Verkle Trees:
Ver(y Short Mer)kle Trees

John Kuszmaul
Mentored by Alin Tomescu
PRIMES Computer Science Conference - 10/13/18
Storing Files Remotely

Alice sends her files F_0, F_1, \ldots, F_n.
Storing Files Remotely

Alice

What is F_i?

Here you go: F_i`
Alice generates a digest d of her files. Alice sends her files F_0, F_1, ..., F_n. Dropbox
Proving/Verifying Integrity

Alice verifies the proof π_i against d to make sure F_i has not been modified.
Secure Hash Functions

Original File F_i

Bob owes Alice $70k.

Hash Function

$H(F_i) = 011010...110$

256 bits

Corrupted File F_i'

Bob owes Alice $20.

Hash Function

$H(F_i') = 100111...101$

256 bits

Ideally,

finding any two distinct files, F_1, F_2, s.t.

$H(F_1) = H(F_2)$

takes 2^{128} attempts.
A Simple Scheme for Verifying File Integrity

Alice hashes each of her files:

\[
\begin{align*}
H(F_0) & \rightarrow F_0 \\
H(F_1) & \rightarrow F_1 \\
H(F_2) & \rightarrow F_2 \\
H(F_3) & \rightarrow F_3 \\
H(F_4) & \rightarrow F_4 \\
H(F_5) & \rightarrow F_5 \\
H(F_6) & \rightarrow F_6 \\
H(F_7) & \rightarrow F_7
\end{align*}
\]
Alice computes and stores the hashes locally. Alice sends her files F_0, F_1, …, F_n.

Proving/Verifying Integrity: Simple Scheme
Alice computes $H(F_i)$ and checks that it equals stored $H(F_i)$.

What is F_i?
Problem: Alice has to store n hashes.

Alice’s digest must be constant-sized.
Solution: Merkle Trees

\[h_{14} = \text{H}(h_{12}, h_{13}) \]

The root is the digest.

\[h_{12} = \text{H}(h_8, h_9) \]

\[h_8 = \text{H}(h_0, h_1) \]

\[h_9 = \text{H}(h_2, h_3) \]

\[h_{13} = \text{H}(h_{10}, h_{11}) \]

\[h_{10} = \text{H}(h_4, h_5) \]

\[h_{11} = \text{H}(h_6, h_7) \]
Alice computes the Merkle tree and stores the root locally.

Alice sends her files F_0, F_1, \ldots, F_n.

Proving/Verifying Integrity: Merkle Tree

Alice sends her files F_0, F_1, \ldots, F_n.
Proving/Verifying Integrity: Merkle Tree

What is F_i?

How does Dropbox respond with a proof?
Merkle Proofs

Dropbox sends these highlighted nodes.

$h_{14} = H(h_{12}, h_{13})$

$h_{12} = H(h_8, h_9)$

$h_{13} = H(h_{10}, h_{11})$

$h_8 = H(h_0, h_1)$

$h_9 = H(h_2, h_3)$

$h_{10} = H(h_4, h_5)$

$h_{11} = H(h_6, h_7)$

$h_0 = H(F_0)$

$h_1 = H(F_1)$

$h_2 = H(F_2)$

$h_3 = H(F_3)$

$h_4 = H(F_4)$

$h_5 = H(F_5)$

$h_6 = H(F_6)$

$h_7 = H(F_7)$

F_0

F_1

F_2

F_3

F_4

F_5

F_6

F_7
Proving/Verifying Integrity: Merkle Tree

The Proof

\[
F_3, \quad H(h_0, h_1), \quad H(F_2), \quad H(h_{10}, h_{11})
\]
Verifying the Proof

Alice computes the root starting from F_3 with these highlighted proof.
Verifying the Proof

h_{12} = H(h_8, h_9)

h_8 = H(h_0, h_1)

h_9 = H(h_2, h_3)

h_2 = H(F_2)

h_3 = H(F_3)

h_{13} = H(h_{10}, h_{11})

h_{14} = H(h_{12}, h_{13})

Alice hashes up the tree.

h_{12} = H(h_8, h_9)

h_8 = H(h_0, h_1)

h_9 = H(h_2, h_3)

h_2 = H(F_2)

h_3 = H(F_3)

h_{13} = H(h_{10}, h_{11})

h_{14} = H(h_{12}, h_{13})

Alice hashes up the tree.
Verifying the Proof

Alice hashes up the tree.

$h_{14} = H(h_{12}, h_{13})$

$h_{12} = H(h_8, h_9)$

$h_8 = H(h_0, h_1)$

$h_9 = H(h_2, h_3)$

$h_{13} = H(h_{10}, h_{11})$

$h_{12} = H(F_2)$

$h_{13} = H(F_3)$

F_3
Verifying the Proof

h_{12} = H(h_8, h_9)

h_8 = H(h_0, h_1)

h_9 = H(h_2, h_3)

h_2 = H(F_2)

h_3 = H(F_3)

F_3

h_{13} = H(h_{10}, h_{11})

h_{14} = H(h_{12}, h_{13})

Alice hashes up the tree.
Verifying the Proof

Alice checks if the Merkle Root = \(d \)

\[h_{14} = H(h_{12}, h_{13}) \]

\[h_{12} = H(h_8, h_9) \]

\[h_8 = H(h_0, h_1) \]

\[h_9 = H(h_2, h_3) \]

\[h_{13} = H(h_{10}, h_{11}) \]

\[h_2 = H(F_2) \]

\[h_3 = H(F_3) \]

\[F_3 \]

F_3 has not been modified!

Time to stop using Dropbox!
Everyone loves Merkle Trees!

- They’re beautiful.
- They’re efficient.

\[n = \text{number of leaves (files)} \]

<table>
<thead>
<tr>
<th></th>
<th>Merkle Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct Tree</td>
<td>O(n)</td>
</tr>
<tr>
<td>Proof size</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Update File</td>
<td>O(log n)</td>
</tr>
</tbody>
</table>
Problem: Many small files \Rightarrow Merkle proofs too large.
Problem: Many small files \Rightarrow Merkle proofs too large.

- Suppose Alice has one billion $\approx 2^{30}$ files.
Problem: Many small files \Rightarrow Merkle proofs too large.

- Suppose Alice has one billion $\approx 2^{30}$ files.

Merkle Proof: ~ 1 KB (in addition to the file itself)
Possible Solution: q-ary Merkle Tree

Example: 3-ary tree

\[h_3 = H(h_0, h_1, h_2) \]

\[h_0 = H(F_0, F_1, F_2) \]
\[h_1 = H(F_3, F_4, F_5) \]
\[h_2 = H(F_6, F_7, F_8) \]
Problem: The Proof Becomes Bigger, $O(q \log_q n)$

Example: 3-ary tree

$h_0 = H(F_0, F_1, F_2)$
$h_1 = H(F_3, F_4, F_5)$
$h_2 = H(F_6, F_7, F_8)$

$h_3 = H(h_0, h_1, h_2)$
Our Work: Verkle Trees reduce the proof size

- We pick a q.
- We reduce the proof size from $\log_2 n$ to $\log_q n = \log_2 n / \log_2 q$.
- Factor of $\log_2 q$ less bandwidth!
- At the cost of q times more computation
- (e.g., $q = 1024 \Rightarrow \log_2(q) = 10x$ less bandwidth)

Wow, that’s big!
Does this matter? (Hint: Yes)

- Merkle hash trees are everywhere in cryptography:
 - Consensus Protocols
 - Public-Key Directories
 - Cryptocurrencies
 - Encrypted Web Applications
 - Secure File Systems
Vector Commitment (VC) Schemes by Catalano and Fiore (2013)

Commitment (C) is the digest.

Each file has a constant-sized proof (π).

F_0, π_0, F_1, π_1, F_2, π_2, F_3, π_3, F_4, π_4, F_5, π_5, F_6, π_6, F_7, π_7, F_8, π_8
VC Schemes are Computationally Impractical

<table>
<thead>
<tr>
<th>Scheme/op</th>
<th>Construct</th>
<th>Proof size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merkle</td>
<td>$O(n)$</td>
<td>$O(\log_2 n)$</td>
</tr>
<tr>
<td>VC scheme</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Our Solution: Replace Hash Functions with VC Schemes

This is the Verkle Tree.
We now have a Verkle Tree!

We get to choose the branching factor, q, to be whatever we want!

The root commitment is the digest.
Alice Receives $\log_2 n$ Constant-Sized π’s.

Alice verifies:
1. VC Proof from F_2 to C_1: π_2
2. VC Proof from C_1 to C_4: π_9
Verkle Trees let us trade off proof-size vs. construction time.
My Contribution

- I proved complexity bounds for Verkle Trees.
- I implemented Verkle Trees in C++.
- I am measuring performance.
Acknowledgements

- Thank you Alin!
- Thank you PRIMES!
- Thank you Mom and Dad!