Generating Functions in Combinatorics

Aneesha Manne, Lara Zeng Mentor: Uma Roy

Bedford High School, Belmont High School

April 19-20, 2018
MIT PRIMES Conference

A Motivating Problem

Problem: A fish population starts out at 50 fish and grows 4-fold each year with 100 fish dying each year

Mathematical Formalism

- Population at time t is p_{t}
- Recurrence: $p_{t}=4 \cdot p_{t-1}-100$
- Base case: $p_{0}=50$

Natural question: What is p_{t} for any t ?

A Fish population

Recurrence and Base Case: $\quad p_{t}=4 \cdot p_{t-1}-100$, with $p_{0}=50$

Iterative Calculations

- $p_{0}=50$
- $p_{1}=100$
- $p_{2}=300$
- $p_{3}=1100$
- $p_{4}=4300$

We want a closed form!

Generating functions

A generating function takes a sequence of real numbers and makes it the coefficients of a formal power series.

Generating Function

Let $\left\{f_{n}\right\}_{n \geq 0}$ be a sequence of real numbers. Then the formal power series

$$
F(x)=\sum_{n \geq 0} f_{n} x^{n}
$$

is called the ordinary generating function of the sequence $\left\{f_{n}\right\}_{n \geq 0}$.

Formal Power Series

When using generating functions we will look at power series formally, meaning we ignore convergence.

Convergence

Consider the power series expansion

$$
\frac{1}{1-x}=1+x+x^{2}+\ldots
$$

When $|x|<1$, you can plug in x and the RHS $=$ LHS. For example, when $x=\frac{1}{2}$:

$$
\frac{1}{1-1 / 2}=2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

Formal Power Series Cont.

Example Cont.

$$
\frac{1}{1-x}=1+x+x^{2}+\ldots
$$

When $|x|>1$, plugging in x does not yield meaningful equalites. Consider $x=2$:

$$
\frac{1}{1-2}=-\frac{1}{2} \neq 1+2+4+8+\ldots=\infty
$$

Formal power series: Do not plug in values for x, because it is meaningless! We only care about the coefficients of the series.

Generating Functions for Solving Fish Population Problem

Define the generating function:

$$
G(x)=\sum_{n \geq 0} p_{n} x^{n}
$$

First few terms: $G(x)=50+100 x+300 x^{2}+\ldots$
Express Recurrence: $p_{t+1}=4 \cdot p_{t}-100$

$$
\begin{gathered}
\sum_{n \geq 0} p_{n+1} \cdot x^{n+1}=\sum_{n \geq 0}\left(4 \cdot p_{n}-100\right) \cdot x^{n+1} \\
\quad=\sum_{n \geq 0} 4 \cdot p_{n} \cdot x^{n+1}-\sum_{n \geq 0} 100 \cdot x^{n+1}
\end{gathered}
$$

Solving Fish Population Problem Cont.

Generating Function equality:

$$
\sum_{n \geq 0} p_{n+1} \cdot x^{n+1}=\sum_{n \geq 0} 4 \cdot p_{n} \cdot x^{n+1}-\sum_{n \geq 0} 100 \cdot x^{n+1}
$$

- Left hand side: $G(x)-p_{0}$, since it's missing the first term of the sequence $\left\{p_{n}\right\}_{n \geq 0}$
- Right hand side term 1: $4 x \cdot G(x)$
- Right hand side term 2: $-\frac{100 x}{1-x}$, since $\frac{1}{1-x}=1+x+x^{2}+\ldots$

Recurrence in terms of $G(x)$:

$$
G(x)-p_{0}=4 x \cdot G(x)-\frac{100 x}{1-x}
$$

Solving Fish Population Problem Cont.

Want to solve following equation for closed form for p_{t} :

$$
G(x)-p_{0}=4 x \cdot G(x)-\frac{100 x}{1-x}
$$

After rearranging,

$$
G(x)=\frac{p_{0}}{1-4 x}-\frac{100 x}{(1-x)(1-4 x)}
$$

We have obtained an explicit formula for the $G(x)$, the generating function of the sequence $\left\{p_{n}\right\}$.

Finding formula for coefficients

Want closed form for coefficient of x^{n} in $G(x)$ because this is p_{n}.

$$
G(x)=\frac{p_{0}}{1-4 x}-\frac{100 x}{(1-x)(1-4 x)}
$$

First term's contribution is easy to calculate:

$$
\frac{p_{0}}{1-4 x}=50 \sum_{n \geq 0}(4 x)^{n}=50 \sum_{n \geq 0} 4^{n} x^{n}
$$

Finding formula for coefficients cont.

Expanding 2nd term yields confusion:

$$
\frac{100 x}{(1-x)(1-4 x)}=100 x \cdot \sum_{n \geq 0} x^{n} \cdot \sum_{n \geq 0} 4^{n} x^{n}
$$

Another approach: partial fraction decomposition
We want to find constants A and B such that

$$
\frac{100 x}{(1-x)(1-4 x)}=\frac{A}{1-x}+\frac{B}{1-4 x}
$$

With $A=\frac{100}{3}$ and $B=\frac{-100}{3}$,

$$
\frac{100 x}{(1-x)(1-4 x)}=\frac{100}{3} \cdot \frac{1}{1-4 x}-\frac{100}{3} \cdot \frac{1}{1-x}
$$

Using Partial Fractions

$$
\frac{100 x}{(1-x)(1-4 x)}=\frac{100}{3} \cdot \frac{1}{1-4 x}-\frac{100}{3} \cdot \frac{1}{1-x}
$$

Expanding using power series yields:

$$
\frac{100}{3} \cdot \frac{1}{1-4 x}-\frac{100}{3} \cdot \frac{1}{1-x}=\frac{100}{3}\left(\sum_{n \geq 0} 4^{n} x^{n}-\sum_{n \geq 0} x^{n}\right)
$$

Thus 2nd term's contribution to coefficient of x^{n} is:

$$
\frac{100}{3}\left(4^{n}-1\right) .
$$

An explicit formula for p_{n}

Recall

$$
G(x)=\frac{p_{0}}{1-4 x}-\frac{100 x}{(1-x)(1-4 x)}
$$

First term's contribution:

$$
50 \cdot 4^{n}
$$

Second term's contribution:

$$
\frac{100}{3}\left(4^{n}-1\right) .
$$

Combining contributions, closed-form formula for p_{n} is:

$$
p_{n}=50 \cdot 4^{n}-100 \cdot \frac{4^{n}-1}{3} .
$$

Exponential Generating Functions

Exponential generating functions are every similar to ordinary generating functions.

Exponential Generating Function

Let $\left\{f_{n}\right\}_{n \geq 0}$ be a sequence of real numbers. Then the formal power series

$$
F(x)=\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!},
$$

is called the exponential generating function of the sequence $\left\{f_{n}\right\}_{n \geq 0}$.

Intuition: Dividing by n ! allows for f_{n} to grow faster.

Motivating Example

Recurrence Relation: Solve for a_{n} if $a_{0}=1$, and a_{n} satisfies the following recurrence

$$
a_{n+1}=(n+1)\left(a_{n}-n+1\right) .
$$

First few terms

- $a_{0}=1$
- $a_{1}=2$
- $a_{2}=4$
- $a_{3}=9$
- $a_{4}=28$
- $a_{5}=125$

This series grows too fast for an ordinary generating function. Therefore an exponential generating function is used.

Solving recurrence with exponential generating functions

Defining generating function:

$$
A(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}
$$

is the exponential generating function of the sequence $\left\{a_{n}\right\}_{n \geq 0}$.
Expressing recurrence $a_{n+1}=(n+1)\left(a_{n}-n+1\right)$:

$$
\sum_{n=0}^{\infty} a_{n+1} \frac{x^{n+1}}{(n+1)!}=\sum_{n=0}^{\infty} a_{n} \frac{x^{n+1}}{n!}-\sum_{n=0}^{\infty}(n-1) \frac{x^{n+1}}{n!}
$$

Solving recurrence cont.

$$
\sum_{n=0}^{\infty} a_{n+1} \frac{x^{n+1}}{(n+1)!}=\sum_{n=0}^{\infty} a_{n} \frac{x^{n+1}}{n!}-\sum_{n=0}^{\infty}(n-1) \frac{x^{n+1}}{n!}
$$

- $\operatorname{LHS}=A(x)-1$
- RHS first term: $x A(x)$
- RHS second term: $-x^{2} e^{x}+x e^{x}=\left(x-x^{2}\right) e^{x}$

Plugging in above:

$$
A(x)-1=x A(x)-x^{2} e^{x}+x e^{x}
$$

Rearranging yields,

$$
A(x)=\frac{1}{1-x}+x e^{x}
$$

Thus coefficient a_{n} for $\frac{x^{n}}{n!}$ is $a_{n}=n!+n$.

Acknowledgements

- Mentor: Uma Roy
- Parents for driving us to Alewife
- Dr. Slava Gerovitch, Prof. Pavel Etingof, Prof. Tanya Khovanova
- Isabel Vogt for organizing and coordinating
- MIT math department and MIT PRIMES program

References

(Miklos Bona (2012)
A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory

The End

