Problem: A fish population starts out at 50 fish and grows 4-fold each year with 100 fish dying each year

Mathematical Formalism
- Population at time t is p_t
- Recurrence: $p_t = 4 \cdot p_{t-1} - 100$
- Base case: $p_0 = 50$

Natural question: What is p_t for any t?
Recurrence and Base Case: \(p_t = 4 \cdot p_{t-1} - 100 \), with \(p_0 = 50 \)

Iterative Calculations

- \(p_0 = 50 \)
- \(p_1 = 100 \)
- \(p_2 = 300 \)
- \(p_3 = 1100 \)
- \(p_4 = 4300 \)

We want a closed form!
A generating function takes a sequence of real numbers and makes it the coefficients of a formal power series.

Generating Function

Let \(\{f_n\}_{n \geq 0} \) be a sequence of real numbers. Then the formal power series

\[
F(x) = \sum_{n \geq 0} f_n x^n
\]

is called the **ordinary generating function** of the sequence \(\{f_n\}_{n \geq 0} \).
When using generating functions we will look at power series \textit{formally}, meaning we \textit{ignore convergence}.

Convergence

Consider the power series expansion

\[
\frac{1}{1-x} = 1 + x + x^2 + \ldots.
\]

When \(|x| < 1\), you can plug in \(x\) and the RHS = LHS. For example, when \(x = \frac{1}{2}\):

\[
\frac{1}{1 - \frac{1}{2}} = 2 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots.
\]
Example Cont.

\[
\frac{1}{1-x} = 1 + x + x^2 + \ldots.
\]

When \(|x| > 1\), plugging in \(x\) does not yield meaningful equalities. Consider \(x = 2\):

\[
\frac{1}{1-2} = -\frac{1}{2} \neq 1 + 2 + 4 + 8 + \ldots = \infty.
\]

Formal power series: Do not plug in values for \(x\), because it is meaningless! We only care about the coefficients of the series.
Define the generating function:

\[G(x) = \sum_{n \geq 0} p_n x^n. \]

First few terms: \(G(x) = 50 + 100x + 300x^2 + \ldots \)

Express Recurrence: \(p_{t+1} = 4 \cdot p_t - 100 \)

\[\sum_{n \geq 0} p_{n+1} \cdot x^{n+1} = \sum_{n \geq 0} (4 \cdot p_n - 100) \cdot x^{n+1} \]

\[= \sum_{n \geq 0} 4 \cdot p_n \cdot x^{n+1} - \sum_{n \geq 0} 100 \cdot x^{n+1} \]
Generating Function equality:

\[\sum_{n \geq 0} p_{n+1} \cdot x^{n+1} = \sum_{n \geq 0} 4 \cdot p_n \cdot x^{n+1} - \sum_{n \geq 0} 100 \cdot x^{n+1} \]

- Left hand side: \(G(x) - p_0 \), since it’s missing the first term of the sequence \(\{p_n\}_{n \geq 0} \)
- Right hand side term 1: \(4x \cdot G(x) \)
- Right hand side term 2: \(- \frac{100x}{1-x} \), since \(\frac{1}{1-x} = 1 + x + x^2 + \ldots \)

Recurrence in terms of \(G(x) \):

\[G(x) - p_0 = 4x \cdot G(x) - \frac{100x}{1-x} \]
Want to solve following equation for closed form for p_t:

$$G(x) - p_0 = 4x \cdot G(x) - \frac{100x}{1 - x}$$

After rearranging,

$$G(x) = \frac{p_0}{1 - 4x} - \frac{100x}{(1 - x)(1 - 4x)}.$$

We have obtained an explicit formula for the $G(x)$, the generating function of the sequence $\{p_n\}$.
Want closed form for coefficient of \(x^n \) in \(G(x) \) because this is \(p_n \).

\[
G(x) = \frac{p_0}{1 - 4x} - \frac{100x}{(1 - x)(1 - 4x)}.
\]

First term’s contribution is easy to calculate:

\[
\frac{p_0}{1 - 4x} = 50 \sum_{n \geq 0} (4x)^n = 50 \sum_{n \geq 0} 4^n x^n
\]
Expanding 2nd term yields confusion:

\[
\frac{100x}{(1 - x)(1 - 4x)} = 100x \sum_{n \geq 0} x^n \cdot \sum_{n \geq 0} 4^n x^n.
\]

Another approach: partial fraction decomposition

We want to find constants \(A\) and \(B\) such that

\[
\frac{100x}{(1 - x)(1 - 4x)} = \frac{A}{1 - x} + \frac{B}{1 - 4x}.
\]

With \(A = \frac{100}{3}\) and \(B = -\frac{100}{3}\),

\[
\frac{100x}{(1 - x)(1 - 4x)} = \frac{100}{3} \cdot \frac{1}{1 - 4x} - \frac{100}{3} \cdot \frac{1}{1 - x}.
\]
Using Partial Fractions

\[
\frac{100x}{(1-x)(1-4x)} = \frac{100}{3} \cdot \frac{1}{1-4x} - \frac{100}{3} \cdot \frac{1}{1-x}.
\]

Expanding using power series yields:

\[
\frac{100}{3} \cdot \frac{1}{1-4x} - \frac{100}{3} \cdot \frac{1}{1-x} = \frac{100}{3} \left(\sum_{n\geq0} 4^n x^n - \sum_{n\geq0} x^n \right).
\]

Thus 2nd term’s contribution to coefficient of \(x^n\) is:

\[
\frac{100}{3} (4^n - 1).
\]
An explicit formula for p_n

Recall

$$G(x) = \frac{p_0}{1 - 4x} - \frac{100x}{(1 - x)(1 - 4x)}.$$

First term’s contribution:

$$50 \cdot 4^n.$$

Second term’s contribution:

$$\frac{100}{3} (4^n - 1).$$

Combining contributions, closed-form formula for p_n is:

$$p_n = 50 \cdot 4^n - 100 \cdot \frac{4^n - 1}{3}.$$
Exponential generating functions are every similar to ordinary generating functions.

Exponential Generating Function

Let \(\{f_n\}_{n \geq 0} \) be a sequence of real numbers. Then the formal power series

\[
F(x) = \sum_{n \geq 0} f_n \frac{x^n}{n!},
\]

is called the *exponential generating function* of the sequence \(\{f_n\}_{n \geq 0} \).

Intuition: Dividing by \(n! \) allows for \(f_n \) to grow faster.
Motivating Example

Recurrence Relation: Solve for a_n if $a_0 = 1$, and a_n satisfies the following recurrence

$$a_{n+1} = (n + 1)(a_n - n + 1).$$

First few terms

- $a_0 = 1$
- $a_1 = 2$
- $a_2 = 4$
- $a_3 = 9$
- $a_4 = 28$
- $a_5 = 125$

This series grows too fast for an ordinary generating function. Therefore an exponential generating function is used.
Solving recurrence with exponential generating functions

Defining generating function:

\[A(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}, \]

is the exponential generating function of the sequence \(\{a_n\}_{n \geq 0} \).

Expressing recurrence \(a_{n+1} = (n + 1)(a_n - n + 1) \):

\[
\sum_{n=0}^{\infty} a_{n+1} \frac{x^{n+1}}{(n + 1)!} = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n!} - \sum_{n=0}^{\infty} (n - 1) \frac{x^{n+1}}{n!}.
\]
Solving recurrence cont.

\[\sum_{n=0}^{\infty} a_{n+1} \frac{x^{n+1}}{(n+1)!} = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n!} - \sum_{n=0}^{\infty} (n-1) \frac{x^{n+1}}{n!}. \]

- LHS $= A(x) - 1$
- RHS first term: $xA(x)$
- RHS second term: $-x^2 e^x + xe^x = (x - x^2)e^x$

Plugging in above:

\[A(x) - 1 = xA(x) - x^2 e^x + xe^x. \]

Rearranging yields,

\[A(x) = \frac{1}{1 - x} + xe^x. \]

Thus coefficient a_n for $\frac{x^n}{n!}$ is $a_n = n! + n$.

Aneesha Manne, Lara Zeng
Generating Functions

17 / 20
Acknowledgements

Mentor: Uma Roy
Parents for driving us to Alewife
Dr. Slava Gerovitch, Prof. Pavel Etingof, Prof. Tanya Khovanova
Isabel Vogt for organizing and coordinating
MIT math department and MIT PRIMES program
Miklos Bona (2012)
A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory
The End