Discovery of Exon Splicing Relationships Across Cancer Cell Lines

Kevin Hu
Mentor: Dr. Mahmoud Ghandi
8th Annual PRIMES Conference
May 20, 2018
Outline

- MDM4
 - Role in cancer
 - Alternative splicing regulation
 - Copy number effects

- Gene dependency models
 - Known confounding effects
 - Relation with exon splicing

- Future plans
MDM4 and p53

RNA splicing

MDM4 lacking exon 6 fails to suppress p53 activity

Bardot et al. 2015, *Oncogene* 34, 2943-2948
Copy number variation - exon splicing relationships
MDM4 exon 6 splicing is partly driven by a copy number variation
Confounding variables in gene dependency models

Only differential dependency genes have exon-correlated guides

Tumor drivers/essential genes

Tumor suppressors

Non-differential dependency
Does exon splicing confound shRNA gene dependency?

- Differential dependencies
- Non-differential dependencies

Difference in same-exon vs. different-exon correlations
Same-exon - different-exon correlation distribution is right-skewed

Difference in same-exon vs. different-exon correlations
PSMC2 exon-shRNA correlations
PSMC2 exon-shRNA correlations

PSMC2 same exon correlations

PSMC2 different exon correlations
Future plans

- **MDM4**
 - Investigate link between copy number variation and exon 6 splicing

- **Gene dependencies**
 - Could same-exon correlations be due to other factors (similar target sequences, RNA folding regions)?
 - Transform exon splice levels to discrete isoform-level expression levels
 - Are differences in sgRNA/shRNA-level dependencies explained by differential exon splicing?

- **Exon splicing**
 - Look for other predictors of exon splicing in the CCLE (methylation, chromatin profiling, mutations)
Thank you!

- Dr. Mahmoud Ghandi, for his generous guidance and support

- MIT PRIMES, for providing this challenging and rewarding research opportunity

- Dr. James McFarland, for providing the DEMETER2-corrected shRNA dependencies

- My parents, for their support and encouragement