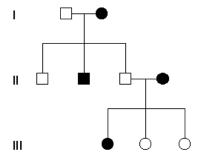
Server and Interface for Patient Risk Assessment

JASON (YINGTONG) ZHAO

MENTOR: DR. GIL ALTEROVITZ


Abstract

- There is an advantage to spotting diseases early
- For hereditary diseases, we can do so by focusing on high-risk genes
- Genetic risk evaluations based on family disease history can be simple and effective
- Current solutions, however, are too technically demanding

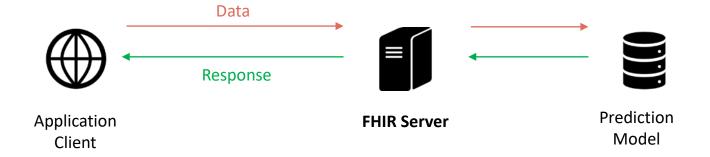
Research topic:

Making computer risk evaluations more accessible

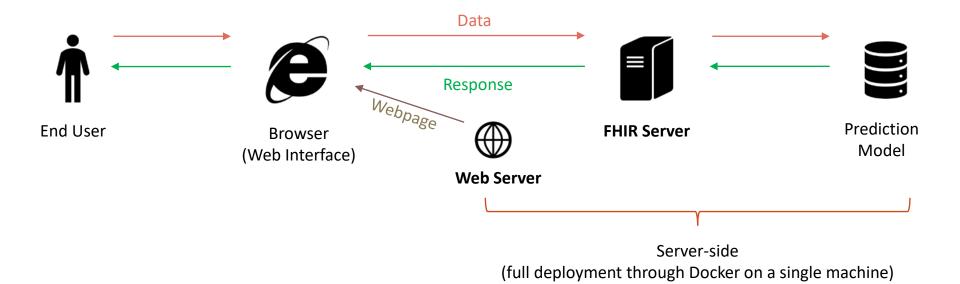
Dominant Pedigree

Goals

- Builds on current software back-end
 - Incorporates and runs the software
- Compatible with industry-standard format (FHIR)
- Allows end-user interaction
- Easy to deploy



Methods


We employ a two-part solution:

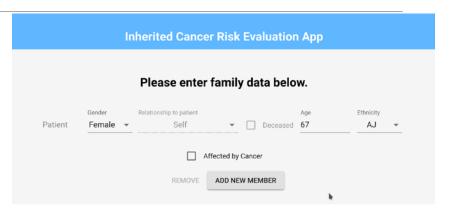
- FHIR Server
 - Communicates with existing prediction model
 - Used by applications, including the web interface
- Web Interface
 - Communicates with FHIR server
 - Used by the end user

API Function

End-User Function

FHIR Server

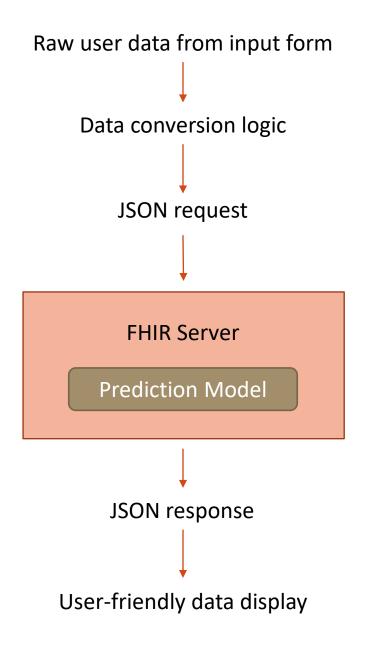
- Uses prediction model for risk assessment calculations
 - Launches software with server
 - Loads datasets
 - Converts and relays data
- Works standalone as API that allows usage of existing patient data
- Technologies:
 - Python (Flask)
 - Docker



Web interface

- Browser-based, client-side
- Communicates with FHIR server on the same host as web server
- Enables end-user interaction
- Technologies:
 - JavaScript (React.js)
 - Docker
 - Web server: Nginx

Press "Evaluate" to calculate your risk:


EVALUATE RISK

Results:

Breast Cancer	Ovarian Cancer
Di cuot Guilloci	O fullali Galloci

Age	Probability
68	0.776%
70	1.554%
72	2.326%
74	3.086%
76	3.828%
78	4.541%
80	5.208%
82	5.812%
84	6.340%

Age	Probability
68	0.089%
70	0.180%
72	0.273%
74	0.367%
76	0.461%
78	0.554%
80	0.643%
82	0.728%
84	0.805%

Future

- New backend prediction model
 - Open-source for unrestricted deployment
 - Circumvents limitations in the old program's design and formats
 - Optimized to optionally take some already available data
 - Incorporates more datasets

Future (cont.)

- More flexible specifications
 - Easier to use existing data as input to standalone FHIR server
- Web UI design
 - Tabs, hints, about page, etc.
- Additional supported diseases/features
- Security
- User testing and evaluation

Acknowledgements

I would like to thank

- Dr. Gil Alterovitz
- Dr. Yufeng Zhang and Wenzhi (Victor) Su
- Dr. Fan Lin
- The MIT PRIMES program
- My parents