Counting Bimonotone Subdivisions

Melinda Sun
Mentor: Dr. Elina Robeva

May 19, 2018
MIT PRIMES Conference
Subdivisions

- **Subdivision**: Of a point configuration A in \mathbb{R}^2, a subdivision is a collection of convex polygons such that:
 - The union of the polygons is $\text{conv}(A)$
 - Each pair of polygons does not intersect or intersects at a common vertex or side
Subdivisions

- **Subdivision**: Of a point configuration A in \mathbb{R}^2, a subdivision is a collection of convex polygons such that:
 - The union of the polygons is $\text{conv}(A)$
 - Each pair of polygons does not intersect or intersects at a common vertex or side

- **Triangulation**: A subdivision where all polygons are triangles
Subdivisions

- **Subdivision**: Of a point configuration A in \mathbb{R}^2, a subdivision is a collection of convex polygons such that:
 - The union of the polygons is $\text{conv}(A)$
 - Each pair of polygons does not intersect or intersects at a common vertex or side

- **Triangulation**: A subdivision where all polygons are triangles
Bimonotone

- **Bimonotone polygon**: all edges have vertical or nonnegative slope
- **Bimonotone subdivision**: all polygons of the subdivision are bimonotone
Bimonotone

- **Bimonotone polygon**: all edges have vertical or nonnegative slope
- **Bimonotone subdivision**: all polygons of the subdivision are bimonotone
Tent Functions

- A point configuration A and a set of heights (poles) create a tent function f
- f induces a subdivision of projected polygons on the plane of A
Tent Functions

- A point configuration A and a set of heights (poles) create a tent function f
- f induces a subdivision of projected polygons on the plane of A
Supermodularity

- f is supermodular if
 \[f(x) + f(y) \leq f(\min(x, y)) + f(\max(x, y)) \text{ for all } x, y \]
Supermodularity

• f is supermodular if

 \[f(x) + f(y) \leq f(\min(x, y)) + f(\max(x, y)) \]

 for all x, y

• To estimate an unknown distribution, the density function $p = \exp(f)$ is used, where the poles of the tent function f are from observed data
Supermodularity

• f is supermodular if
 $$f(x) + f(y) \leq f(\min(x, y)) + f(\max(x, y))$$ for all x, y

• To estimate an unknown distribution, the density function $p = \exp(f)$ is used, where the poles of the tent function f are from observed data

• If f is supermodular, then the random variables defined by p are positively dependent on each other
Supermodularity

• f is supermodular if

 \[f(x) + f(y) \leq f(\min(x, y)) + f(\max(x, y)) \text{ for all } x, y \]

• To estimate an unknown distribution, the density function $p = \exp(f)$ is used, where the poles of the tent function f are from observed data.

• If f is supermodular, then the random variables defined by p are positively dependent on each other.

• Example: An IQ test with n questions

 • The joint distribution of n scores takes $f(x)$
 • The score for each question has a density
 • Scores on separate questions are positively correlated
Bimonotone and Supermodularity

• For a tent function f, the subdivision is bimonotone if and only if f is supermodular
Bimonotone and Supermodularity

- For a tent function f, the subdivision is bimonotone if and only if f is supermodular.
- The goal of this project is to count the number of bimonotone subdivisions and compare this to the total number of subdivisions.
Our Work: $2 \times n$ Grids

- First consider subdivisions of a $2 \times n$ lattice grid
Our Work: $2 \times n$ Grids

- First consider subdivisions of a $2 \times n$ lattice grid
- To use a recursion, we extend this to grids with m points at the top and n at the bottom
Recursion

- Using inclusion-exclusion for the unconnectedness of the top right and bottom right vertices, the number of bimonotone subdivisions is

\[A_{m,n} = \begin{cases} 2A_{m,n-1} + 2A_{m-1,n} - 2A_{m-1,n-1}, & m > n \\ 2A_{m,n-1}, & m = n \\ 0, & m < n \end{cases} \]
Recursion

• Similarly, for the total number of subdivisions,

\[B_{m,n} = 2A_{m,n-1} + 2A_{m-1,n} - 2A_{m-1,n-1} \]
Theorem

For a lattice grid with \(m \) points at the top and \(n \) points at the bottom:

- The number of bimonotone subdivisions is given by
 \[A_{m,n} = \frac{2^{m-2}}{(n-1)!} P_n(m), \]
 where \(P_n(m) \) is some monic polynomial with degree \(n - 1 \).

- The total number of subdivisions is given by
 \[B_{m,n} = \frac{2^{m-2}}{(n-1)!} Q_n(m), \]
 where \(Q_n(m) \) is some monic polynomial of degree \(n - 1 \).
• Proof by induction
• We repeatedly substitute smaller terms into the recursion, giving for $A_{m,n}$:

$$\frac{2^{m-2}}{(n-2)!} (P_{n-1}(m) + (P_{n-1}(m) + P_{n-1}(m-1) + \cdots + P_{n-1}(n)))$$
Proof Idea

- Proof by induction
- We repeatedly substitute smaller terms into the recursion, giving for $A_{m,n}$:

$$
\frac{2^{m-2}}{(n-2)!} \left(P_{n-1}(m) + (P_{n-1}(m) + P_{n-1}(m-1) + \cdots + P_{n-1}(n)) \right)
$$

- We find the highest degree term using Faulhaber’s formula for the sum of the pth powers of the first m positive integers:

$$
\sum_{k=1}^{m} k^p = \frac{m^{p+1}}{p+1} + \frac{1}{2} m^p + \sum_{k=2}^{p} \frac{B_k}{k!} \frac{p!}{(p-k+1)!} m^{p-k+1}
$$

where the B_k are the Bernoulli numbers
Future Research

• Prove these conjectures:
 • The number of bimonotone subdivisions of a $2 \times n$ lattice grid is 2^{n-1} times the nth large Schröder number
 • The total number of subdivisions of a $2 \times n$ lattice grid is 2^{n-1} times the nth Delannoy number
Future Research

- Prove these conjectures:
 - The number of bimonotone subdivisions of a $2 \times n$ lattice grid is 2^{n-1} times the nth large Schröder number
 - The total number of subdivisions of a $2 \times n$ lattice grid is 2^{n-1} times the nth Delannoy number
- Find recursive formulas for $3 \times n$ and larger lattice grids
- Find closed form expressions for the number of bimonotone/total subdivisions
- Extend formulas into higher dimensions
Acknowledgements

I would like to thank:

- My mentor, Dr. Elina Robeva
- The MIT Math Department
- The MIT-PRIMES Program
- Dr. Slava Gerovitch
- Dr. Tanya Khovanova