and label the pseudolines in B as b1, b2, . . . similarly, but from
bottom to top. Note that the direction “top to bottom” is arbitrary; it can be reversed. We assume that
min{|A|, |B|, |C|} ≥ 2 since otherwise the arrangement is clearly stretchable. Also, for a horizontal line above
all intersections in the arrangment, we assume without loss of generality that its leftmost intersection with
the arrangment is with a line in B, and its rightmost intersection with the arrangement is with a line in A.
These are merely relabeling of pseudolines.

Our strategy is to suppose the arrangement is stretchable and try to construct it unless we find a contra-
diction. For an arrangement stretchable with at most three slopes, we first apply an affine transformation
(which does not change the arrangement) to make all lines in A have slope −1 and all lines in B have slope 1.
Now we try to make all lines in C vertical. We use the following procedure (Fig. 13):

1 (A′, B′)← (A,B)
2 (lA, rA, lB , rB)← (a1, a|A|, b1, b|B|)
3 repeat
4 (sA, sB)← (|A′|, |B′|)
5 for each a ∈ A′
6 for each c ∈ C
7 if a ∩ c is between lB and rB
8 B′ ← B′ ∪ (the line through a ∩ c with slope 1)
9 for each b ∈ B′
10 for each c ∈ C
11 if b ∩ c is between lA and rA
12 A′ ← A′ ∪ (the line through b ∩ c with slope −1)
13 until sA = |A′| and sB = |B′|
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Figure 13. An example of the procedure. All additional lines are blue, and the intersections where
additional lines are added are marked. (a) The arrangement at line 9 of the first cycle. (b) The arrangement
at line 13 of the first cycle. (c) The arrangement at line 9 of the second cycle. (d) The arrangement at the
end.

If this procedure terminates, then we can adjust the distances between the lines so that each cell in the
grid formed by A′ and B′ is a square. Then, because there are no additional lines in satisfying the conditions
in line 9 and line 13 in the algorithm, all intersections of lines in C and the grid are at intersections of
gridlines; lines satisfying this condition can only be vertical.

Therefore we need to move the lines by some small distances before the procedure above such that the
procedure would terminate. This is not difficult: we move all lines by sufficiently small distances such that
they have rational intercepts; then we rotate all lines in C by a sufficiently small angle such that the angle
between each line in C and each line in A is the arctangent of a rational number. After these operations,
there are only finitely many lines that could possibly be generated in the procedure above, so the procedure
must terminate.

Now we suppose that all lines in A have slope −1, all lines in B have slope 1, and all lines in C are
vertical. Let xk be the distance between lines ak and ak+1, and yk be the distance between lines bk and bk+1.
Consider the intersection ai ∩ bl and aj ∩ bk, where i < j and k < l. (In any other order of i, j, k, and l, the
order of the two intersections’ x-coordinates is determined.) If there is a pseudoline in C intersecting both
ray (ai ∩ bl)(ai ∩ bl+1) and ray (aj ∩ bk)(aj ∩ bk−1) (Fig. 14), then in the stretched arrangement ai ∩ bl has a
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smaller x-coordinate than aj ∩ bk, and we have
∑j−1

t=i xt >
∑l−1

t=k yt; if there is a pseudoline in C intersecting
both ray (ai ∩ bl)(ai ∩ bl−1) and ray (aj ∩ bk)(aj ∩ bk+1), then in the stretched arrangement ai ∩ bl has a

larger x-coordinate than aj ∩ bk, and we have
∑j−1

t=i xt <
∑l−1

t=k yt. This is a linear programming problem,
and we can determine its consistency in polynomial time. (Note: although we have strict inequalities here,
we can scale the arrangement to convert any p < q to the equivalent p + 1 ≤ q.) If it is consistent, then
the arrangement of lines with distances {xk} and {yk} and lines in C in appropriate places gives the GMSN
when rotated a small angle. If it is inconsistent, then the pseudoline arrangement is not stretchable because
we have found a contradiction.

Figure 14. (a) The line c ∈ C gives a constraint on the distances between lines. (b) An example of a
nonstretchable pseudoline arrangement.

Second Base Case: s = 4.

From the s = 3 case, we see that every RGMSN with four slopes can be transformed into one with the
four slopes equal to 0, 1, ∞, and another number k < 0 (hereby that will be called a RGMSNk). So our
question is that, given a CMSN, whether there exists k such that the network can be realized as a GMSNk.
Because we may reflect the whole network over the line x+ y = 0, without loss of generality, the range of k
can be further limited to 0 < −k < 1.

If we know the number k, we can decide in polynomial time whether the CMSN is realizable as a RGMSNk

using the inequalities that describe the order of intersections of one line and other lines on the line. This is
a linear programming problem. For the problem with k unknown, our algorithm is to find O(n4) different
potential values of k (if there are n sensors in the CMSN), and show that if the given CMSN is realizable, it
can be realized with one of those specific k values. (The potential values of k depend on the CMSN given.)
So we run linear programming at most O(n4) times to find out the realizability.

Now suppose k is unknown. Then we have a system of strict inequalities that become linear if k is
regarded as constant, and all inequalities are linear for k. The set of values of k such that the linear program
is feasible must be an open set because all inequalities are strict. Let −k0 be the infimum of that set, then
it is a boundary point. Clearly, with k = k0 the linear program is not feasible, but we have a sequence of
decreasing feasible values of k converging to k0. When k follows this sequence, some of the strict inequalities
converge to equalities, and with those equalities in place of strict inequalities, the linear program with k = k0
becomes feasible. We need not care about those inequalities that still remain strict because they would still
be satisfied when the variables shift by a small amount, restoring the strict inequalities. Regarding the
resulting system of equations, we observe that k0 has to be the unique solution; otherwise it would equal to
a quotient of linear expressions of positive variables. The range of such a quotient is an open set, so we can
find a smaller −k0, contradicting the fact that it was taken as the infimum of the set of feasible k.

The only way that k0 is the unique solution of the resulting system of equations is that we have two
segments in the network such that the ratio of their lengths is a constant. From this fact, we can find all
possible k0 from the given CMSN in polynomial time. First, we remove all lines with the unknown slope.
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Then k0 must be the maximum slope of some extra line connecting two intersections in the resulting CMSN
(which has only lines with known slope). There are O(n2) intersections, hence at most O(n4) possible extra
lines; for each extra line the determination of k0 is a linear fractional programming problem, which is known
to have a polynomial algorithm.

However, we do not use these k0 values to test the original system of strict inequalities, because being
the infimum they would not satisfy strict inequalities. We get the k values by adding a sufficiently small
number to the k0 values such that the arrangements would not be altered because of the change. We may
take that small number to be less than half the square of the smallest nonzero potential k0 value, which is
smaller than half of the difference between any two distinct potential k0 values.

Inductive Case: s ≥ 4.

By induction, we see that every RGMSN with s slopes can be transformed into an RGMSN with the
slopes 0, 1, −1, and one of polynomially many sets of s− 3 other slopes. Using the same method from the
previous case, for each set of those slopes, we can consider them as known slopes and compute in polynomial
time polynomially many potential values of the remaining unknown slope. Then we have polynomially many
sets of all s slopes to test using linear programming, thus giving a method with complexity polynomial in
the network size, but exponential in s. �

§7. Future work

Besides the conjectures listed above, there are many other questions about MSNs that we have not
investigated. Although we have obtained the maximum capacities of RCMSNs, GMSNs, and RGMSNs,
we have not found the expected capacities of RCMSNs and RGMSNs with more than three slopes. One
can also consider a generalized form of GMSN which replaces the lines by polynomial curves, and compute
its maximum and expected capacities, and try to determine whether a CMSN is realizable by polynomial
curve-GMSNs. Another variant of the GMSNs is to allow three or more lines to intersect at one point, and
consider questions similar to those mentioned above.
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