Anti-Ramsey Type Problems

Sean Elliott
Mentor: Dr. Asaf Ferber

May 19, 2018
MIT Primes Conference
Motivation: Ramsey Numbers

- Color each edge of the complete graph K_n red or blue

Ramsey's Theorem:

There is always a blue copy of K_r or a red copy of K_s if n is sufficiently large. The smallest such n is denoted $R(r, s)$. For example, $R(3, 3) = 6$, so we can always find a monochromatic triangle in a K_6.

$r_k(p)$ is the smallest n such that coloring the edges of K_n with k colors will always produce a monochromatic copy of K_p.

Anti-Ramsey Type Problems
Motivation: Ramsey Numbers

Color each edge of the complete graph K_n red or blue

Ramsey's Theorem: There is always a blue copy of K_r or a red copy of K_s if n is sufficiently large. The smallest such n is denoted $R(r, s)$.

For example, $R(3, 3) = 6$, so we can always find a monochromatic triangle in a K_6.

$r_k(p)$ is the smallest n such that coloring the edges of K_n with k colors will always produce a monochromatic copy of K_p.

Anti-Ramsey Type Problems
Motivation: Ramsey Numbers

- Color each edge of the complete graph K_n red or blue
- **Ramsey's Theorem:** There is always a blue copy of K_r or a red copy of K_s if n is sufficiently large. The smallest such n is denoted $R(r, s)$.

Anti-Ramsey Type Problems
Motivation: Ramsey Numbers

- Color each edge of the complete graph K_n red or blue

Ramsey’s Theorem: There is always a blue copy of K_r or a red copy of K_s if n is sufficiently large. The smallest such n is denoted $R(r, s)$.

- For example, $R(3, 3) = 6$, so we can always find a monochromatic triangle in a K_6.

Anti-Ramsey Type Problems
Motivation: Ramsey Numbers

- Color each edge of the complete graph K_n red or blue
- **Ramsey’s Theorem:** There is always a blue copy of K_r or a red copy of K_s if n is sufficiently large. The smallest such n is denoted $R(r, s)$.
- For example, $R(3, 3) = 6$, so we can always find a monochromatic triangle in a K_6.

Anti-Ramsey Type Problems
Motivation: Ramsey Numbers

- Color each edge of the complete graph K_n red or blue
- **Ramsey’s Theorem:** There is always a blue copy of K_r or a red copy of K_s if n is sufficiently large. The smallest such n is denoted $R(r, s)$.
- For example, $R(3, 3) = 6$, so we can always find a monochromatic triangle in a K_6.
- $r_k(p)$ is the smallest n such that coloring the edges of K_n with k colors will always produce a monochromatic copy of K_p.

Anti-Ramsey Type Problems
$r_k(p) - 1$ is the largest n such that K_n can be colored so that every K_p has at least 2 distinct colors.
• $r_k(p) - 1$ is the largest n such that K_n can be colored so that every K_p has at least 2 distinct colors.

Definition

For positive integers p and q with $p \geq 3$ and $2 \leq q \leq \binom{p}{2}$, a (p, q)-coloring is an edge-coloring of K_n where every copy of K_p has at least q distinct colors.
Generalized Ramsey Numbers

- $r_k(p) - 1$ is the largest n such that K_n can be colored so that every K_p has at least 2 distinct colors.

Definition

For positive integers p and q with $p \geq 3$ and $2 \leq q \leq \binom{p}{2}$, a (p, q)-coloring is an edge-coloring of K_n where every copy of K_p has at least q distinct colors.

- $f(n, p, q)$ is the minimal number of colors of a (p, q) coloring of K_n
Generalized Ramsey Numbers

- $r_k(p) - 1$ is the largest n such that K_n can be colored so that every K_p has at least 2 distinct colors.

Definition

For positive integers p and q with $p \geq 3$ and $2 \leq q \leq \binom{p}{2}$, a (p, q)-coloring is an edge-coloring of K_n where every copy of K_p has at least q distinct colors.

- $f(n, p, q)$ is the minimal number of colors of a (p, q) coloring of K_n
- Finding an asymptotic estimate for $f(n, p, 2)$ is equivalent to finding an asymptotic estimate for $r_k(p)$ (difficult).
Example: $f(6,3,2)$

- Since $R(3,3) = 6$, no coloring of K_6 with 2 colors can be a $(3,2)$-coloring. So $f(6,3,2) > 2$.

Anti-Ramsey Type Problems
Example: $f(6,3,2)$

Since $R(3,3) = 6$, no coloring of K_6 with 2 colors can be a $(3,2)$-coloring. So $f(6,3,2) > 2$.

But there does exist a $(3,2)$ coloring using 3 colors, so $f(6,3,2) = 3$:
A (3, 3) coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so $f(n, 3, 3)$ equals n for n odd and $n – 1$ for n even.
Small Cases

- A $(3,3)$ coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so $f(n,3,3)$ equals n for n odd and $n−1$ for n even.
- For $f(n,4,3)$, the best known lower bound is $\Omega(\log n)$ and best known upper bound is $2^{O(\sqrt{\log n})}$ (from a coloring constructed by Mubayi)
A $(3, 3)$ coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so $f(n, 3, 3)$ equals n for n odd and $n – 1$ for n even.

For $f(n, 4, 3)$, the best known lower bound is $\Omega(\log n)$ and best known upper bound is $2^{O(\sqrt{\log n})}$ (from a coloring constructed by Mubayi)

$f(n, 4, 4)$ is known to be $n^{1/2 + o(1)}$ (also due to Mubayi)
More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and q, $f(n, p, q) \leq cn^{\frac{p-2}{2} - q + 1}$

Their proof is nonconstructive (uses probabilistic method).

They also showed that $f(n, p, p)$ has to be polynomial in n.

However, Conlon et al. showed that $f(n, p, p - 1)$ is subpolynomial in n.

Their coloring is a generalization of Mubayi's optimal coloring for $f(n, 4, 3)$.

Anti-Ramsey Type Problems
More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and q, $f(n, p, q) \leq cn\left(\frac{p-2}{\binom{p}{2}}-q+1\right)$

• Their proof is nonconstructive (uses probabilistic method)
More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and q, $f(n, p, q) \leq cn^{\frac{p-2}{p^2-1}}$

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that $f(n, p, p)$ has to be polynomial in n
More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and q, $f(n, p, q) \leq cn^{\frac{p-2}{p-1} - q + 1}$

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that $f(n, p, p)$ has to be polynomial in n
- However, Conlon et al. showed that $f(n, p, p - 1)$ is subpolynomial in n
Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and q,

$$f(n, p, q) \leq cn^{\frac{p-2}{p^2}} - q + 1$$

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that $f(n, p, p)$ has to be polynomial in n
- However, Conlon et al. showed that $f(n, p, p - 1)$ is subpolynomial in n
- Their coloring is a generalization of Mubayi’s optimal coloring for $f(n, 4, 3)$
Our (4,3)-Coloring

Partition \{1, 2, \ldots, n\} into \(t = \lceil 2^{\log n} \rceil \) equally sized sets and label them 1 – \(t \). Do this for \(k = \lceil 2^{\sqrt{\log n}} \rceil \) partitions so that every edge crosses between two sets in some partition.

Anti-Ramsey Type Problems
Our (4,3)-Coloring

Partition \{1, 2, \cdots, n\} into \(t = \lceil 2^{\sqrt{\log n}} \rceil \) equally sized sets and label them \(1 - t \). Do this for \(k = \lceil 2^{\sqrt{\log n}} \rceil \) partitions so that every edge crosses between two sets in some partition.

Anti-Ramsey Type Problems
Our (4,3)-Coloring

Partition \(\{1, 2, \cdots, n\} \) into \(t = \lceil 2^{\sqrt{\log n}} \rceil \) equally sized sets and label them \(1 - t \). Do this for \(k = \lceil 2^{\sqrt{\log n}} \rceil \) partitions so that every edge crosses between two sets in some partition.

For \(e = \{a, b\} \), let \(c_1(e) \) be the smallest \(i \) for which \(e \) is crossing in the \(i \)th partition. In the picture, \(c_1(e) = 2 \).
Our (4,3)-Coloring

Partition \(\{1, 2, \cdots, n\} \) into \(t = \lceil 2\sqrt{\log n} \rceil \) equally sized sets and label them \(1 \cdots t \). Do this for \(k = \lceil 2\sqrt{\log n} \rceil \) partitions so that every edge crosses between two sets in some partition.

- For \(e = \{a, b\} \), let \(c_1(e) \) be the smallest \(i \) for which \(e \) is crossing in the \(i \)th partition. In the picture, \(c_1(e) = 2 \).
- Let \(c_2(e) \) be the pair of labels of the sets \(e \) crosses between in the partition numbered \(c_1(e) \).

Anti-Ramsey Type Problems
Our (4,3)-Coloring

Partition \(\{1, 2, \cdots, n\}\) into \(t = \lceil 2\sqrt{\log n}\rceil\) equally sized sets and label them \(1 - t\). Do this for \(k = \lceil 2\sqrt{\log n}\rceil\) partitions so that every edge crosses between two sets in some partition.

- For \(e = \{a, b\}\), let \(c_1(e)\) be the smallest \(i\) for which \(e\) is crossing in the \(i\)th partition. In the picture, \(c_1(e) = 2\).
- Let \(c_2(e)\) be the pair of labels of the sets \(e\) crosses between in the partition numbered \(c_1(e)\).
- Let \(c_3(e)\) be a binary string of length \(k\) where the \(i\)th entry is 1 iff \(e\) is crossing in the \(i\)th partition. Here \(c_3(e) = (0, 1)\).
Our (4,3)-Coloring

Partition \(\{1, 2, \cdots, n\} \) into \(t = \lceil 2\sqrt{\log n} \rceil \) equally sized sets and label them \(1 - t \). Do this for \(k = \lceil 2\sqrt{\log n} \rceil \) partitions so that every edge crosses between two sets in some partition.

- For \(e = \{a, b\} \), let \(c_1(e) \) be the smallest \(i \) for which \(e \) is crossing in the \(i \)th partition. In the picture, \(c_1(e) = 2 \).
- Let \(c_2(e) \) be the pair of labels of the sets \(e \) crosses between in the partition numbered \(c_1(e) \).
- Let \(c_3(e) \) be a binary string of length \(k \) where the \(i \)th entry is 1 iff \(e \) is crossing in the \(i \)th partition. Here \(c_3(e) = (0, 1) \).
- The triple \((c_1(e), c_2(e), c_3(e)) \) is the color of \(e \).
Our (4,3)-Coloring.

Why does this work?

No monochromatic triangles
This leaves only the following bad K_4s:

In total we used t^2k, which is $2O(\sqrt{\log n})$ since $k = \lceil 2\sqrt{\log n} \rceil$ and $t = \lceil 2\sqrt{\log n} \rceil$.

Anti-Ramsey Type Problems
Our (4,3)-Coloring.

- Why does this work?
- No monochromatic triangles

This leaves only the following bad K_4s:

In total we used t^2k^2 colors, which is $2O(\sqrt{\log n})$ since $k = \lceil 2\sqrt{\log n} \rceil$ and $t = \lceil 2\sqrt{\log n} \rceil$.

Anti-Ramsey Type Problems
Our (4,3)-Coloring.

- Why does this work?
- No monochromatic triangles
- This leaves only the following bad K_4s:

![Graphs](image-url)
Our (4,3)-Coloring.

- Why does this work?
- No monochromatic triangles
- This leaves only the following bad K_4s:

 ![Graphs](image)

- In total we used $t^2 2^k$ colors, which is $2^{O(\sqrt{\log n})}$ since $k = \lceil 2\sqrt{\log n} \rceil$ and $t = \lceil 2\sqrt{\log n} \rceil$.

Anti-Ramsey Type Problems
Modify the above coloring by choosing a coloring on K_t and using this to determine $c_2(e)$.

Anti-Ramsey Type Problems
Future work

- Modify the above coloring by choosing a coloring on K_t and using this to determine $c_2(e)$.
- Work on the lower bound
I would like to thank:

- My mentor, Dr. Asaf Ferber
- The MIT PRIMES-USA program
- The MIT math department
- My parents