Hilbert Series of Quasi-invariant Polynomials

Archer Wang

Clements High School

MIT PRIMES Conference, May 19, 2018
Mentor: Dr. Xiaomeng Xu
Let s_{ij} be the operator interchanging x_i and x_j in a function $f(x_1, x_2, ..., x_n)$.
m-Quasiinvariance

- Let s_{ij} be the operator interchanging x_i and x_j in a function $f(x_1, x_2, ..., x_n)$
- Ex. $s_{13}(x_1^2x_2 + x_3^5) = (x_3^2x_2 + x_1^5)$
Let \(s_{ij} \) be the operator interchanging \(x_i \) and \(x_j \) in a function \(f(x_1, x_2, ..., x_n) \).

Ex. \(s_{13}(x_1^2x_2 + x_3^5) = (x_3^2x_2 + x_1^5) \)

Definition

Let \(m \) be a non-negative integer and \(k \) be a field. A polynomial \(F \in k[x_1, x_2, ..., x_n] \) is \(m \)-quasiinvariant if for all \(1 \leq i < j \leq n \)

\[
(1 - s_{ij})F(x_1, x_2, ..., x_n)
\]

is divisible by \((x_i - x_j)^{2m+1}\).
m-Quasiinvariance

- Let s_{ij} be the operator interchanging x_i and x_j in a function $f(x_1, x_2, ..., x_n)$
- Ex. $s_{13}(x_1^2x_2 + x_3^5) = (x_3^2x_2 + x_1^5)$

Definition

Let m be a non-negative integer and k be a field. A polynomial $F \in k[x_1, x_2, ..., x_n]$ is m-quasiinvariant if for all $1 \leq i < j \leq n$

$$(1 - s_{ij})F(x_1, x_2, ..., x_n)$$

is divisible by $(x_i - x_j)^{2m+1}$.

- Q_m is the space of m-quasiinvariant polynomials
Examples

- Easy to check that all polynomials are in Q_0
Examples

- Easy to check that all polynomials are in Q_0
- Symmetric polynomials are always in Q_m for any m
Examples

- Easy to check that all polynomials are in Q_0
- Symmetric polynomials are always in Q_m for any m
- Examples for $n = 2$:
Examples

- Easy to check that all polynomials are in Q_0
- Symmetric polynomials are always in Q_m for any m

Examples for $n = 2$:

$(k = \mathbb{C})$

- $F(x, y) = 2x^3 + 6xy^2 \in Q_1$ since $F(x, y) - F(y, x) = 2(x - y)^3$
- $F(x, y) = x^5 - 5x^3y^2 \in Q_1$ since $F(x, y) - F(y, x) = (x - y)^3(x^2 + 3xy + y^2)$
Examples

- Easy to check that all polynomials are in Q_0
- Symmetric polynomials are always in Q_m for any m

-Examples for $n = 2$:

$(k = \mathbb{C})$

- $F(x, y) = 2x^3 + 6xy^2 \in Q_1$ since $F(x, y) - F(y, x) = 2(x - y)^3$

- $F(x, y) = x^5 - 5x^3y^2 \in Q_1$ since
 $F(x, y) - F(y, x) = (x - y)^3(x^2 + 3xy + y^2)$

$(k = \mathbb{F}_2)$

- $F(x, y) = x^8 \in Q_3$ since $F(x, y) - F(y, x) = x^8 - y^8 = (x - y)^8$
Want to measure "size" of space of quasi-invariant polynomials
Want to measure “size” of space of quasi-invariant polynomials

$Q_{m,d} = \text{vector space of homogeneous } m\text{-quasiinvariants of degree } d$
Hilbert Series

- Want to measure "size" of space of quasi-invariant polynomials
- $Q_{m,d}$ = vector space of homogeneous m-quasiinvariants of degree d
- Q_m can be decomposed into

$$\bigoplus_{d \geq 0} Q_{m,d} = Q_{m,0} \oplus Q_{m,1} \oplus \ldots$$
Hilbert Series

- Want to measure "size" of space of quasi-invariant polynomials
- \(Q_{m,d} = \) vector space of homogeneous \(m \)-quasiinvariants of degree \(d \)
- \(Q_m \) can be decomposed into

\[
\bigoplus_{d \geq 0} Q_{m,d} = Q_{m,0} \oplus Q_{m,1} \oplus \ldots
\]

Definition

The Hilbert series of the space of \(m \)-quasiinvariants to be

\[
HS_m(t) = \sum_{d \geq 0} t^d \dim(Q_{m,d})
\]
Module Structure

- Generalization of vector space over a field
Module Structure

- Generalization of vector space over a field
- Q_m is a module over the ring of symmetric polynomials
Module Structure

- Generalization of vector space over a field
- Q_m is a module over the ring of symmetric polynomials
- Closed under addition
- Closed under multiplication by ring elements (symmetric polynomials)
- Satisfies distributive property
Q_m is a finitely generated module over the ring of symmetric polynomials.
More Properties

- Q_m is a finitely generated module over the ring of symmetric polynomials
- Thus, $HS_m(t)$ can be written as

$$\frac{P(t)}{\prod_{i=1}^{n}(1 - t^i)}$$

where $P(t)$ is a polynomial with integer coefficients.
Theorem (Felder and Veselov)

Hilbert series of m-quasiinvariants in \mathbb{C} is

$$HS_m(t) = n! t^{m\binom{n}{2}} \sum_{\text{Young diagrams}} \prod_{i=1}^{n} t^{m(l_i-a_i)+l_i} \frac{1-t^i}{h_i(1-t^{h_i})}$$

For example, when $n=4$ and $m=5$ the Hilbert series is

$$1 + t + 2t^2 + 3t^3 + 5t^4 + 6t^5 + 9t^6 + 11t^7 + 15t^8 + ...$$

Young diagrams are objects useful in representation theory

Want to generalize in \mathbb{F}_p
Theorem (Felder and Veselov)

Hilbert series of m-quasiinvariants in \mathbb{C} is

$$HS_m(t) = n! t^\binom{n}{2} \sum_{\text{Young diagrams}} \prod_{i=1}^{n} t^{m(l_i-a_i)+l_i} \frac{1 - t^i}{h_i(1-t^{h_i})}$$

For example, when $n = 4$ and $m = 5$ the Hilbert series is

$$1 + t + 2t^2 + 3t^3 + 5t^4 + 6t^5 + 9t^6 + 11t^7 + 15t^8 \ldots$$
Theorem (Felder and Veselov)

Hilbert series of m-quasiinvariants in \mathbb{C} is

$$HS_m(t) = n! t^{m\binom{n}{2}} \sum_{\text{Young diagrams}} \prod_{i=1}^{n} t^{m(l_i-a_i)+l_i} \frac{1-t^i}{h_i(1-t^{h_i})}$$

- For example, when $n = 4$ and $m = 5$ the Hilbert series is
 $$1 + t + 2t^2 + 3t^3 + 5t^4 + 6t^5 + 9t^6 + 11t^7 + 15t^8 \ldots$$
- Young diagrams are objects useful in representation theory.
Theorem (Felder and Veselov)

Hilbert series of m-quasiinvariants in \mathbb{C} is

$$HS_m(t) = n! \binom{n}{2} \sum_{\text{Young diagrams}} \prod_{i=1}^{n} t^{m(l_i-a_i)+l_i} \frac{1 - t^i}{h_i(1 - t^{h_i})}$$

- For example, when $n = 4$ and $m = 5$ the Hilbert series is $1 + t + 2t^2 + 3t^3 + 5t^4 + 6t^5 + 9t^6 + 11t^7 + 15t^8\ldots$
- Young diagrams are objects useful in representation theory
- Want to generalize in \mathbb{F}_p
Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g?

Work with $n=2$.

Ex. If $g = x^2 + 5y^2$, the Hilbert series for the space of 2-quasiinvariants divisible by g is $t^5 + t^4(1-t^2)(1-t^2)$.
Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g?

- Work with $n=2$
Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g?

Work with $n=2$

Ex. If $g = x^2 + 5y^2$, the Hilbert series for the space of 2-quasiinvariants divisible by g is

$$
\frac{t^5 + t^4}{(1 - t)(1 - t^2)}
$$
Theorem

If \(g = (ax^k + by^k) \) and \(a^2 \neq b^2 \)
then the Hilbert series divisible by \(g \) is

\[
t^k \left(t^{2m} + t^{2m+1} + \sum_{i=1}^{m} t^{2(m-i)+\min(i,k)} - \sum_{i=1}^{m} t^{2(m-i)+\min(i,k)+2} \right) \frac{(1 - t)(1 - t^2)}{(1 - t)(1 - t^2)}
\]
Determine when the Hilbert Series for Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}
Determine when the Hilbert Series for Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}

Theorem

If there exists integers $a \geq 1$, $k \geq 0$, and $b \geq 0$ such that

$$p^a(nk + 1) + 2b \binom{n}{2} \leq mn$$

$$p^a(2k + 1) + 2b \geq 2m + 1,$$

then the Hilbert series of Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}
Determine when the Hilbert Series for Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}

Theorem

If there exists integers $a \geq 1$, $k \geq 0$, and $b \geq 0$ such that

\[
p^a(nk + 1) + 2b\binom{n}{2} \leq mn
\]

\[
p^a(2k + 1) + 2b \geq 2m + 1,
\]

then the Hilbert series of Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}

- If $a = 1$, $k = 0$, $b = 0$, then the Hilbert series is greater for $2m + 1 \leq p \leq mn$
Conjecture

The previous conditions are necessary for the Hilbert series to be greater in F_p than in C.
The previous conditions are necessary for the Hilbert series to be greater in \(\mathbb{F}_p \) than in \(\mathbb{C} \).

Furthermore, the minimal non-symmetric polynomial in \(\mathbb{F}_p \) is of the form

\[
G = P_k^{p^a} \prod_{1 \leq i < j \leq n} (x_i - x_j)^{2b}
\]

where \(P_k \) is a generator of degree \(kn + 1 \) in \(\mathbb{C} \).
Status of Project

Figure: n=4

<table>
<thead>
<tr>
<th>m</th>
<th>p</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Archer Wang (Mentor: Dr. Xiaomeng Xu)
Future Studies

- Generalize results for first problem for generic g
- Compute Hilbert series for finite fields using the representation theory of the Cherednik algebra
Acknowledgements

- Xiaomeng Xu
- Pavel Etingof
- Michael Ren
- the MIT PRIMES Program