A Semi-Supervised Dimensionality Reduction Method to Reduce Batch Effects in Genomic Data

Anusha Murali
Mentor: Dr. Mahmoud Ghandi

MIT PRIMES Computer Science Conference 2018

October 13, 2018
A Semi-Supervised Dimensionality Reduction Method to Reduce Batch Effects in Genomic Data

Outline

1. Introduction and Motivation
2. Dimensionality Reduction
3. Our Experimental Data: Microarray & RNA-Seq
4. Optimal Projection Line for Minimizing Batch Effects
5. Future Direction and Conclusion
Introduction

Source: M. R. Stratton, P.J. Campbell & P.A. Futreal

Motivation for Our Research

1. Cancer classification based on molecular knowledge has gained widespread acceptance
2. Requires studying the characteristics of thousands of genes
3. **Data-mining** and **machine learning** have helped us enormously
4. **Problem in Genomic Studies**: Occurrence of batch effects in experimental data
Dimensionality Reduction
Dimensionality Reduction

Too many variables in the study?
1. **Dimensionality reduction**: the process of reducing the number of random variables in the experiment
2. Higher the number of features in the results, the harder it is to visualize the problem
3. Often, most of the features are correlated, and therefore are redundant

Pros and cons
- **Pros**: Redundant features are removed
- **Cons**: May lead to some information loss
Dimensionality Reduction

- Reduction in memory/storage space
- Easier to visualize and analyze

Minimizing unwanted variations in data

- Dimensionality reduction can help minimize unwanted variations in experimental data (such as batch effects)
- This can be achieved by finding a suitable projection for reducing the dimensions

Source: tdmm613.wordpress.com
What is Microarray?

1. Each well in the microarray contains an isolated gene.
2. Using different fluorescent labels, cDNA from healthy and diseased cells are added to the microarray wells.
3. Fluorescence intensity level of each probe is proportional to the gene expression level.

Source: https://www.otogenetics.com/rna-sequencing-vs-microarray
What is RNA Sequencing?

1. Enables us to discover, quantify, and profile RNAs

2. mRNA (and other RNAs) is first converted into cDNA

3. cDNA is then used as the input to a next-generation sequencing library, which counts the number of mappings

Source: https://www.otogenetics.com/rna-sequencing-vs-microarray
Our experiments used both Affymetrix (microarray) and RNA-seq data available from the Cancer Cell Line Encyclopedia (CCLE).

We pre-processed the data to identify the rows containing identical tissues appearing both in Affymetrix and RNA-seq.

We used the t-SNE algorithm on the combined data (of $2 \times 994 = 1998$ rows) to visualize the two most important variables in the data.
Output of t-SNE for Affymetrix Data Alone

Legend

- B–cell_ALL
- T–cell_ALL
- AML
- CML
- leukemia_other
- multiple_myeloma
- lymphoma_DLBC
- lymphoma_Burkitt
- lymphoma_Hodgkin
- B–cell_lymphoma_other
- T–cell_lymphoma_other
- upper_aerodigestive
- esophagus
- stomach
- colorectal
- melanoma
- lung_NSC
- lung_small_cell
- mesothelioma
- breast
- endometrium
- ovary
- urinary_tract
- prostate
- pancreas
- liver
- kidney
- thyroid
- glioma
- medulloblastoma
- neuroblastoma
- chondrosarcoma
- osteosarcoma
- soft_tissue
- Ewings_sarcoma
- giant_cell_tumour
- fibroblast_like
- other

Anusha Murali (MIT PRIMES 2018)
Output of t-SNE for RNA-seq Data Alone
Batch Effect

1. Affymetrix and RNA-seq represent the same genomic data
2. So, we expected the points corresponding to the same tissues to cluster together
3. Both sets of data were generated using different technologies
4. We see batch effect!
Minimizing batch effects

1. Often, batch effects are amplified or reduced depending on how the data is viewed.
2. Therefore, a possible solution for reducing batch effects is to use a different approach to interpreting the data.
Optimal Projection Line
for
Minimizing Batch Effects
Finding the most optimal line

1. l: a line with unit vector $\hat{u} = (x, y)$
2. We project the points from combined data onto l
3. Let d_i be the distance between the feet of the corresponding points
4. We want to minimize $f(x, y) = \sum d_i^2$
5. Viewing this as a constrained optimization problem, we use Lagrange multipliers to find the slope m of l
Optimal Projection Line for Minimizing Batch Effects

We want to minimize \(f(x, y) = d_1^2 + d_2^2 \), using the constraint \((x, y)\) is found on line \(l\), which has unit vector \(\hat{u} = (x, y)\).

So, our Lagrangian becomes

\[
\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda(x^2 + y^2 - 1),
\]

where \(f(x, y) = d_1^2 + d_2^2 \).

We note that,

\[
\begin{align*}
 d_1 &= (x_1 - x_2)x + (y_1 - y_2)y, \\
 d_2 &= (x_3 - x_4)x + (y_3 - y_4)y
\end{align*}
\]
Slope m of the optimal line for two pairs of points

- Solving for $\nabla L = 0$, by setting the partial derivative of each of the three variables, x, y, and λ to zero, we find,
 \[
 \frac{\partial f}{\partial x} = 2[(x_1 - x_2)^2 + (x_3 - x_4)^2]x + 2[(x_1 - x_2)(y_1 - y_2) + (x_3 - x_4)(y_3 - y_4)]y - 2\lambda x = 0
 \]
 \[
 \frac{\partial f}{\partial y} = 2[(y_1 - y_2)^2 + (y_3 - y_4)^2]y + 2[(x_1 - x_2)(y_1 - y_2) + (x_3 - x_4)(y_3 - y_4)]x - 2\lambda y = 0
 \]
 \[
 \frac{\partial f}{\partial \lambda} = -(x^2 + y^2 - 1) = 0
 \]
- Eliminating λ, and substituting $m = y/x$, we obtain, $\alpha m^2 + \beta m - \alpha = 0$, where,
 \[
 \alpha = (x_1 - x_2)(y_1 - y_2) + (x_3 - x_4)(y_3 - y_4)
 \]
 \[
 \beta = (x_1 - x_2)^2 + (x_3 - x_4)^2 - (y_1 - y_2)^2 - (y_3 - y_4)^2
 \]
- One of the two solutions for m minimizes $f(x, y) = d_1^2 + d_2^2$
Solving for arbitrary number of n points

- Let $(x_i^{(1)}, y_i^{(1)})$ denote the i^{th} point from batch 1 (RNA-Seq), and $(x_i^{(2)}, y_i^{(2)})$ denote the i^{th} point from batch 2 (Affymetrix).

- As before, using Lagrange multipliers, we find $\alpha m^2 + \beta m - \alpha = 0$, where,

 $\alpha = \sum_{i=1}^{n} (x_i^{(1)} - x_i^{(2)}) (y_i^{(1)} - y_i^{(2)})$,

 $\beta = \sum_{i=1}^{n} (x_i^{(1)} - x_i^{(2)})^2 - \sum_{i=1}^{n} (y_i^{(1)} - y_i^{(2)})^2$

- Using matrix representation, $\alpha = (x^{(1)} - x^{(2)})^T (y^{(1)} - y^{(2)})$ and $\beta = (x^{(1)} - x^{(2)})^T (x^{(1)} - x^{(2)}) - (y^{(1)} - y^{(2)})^T (y^{(1)} - y^{(2)})$
For the given batches in the example, $m = -3.38$.
Projection of data on the optimal Line

- Data corresponding to the same tissues tend to project close to one another!
- Some tissues are still not clustering together
- Projection of multidimensional data onto a one-dimensional line leads to loss of information
- The solution is to project data from the batches onto a higher dimension
Future Direction & Conclusion
We want to generalize this approach to find an \(N \times M\) dimensionality reduction matrix that maps data from \(N\) dimensions to \(M\) dimensions, minimizing the unwanted variation (e.g. batch effect) in the data.

\[
C(X) = \frac{tr(X^T P X)}{tr(X^T Q X)}
\]

where \(X\) is an \(N \times M\) matrix of unknowns and \(P\) and \(Q\) are \(N \times N\) positive definite constant matrices. We want to find \(X\) that minimizes \(C(X)\) and \(X^T Q X = I\).

\(P\) and \(Q\) are \(N \times N\) matrices that generate intra- and inter-cluster distances.

It could be shown that matrix \(X\) consisting of the \(M\) eigenvectors corresponding to the smallest eigenvalues of \(Q^{-1} P\) is a solution to the above optimization problem.

We plan to evaluate the application of this method on genomic data.
Conclusion

1. Batch effects can be incorrectly attributed to outcome of interest, leading to incorrect conclusions of the investigation.

2. In this investigation, we studied how to minimize batch effects arising from combining data from two different sources (Affymetrix and RNA-seq).

3. Specifically, we found an optimal straight line to project the output of t-SNE to minimize the batch effects.

4. Experimental results using R showed that data from RNA-seq and Affymetrix clustered together on the straight line, eliminating some of the batch effects.

5. We plan to generalize the solution to find an $N \times M$ dimensionality reduction matrix that maps data from N dimensions to M dimensions.
Acknowledgments

- Dr. Mahmoud Ghandi for his tireless guidance
- The MIT PRIMES program for creating the opportunity
- My family for their unrelenting support