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Abstract

The acute set problem asks the following question: what is the maximal cardinality of a
d-dimensional set of points such that all angles formed between any three points are acute?
In this paper, we consider an analogous problem with the condition that the acute set is a
subset of a d-dimensional unit hypercube. We provide an explicit construction and proof to
show that a lower bound for the maximum cardinality of an acute set in {0, 1}d is 22

blog3 dc
.

Using a similar construction, this lower bound is improved to 2d/3. Through a consideration
of points diagonally opposite a particular point on 2-faces, we improve the upper bound to(
1 +

2

d

)
·2d−2. We then seek to generalize these findings and a combinatorial interpretation

of the problem in {0, 1}d.

1 Introduction

In 1972, Danzer and Grünbaum [1] proposed the following question: what is the max-
imal cardinality f(d) of a set of points in d dimensions such that any three points form an
acute triangle? Danzer and Grünbaum proved that f(d) ≥ 2d − 1 and conjectured that
this bound was the sharpest lower bound. In 1983, Erdős and Füredi [2] disproved this

conjecture and provided an exponential bound for higher dimensions: f(d) ≥ 1

2

(
2√
3

)d

.

In 2011, Harangi [3] improved the bound to f(d) ≥ c

(
10

√
144

23

)d

. In April 2017, Za-

kharov [4] improved this bound to f(d) ≥ 2d/2. In September 2017, Gerencsér and
Harangi [5] provided a construction with a (d − 1)-dimensional hypercube to show that
f(d) ≥ 2d−1 + 1. In particular, the growth rate of f(d) is exactly 2 because the upper
bound for the function f(d) is 2d, which is the cardinality of the set of points forming a
d-hypercube.

As a result of the September 2017 finding, the problem of precisely bounding f(d)
may be reframed as: determine a function 1/2 ≤ α(d) ≤ 1 such that f(d) ≈ 2d · α(d).
Due to the difficulty of this problem, we considered the discretized acute set problem.

In this paper, we focus on a variant of the acute set problem — one in which the acute
set is a subset of a {0, 1}d. First, we provide the preliminaries in Section 2, where we detail
the discretized acute set problem and show a construction of an acute set with cardinality
d+ 1 in {0, 1}d. We improve the result of Section 2 by providing in Section 3 a concrete
example of a 9-dimensional acute set of size 16 on a unit hypercube. In Section 4, we
present an explicit construction and proof to show that 22blog3 dc is a lower bound. We then

1



Bounds on the Maximal Cardinality of an Acute Set in a Hypercube S. Karnik

show that a similar construction results in a lower bound of 2d/3. Finally, in Section 5,

we improve the upper bound of the maximal cardinality to
(
1 +

2

d

)
· 2d−2.

2 Maximal Cardinality of Acute Set on an Integer Lattice

Consider the integer lattice formed in d-dimensional space. As before, an acute set is
a set of points such that all angles formed between any three points are acute. We now
define the diameter of a d-dimensional acute set.

Definition 1. The diameter of an acute set is defined as D(d,m) := max(sup |xi − xj|),
where m is the cardinality of the acute set and xi and xj are points in the acute set.

In particular, we have that D(d + 1,m) ≤ D(d,m) and D(d,m) ≤ D(d,m + 1). In
this paper, we consider the case in which the diameter of the acute set is 1, which is
when the acute set is a subset of {0, 1}d. Through simple examples, one can observe that
D(d, d) = 1 and, in particular, we have the following construction for D(d, d + 1). In
studying the bounds of m such that D(d,m) = 1, we note that the lower bounds and
proofs from previous results in Rd cannot serve immediate purpose in context due to the
fact that much of those proofs rely on properties of Rd, such as the slight perturbations
of points on a hypercube.

Theorem 1. In {0, 1}d, the set of points {(0, 0, . . . , 0), (1, 1, . . . , 1, 0), . . . , (0, 1, . . . , 1)},
which consists of the origin and all points in the unit hypercube with exactly one 0 coor-
dinate, forms an acute set for d > 2.

Proof. Let x, y, and z be three elements of this set of points. We wish to show that for all
such x, y, and z, 〈y − x, z − x〉 > 0, 〈x− y, z − y〉 > 0, and 〈x− z, y − z〉 > 0. We now
consider cases based on whether (0, 0, . . . , 0) is among the three-element subset chosen.

Case 1: (0,0, . . . ,0) is one of the 3 points
If (0, 0, . . . , 0) is the middle point of an angle, then the vectors ~v1 and ~v2 originating

from the origin have d− 1 entries equal to 1 and the remaining entry as 0. In particular,
since the position of the 0 entry is distinct between ~v1 and ~v2, 〈~v1, ~v2〉 = d− 2.

Now, we consider the case in which the point (0, 0, . . . , 0) is among the three points
of consideration but is not a middle point. Then originating from some point will be one
vector ~v1 composed of d − 1 entries equal to −1 and one entry equal to 0 and another
vector ~v2 composed of some ordering of d− 2 entry equal to 0, one entry equal to 1, and
the other entry equal to −1. The position of the 0 in ~v1 must correspond to the position
of 1 in ~v2. The position of the −1 in the ~v2 corresponds to the position of −1 in ~v1.
Hence, 〈~v1, ~v2〉 = 1 and the angle formed between ~v1 and ~v2 is acute.

Case 2: (0,0, . . . ,0) is not one of the 3 points
Suppose that none of the points for the angles in consideration are (0, 0, . . . , 0). Let

x, y, and z be the three points. Without loss of generality, let y be the middle point. In
the vectors x − y and z − y, there are d − 2 entries that are equal to 0, one entry equal
to 1, and the remaining entry equal to −1. For all vectors formed by any set of three
points, the arrangements of 0, 1, and −1 are distinct. In the vectors x− y and z− y, the
position of 1 in the ordering must be the same because in the same position of the 0 in
point y. However, the position of −1 in the ordering will not be the same between x− y
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and z − y. Hence, because each −1 is multiplied by 0 and each 1 is multiplied by 1, we
have that 〈x− y, z − y〉 = 1 and the angle ∠xyz is acute.

Let h(d) be the maximal cardinality of an acute set in d-dimensional space such that
D(d, h(d)) = 2. Through calculations found using a Python program, it was determined
that for d = 3, h(d) = 4, for d = 4, h(d) = 5, and for d = 5, h(d) = 6. Although the
data seem to suggest that h(d) is a linear function (and, in particular, d+ 1), an explicit
construction for an acute set in the 9-dimensional hypercube suggests that the size of the
acute set grows at a rate much faster than linear.

3 Construction of an Acute Set in a 9-Dimensional Hypercube

The maximum cardinality of an acute set in a 3-dimensional cube is 4. Let v0 = (0, 0, 0),
v1 = (1, 1, 0), v2 = (1, 0, 1), and v3 = (0, 1, 1) be the points in an acute set in the 3-
dimensional cube. To construct an acute set with diameter 1 in 9-dimensional space,
we consider the concatenation of points forming an acute set in the 3-dimensional cube.
For instance, the point (v0, v0, v0) represents the point (0, 0, 0, 0, 0, 0, 0, 0, 0) in the 9-
dimensional hypercube.

We note that the following set of concatenated points form an acute set in a 9-
dimensional hypercube:

(v0, v0, v0), (v0, v1, v1), (v0, v2, v2), (v0, v3, v3)

(v1, v0, v1), (v1, v1, v2), (v1, v2, v3), (v1, v3, v0)

(v2, v0, v2), (v2, v1, v3), (v2, v2, v0), (v2, v3, v1)

(v3, v0, v3), (v3, v1, v0), (v3, v2, v1), (v3, v3, v2).

From this observation, it must be true that h(9) ≥ 16. In Section 4, we generalize this
construction to find a lower bound for the maximal cardinality of an acute set in {0, 1}d.

4 Lower Bound for h(d)

Let S = {v0, v1, . . . , vh(d)−1} be the points in a set of maximal cardinality in a d-
dimensional hypercube {0, 1} × · · · × {0, 1}︸ ︷︷ ︸

d dimensions

. Similar to the construction in Section 3, we

consider the concatenation of points in the d-dimensional hypercube to form an acute set
of points in a 3d-dimensional hypercube {0, 1} × · · · × {0, 1}︸ ︷︷ ︸

3d dimensions

.

We now let φ(v) be a bijective function such that φ : Zh(d) → S and φ(i) = vr for
some vi ∈ S and r = i (mod h(d)). We concatenate 3 points in S to form the elements
in the constructed set T , a subset of a 3d-dimensional hypercube. We now claim that the
following must be true of T .

Theorem 2. Let T be the set constructed such that for all vi, vj ∈ S, (vi, vj, φ(i+ j)) is
an element of T . Then, T is an acute set.

Proof. Let wi, wj, and wk be three points in the set T . We consider three different cases
based on whether the points wi, wj and wk share the same first d-dimensional point.

Case 1: wi, wj and wk are all different for the first d dimensions
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In this case, we have that the first d dimensions will always result in a positive inner
product because the first d dimensions represent different elements of S. Thus, we must
have that 〈wj − wi, wk − wi〉 > 0, 〈wi − wj, wk − wj〉 > 0, and 〈wi − wk, wj − wk〉 > 0.

Case 2: wi, wj and wk all have the same points for the first d dimensions
In this case, each of the second d dimensions will always be distinct because for all

t ∈ T there exists a unique pair of elements in S for the first two d-dimensional points
of t. Thus, we must, again, have that 〈wj − wi, wk − wi〉 > 0, 〈wi − wj, wk − wj〉 > 0,
and 〈wi − wk, wj − wk〉 > 0.

Case 3: Two of wi, wj and wk have the same points for the first d dimensions
In this case, there are three possibilities — one for each point being a middle point.

Without loss of generality, let wk be the point with different first d dimensions. Suppose
that wk is the middle point. Then, it must be true that 〈wi − wk, wj − wk〉 > 0 because
the first d dimensions result in a positive inner product. Now, without loss of generality,
we consider the case in which wj is the middle point (note that by symmetry, if the angle is
acute when wj is the middle point, the angle formed when wi is the middle point will also
be acute). Let wi = (va, vb, φ(a + b)), wj = (va, vc, φ(a + c)), and wk = (vd, ve, φ(d + e)).
We note that b 6= c. If e 6= b and e 6= c, we must have that 〈wi − wj, wk − wj〉 > 0 because
the second sets of d dimensions are distinct for wi, wj, and wk. Otherwise, without loss
of generality, let e = c. Then, wk = (vd, vc, φ(d+ c)) and 〈wi − wj, wk − wj〉 > 0 because
the third set of d dimensions of wj is distinct from that of wi and wk.

Therefore, T is an acute set.

Remark. In this proof, we never rely on the fact that the acute set of points is a subset
of a hypercube. In particular, we may recognize that such proof may hold in other metric
spaces.

In Section 3, we constructed an acute set of 16 elements created by the function
φ : Z4 → S, where S = {v0, v1, v2, v3} and φ(i) = vi for i ∈ Z4. In the case of d = 3, we
had that h(d) = 4 and h(3d) = 4 · h(d) = 16, the size of the acute set constructed. Here,
we have generalized this construction for all d.

From this theorem, we have that if h(d) is the maximal cardinality of an acute set in
a d-dimensional hypercube, it must be true that (h(d))2 ≤ h(3d) because the elements of
T have every combination of indices in Z2

h(d) for the first two points. As a result, we may
conclude the following corollary.

Corollary 2.1. If h(n) is the maximal cardinality of an acute set in an n-dimensional
hypercube, then h(n) ≥ 22

blog3 nc.

This result was first found in 2006 [6], in which the proof for Theorem 2 similarly
employs a method of concatenating three points and and it was independently found in
this research. However, using the same technique as before, we may improve the bound
to h(d) ≥ 2d/3.

This time, we consider the concatenation of an element in S and two elements in
an acute set in R3. Let R = {w0, w1, w2, w3} be an acute set of maximal cardinality in
{0, 1}3. Now, let ψ(i) be a bijective function such that ψ : Z4 → R and ψ(i) = wi. Now,
let T be the set constructed such that for all vi ∈ S, wj ∈ R, (vi, wj, ψ(i + j)) is an
element of T .

Through a proof provided in this paper and the paper published in 2006, we have the
following theorem.
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Theorem 3. Let d > 2 and let h(d) be the maximal cardinality of an acute set in a
d-dimensional hypercube. Then, h(d) ≥ 2d/3.

Observe that the bound in Theorem 3 is less than the lower bound for the maximal
cardinality of an acute set in Rd. Gerencsér and Harangi [5] constructed an acute set in
Rd−1 and perturbed points of a (d−1)-dimensional hypercube to satisfy the properties of
an acute set. Here, in the discretized version of the acute set problem, such a perturbation
is not possible.

5 Upper Bound for h(d)

To further understand the behavior of h(d), we consider the upper bound of h(d).
With many restrictions in a d-dimensional hypercube, it is possible to decrease the upper
bound for h(d) from the known bound of 2d.

In Theorem 4, we show that no two opposite points in {0, 1}d can both be elements
of an acute set.

Theorem 4. Let d > 2 be the dimension of a hypercube {0, 1}d and h(d) be the maximal
cardinality of an acute subset of the d-dimensional hypercube. Then, h(d) ≤ 2d−1.

Proof. To decrease the upper bound, we consider the possibility of one point and its
opposite point in the hypercube being in the acute set. Let v = (a0, a1, . . . , ad−1) and
v′ = (1− a0, 1− a1, . . . , 1− ad−1) be two opposite points such that ai ∈ {0, 1}. Now, let
w = (b0, b1, . . . , bd−1) be another point in the acute set such that w 6= v and w 6= v′. We
claim that 〈v − w, v′ − w〉 = 0.

For a given position, we have that if ai = 0, then the corresponding position in v−w
would be −bi and the corresponding position in v′−w would be 1−bi. The corresponding
term in the inner product would be 0.

Similarly, we have that if ai = 1, then the corresponding position in v − w would be
1− bi and the corresponding position in v′ − w would be −bi. Again, the corresponding
term in the inner product would be 0.

Hence, among any pair of opposite points in a d-dimensional hypercube, at most one
point may be in the acute set and h(d) ≤ 2d−1.

From Theorem 3, we learn that h(d) is strictly less than f(d), the maximal cardinality
of an acute set in Rd, because 2d−1 + 1 ≤ f(d) [5]. Furthermore, we find that no acute
subset of a d-dimensional hypercube can have maximal cardinality in Rd.

This upper bound can be further improved by fixing one point and considering the
points diagonally opposite the point on 2-faces.

Theorem 5. Let d > 3. Then, h(d) ≤
(
1 +

2

d

)
· 2d−2.

Proof. Without loss of generality, let the origin v0 = (0, 0, . . . , 0) be a point in the acute
set. Then, we consider the points diagonally opposite to (0, 0, . . . , 0) on all of the faces

containing (0, 0, . . . , 0). We further note that there are
(
d

2

)
2-faces of the hypercube

that contain the origin. In particular, all such points diagonally opposite from the origin
are exactly all points with exactly two positions equal to 1.

Without loss of generality, of the
(
d

2

)
points diagonally opposite to (0, 0, . . . , 0), we

let v = (1, 1, 0, . . . , 0) be a point in the acute set consisting of the first two coordinates
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equal to 1 and the rest equal to 0. We now consider another point w diagonally opposite
to (0, 0, . . . , 0). In particular, we have 〈v− v0, w− v0〉 > 0, which means that there must
be a common position in coordinates v and w equal to 1. Again, without loss of generality,
let this new point w = (1, 0, 1, 0, 0, . . . , 0). Now, suppose that we add another new point.
This new point must share a 1 in some common position with each of the other points.
If the new point is of the form (0, 1, 1, 0, . . . , 0), then no other point can be an element
of this acute set. Hence, all other points must be of the form (1, 0, 0, . . . , 0, 1, 0, 0, . . . , 0),
which means that there are at most d− 1 points diagonally opposite from the origin on
subfaces that are part of the acute set. Note that the choice of the fixed point in our
acute set and the choice of which points diagonally opposite from that fixed point are
elements of the acute set were arbitrary.

We now consider the maximum average number of points on a face that are elements
of the acute set. From a given vertex, we have that there are (d−1) 2-faces with 2 points

and
(
d

2

)
− (d− 1) 2-faces with 1 point. Thus, the average number of points on a given

face is:
(d− 1) · 2 +

(
d

2

)
− (d− 1)(

d

2

) =

(
d

2

)
+ (d− 1)(
d

2

) = 1 +
2

d
.

The number of faces on a d-dimensional hypercube is (d − 1) · d · 2d−3. Taking the
overcount into consideration, the total number of points is at most:(

1 +
2

d

)
· (d− 1) · d · 2d−3(

d

2

) =

(
1 +

2

d

)
· 2d−2.

In particular, if the total number of points is greater than
(
1 +

2

d

)
· 2d−2, then the

average number of points per face would be greater than
(
1 +

2

d

)
, and this would violate

the fact that there are at most (d−1) points diagonally opposite from a point on a 2-face
in the acute set by the Pigeonhole principle.

6 Conclusion

In this project, we studied the acute set problem in the integer lattice Zd, in which we
introduced the diameter constraint to control the maximal cardinality of such an acute
set. We then provided a construction of d + 1 points that would form an acute set in a
d-dimensional hypercube. Although data in small dimensions seemed to suggest that the
sharpest lower bound is d+1 (or h(d) grows at a linear rate), we then provided an explicit
construction of a 16-point acute set in a 9-dimensional hypercube from the points forming
an acute set in a cube. From this construction, we generalized to conclude that it is
possible to concatenate three points in a d-dimensional hypercube to form an acute set in
a 3d-dimensional hypercube. In particular, we improved the lower bound for the maximal
cardinality of an acute set in a d-dimensional hypercube to 22

blog2 dc and, subsequently,
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2d/3. Regarding the upper bound of h(d), we found that h(d) ≤
(
1 +

2

d

)
· 2d−2 through

a counting approach.

7 Future Work

For the future, perhaps one may consider the problem purely combinatorially. In
particular, in the case of the acute set problem in the d-dimensional unit hypercube,
the inner product of any two vectors in the hypercube is positive exactly when among
any three points in the unit hypercube, there exist positions forming the set such that
at least one is {1, 1, 0} or {0, 0, 1}, at least one is {1, 0, 1} or {0, 1, 0}, and at least
one is {0, 1, 1} or {1, 0, 0}. Such a question may perhaps be generalized with k − 1
coordinates equal to 1 and 1 coordinate equal to 0 or k − 1 coordinates equal to 0 and 1
coordinate equal to 1: is it true that the maximal cardinality of a set of points so that
any k − 1 dimensional hyperplanes also form acute angles is precisely the same as the
maximal cardinality of a set of points so that there exist positions forming the set such
that at least one is {1, 1, . . . , 1, 0} or {0, 0, . . . , 0, 1}, at least one is {1, 1, . . . , 1, 0, 1} or
{0, 0, . . . , 0, 0, 1, 0}, and so on? Perhaps solving this problem may lead to a combinatorial
approach to precisely determining the maximal cardinality for acute sets.
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