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Abstract

The Bar-Natan homology is a perturbation of the Khovanov homology of a knot. Previous work has

shown that Khovanov homology remains unchanged under Conway mutation of the knot diagram.

We give an exact triangle with three different resolutions of a link and prove several lemmas relating

the dimensions of different Bar-Natan chain complexes and homologies. These allow us to prove

that the dimension of the Bar-Natan homology BNk(L;Z/2Z) is invariant under Conway mutation.
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1 Introduction

Knots are perhaps some of the least abstract mathematical objects, as they are commonly found

in real life. Mathematically, however, a knot is simply an embedding of a circle in R3. Knot theory,

the study of such knots, remains an active field of mathematical research to date. Knot theory has

many applications in fields of science, including the chemistry of DNA and molecular knots. [1]

A knot diagram is a projection of a knot onto a plane. A knot diagram can contain crossings,

or places where the knot crosses itself. Mathematicians consider two knots to be essentially the

same knot if one can continuously deform one knot into the other. Hence the natural definition of

a knot invariant: some quantity that is the same for identical knots (up to deformation). In 1984,

mathematician Vaughan Jones discovered a knot invariant, the Jones polynomial [5], that brought

forth a rush of new interest in knot theory, where many mathematicians attempted to generalize

or apply the Jones polynomial. In the year 2000, mathematician Mikhail Khovanov succeeded

in categorizing the Jones polynomial with the introduction of a new knot invariant, Khovanov

homology [6]. The Khovanov homology has the property that its graded Euler characteristic is

the Jones Polynomial. In 2002, mathematician Dror Bar-Natan defined a variant of Khovanov

homology and proved that this Bar-Natan homology was also a knot invariant [3].

Conway mutations are one of many ways to transform knots. A Conway mutation takes a tangle

of the knot and rotates it 180 degrees, then glues it back into the knot. We note that all mutant

pairs can be drawn in the form shown in Figure 1, as proved in [7].

Figure 1: Mutant knots in standard form. Picture from [7].

Recent work from Bloom and Wehrli has shown that the Khovanov Homology is invariant under

Conway mutation (up to isomorphism) [4]. Lambert-Cole even more recently outlined a simpler

argument for the mutation invariance of Khovanov Homology in [7].

In this paper, we focus on the behavior of Bar-Natan homology over F = Z/2Z under Conway

mutation. Specifically, we construct an exact triangle relating various resolutions of a link in

Lemma 4. By proving several relations on the dimensions of the Bar-Natan chain complexes and

homologies, we are able to use the exact triangle in succession to prove our main result, Theorem

8: for any k ≥ 1, dim(BNk(L)) is invariant under Conway mutation.

3



2 Notation

For precise definitions of the Khovanov homology and the Bar-Natan homology, refer to [9] and

[8]. The field we use is F = Z/2Z, so we may eliminate sign issues.

Throughout this paper we notate BN(L) as the unreduced Bar-Natan homology, and B̃N(L)

as the reduced homology for a link L. The reduced version of the Bar-Natan homology is defined

as follows: we place a point (known as the basepoint) on any part of the knot; in a complete

resolution of the knot, we only choose one of the two generators (specifically, v+) from the circle

which contains the basepoint.

Recall that we create the Khovanov homology by taking the homology of the Khovanov chain

complex, which is constructed from a resolution cube, using specific merge and split formulas for the

differential ([9]). We now alter the complex by tensoring it with F[U ], and then change the merge

and split formulas as shown in [8], to make the Bar-Natan chain complex, which we can take the

homology of to make the Bar-Natan homology. We denote CBN(L), C̃BN(L) as the unreduced and

reduced Bar-Natan chain complexes, respectively. BNk, B̃N
k
, Ck

BN, and C̃k
BN are defined similarly,

but the ring is F[U ]/Uk instead of F[U ] (so that the superscript k simply denotes a change in the

ring). For each of the following results, unless otherwise stated, the result holds true for all k ≥ 1.

Finally, in regards to mutation of links, L1 ∪ L2 denotes the disjoint union of links L1 and L2,

considered as one link; see Figure 2a. L1#L2 denotes the connected sum of L1 and L2 as in Figure

2b.

3 Extending the Argument

We follow Lambert-Cole’s proof in [7] with a few modifications that render the argument suitable

for Bar-Natan Homology. To do so, we prove the many preliminary results below. Throughout this

section, L is a link.

To start, we note that the reduced version of the Bar-Natan homology has some nice properties,

as in this result from [8]:

Lemma 1. B̃Nk(L) does not depend on the choice of basepoint.

This fact allows us to relate the reduced and unreduced versions of the Bar-Natan homology:

Lemma 2. dim(BNk(L)) = 2 dim(B̃Nk(L)).

Proof. Let N denote the unknot. We consider C̃k
BN(L ∪N). We can put the basepoint on N or L,

leading to the following, respectively:

C̃k
BN(L ∪N) ∼= Ck

BN(L),
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and

C̃k
BN(L ∪N) ∼= C̃k

BN(L)⊕ C̃k
BN(L).

When taking homology, we obtain:

BNk(L) = B̃N
k
(L)⊕ B̃N

k
(L),

which implies the result.

Lemma 3. Given any two disjoint links L1 and L2, we have:

1.

Ck
BN(L1 ∪ L2) ∼= Ck

BN(L1) ⊗
F[U ]/Uk

Ck
BN(L2).

2.

C̃k
BN(L1#L2) ∼= C̃k

BN(L1) ⊗
F[U ]/Uk

C̃k
BN(L2).

Proof. (1): For the module structure, we readily see that the generators for both sides are the

same. Leibniz’ rule is used for the differential (∂) of Ck
BN(L1) ⊗

F[U ]/Uk
Ck
BN(L2):

∂X⊗Y (x, y) = (∂Xx, y) + (x, ∂Y y),

where X = Ck
BN(L1), Y = Ck

BN(L2), and x and y are respective elements.

(2): By Lemma 1, we may consider the following basepoint placement on L1, L2, and L1#L2

(basepoints are bolded dots, and the left side of L1 and the right side of L2 are not represented):

(a) L1 ∪ L2 (b) L1#L2

Figure 2: Disjoint union and connected sum

Now, because we essentially omit the circles in the final resolution that contain the basepoint,

we again have a correspondence between the generators for the two sides, and the argument is

similar to the previous.

Let −L be the link L but with all of the orientations reversed ([7]):
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Figure 3: The exact triangle

Lemma 4. There exists an exact triangle

. . .→ BNk(L1#L2)→ BNk(L1#−L2)→ BNk(L1 ∪ L2)→ BNk(L1#L2)→ . . . .

Proof. Consider the resolution cube of the link L1#−L2, which we will write as L. All resolutions

of L contain either L0 or L1, which denote L with a 0 and 1 resolution at the intersecting crossing,

respectively (we abuse notation: L1 is not the same as in the statement of the lemma). The

resolution cube can be divided accordingly into two parts, which we will call the resolution cube

of L0 and L1, respectively. Note that all arrows in the resolution cube of L that go between the

resolution cubes of L0 and L1 point from the resolutions in the cube of L0 to resolutions in the

cube of L1. Thus the Bar-Natan chain complex of L1 is a subcomplex of Ck
BN(L), and the chain

complex of L0 is the quotient complex Ck
BN(L0) = Ck

BN(L)/Ck
BN(L1). This gives us a short exact

sequence:

0→ Ck
BN(L1)→ Ck

BN(L)→ Ck
BN(L0)→ 0.

Theorem 2.1 from [2] shows that the above induces the desired exact triangle in homologies.

Lemma 5. Given an exact triangle of vector spaces:

. . .→ A
g−→ B

f−→ C
h−→ A→ . . . ,

we have the following:

dim(A) = dim(B) + dim(C)− 2 dim(im(f)).

Proof. By the rank-nullity formula and exactness, we have:

dim(A) = dim(im g) + dim(ker g)

= dim(ker f) + dim(imh)

= dim(B)− dim(im f) + dim(C)− dim(kerh)

= dim(B) + dim(C)− 2 dim(im(f)).
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Recall that different orientations of different components on links results in many different

choices of connected sum. However, the following is true:

Lemma 6. BN(L1#L2) is independent of the choice of L1#L2, up to isomorphism.

Proof. Part two of Lemma 3 states that C̃k
BN(L1#L2) ∼= C̃k

BN(L1) ⊗
F[U ]/Uk

C̃k
BN(L2). The Kunneth

formula implies that the Bar-Natan homology of the right side is determined by B̃Nk(L1) and

B̃Nk(L2). Thus, B̃Nk(L1#L2) does not depend on the choice of connected sum. This result is

extended to the unreduced Bar-Natan homology by Lemma 2, which implies that the dimension of

the unreduced Bar-Natan homology as a vector space does not depend on the choice of connected

sum.

Lemma 7. The map in the exact triangle in Lemma 4 for BNk(L1 ∪ L2) → BNk(L1#L2) is

surjective.

Proof. Consider the exact triangle in Lemma 4. By Lemma 6, we know that dim(BNk(L1#−L2)) =

dim(BNk(L1#L2)), and from Lemma 3 we can deduce dim(BNk(L1 ∪L2)) = 2 dim(BNk(L1#L2)).

Now, by Lemma 5 applied to the exact triangle, dimension of the image of the considered map is

dim(BNk(L1#L2)), as desired.

Now we are ready to prove our main result:

Theorem 8. For all k ≥ 1, dim(BNk(L)) is invariant under Conway mutation.

Proof. We have the following diagram corresponding to the links in Figure 4 by Lemma 4, so that

each of the three vertical columns and the three horizontal rows are exact sequences.

�� �� ��
// BN(L0,0)

f0 //

k0
��

BN(L0,1) //

k1
��

BN(L0,∞)

��

//

// BN(L1,0)
f1 //

��

BN(L1,1) //

��

BN(L1,∞)

��

//

// BN(L∞,0) //

��

BN(L∞,1) //

��

BN(L∞,∞) //

��

Note that L∞,1 and L1,∞ are Conway mutants written in standard form (see Figure 1), and

it suffices to prove that dim(BNk(L∞,1)) = dim(BNk(L1,∞)). Lemma 7 implies f0 and k0 are
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Figure 4: Links obtained from resolving two crossings in L∞,∞ on the bottom right. Picture taken

from [7].

surjective, and commutativity of the quotient map with merges and splits implies f1◦k0 = k1◦f0 (See

[9]). We then have im(k1) = im(k1◦f0) = im(f1◦k0) = im(f1). Lemma 6 implies dim(BNk(L0,1)) =

dim(BNk(L1,0)), so by Lemma 5:

dim(BNk(L1,∞)) = dim(BNk(L1,1)) + dim(BNk(L1,0))− 2 dim(im(f1))

= dim(BNk(L1,1)) + dim(BNk(L0,1))− 2 dim(im(k1))

= dim(BNk(L∞,1)).

At this point, it is natural to propose the following conjecture:

Conjecture 9. The Bar-Natan homology BN(L), as a module over F[U ], is invariant under Con-

way Mutation. Similarly, the Bar-Natan homology BNm(L), as a module over F[U ]/Um, is invari-

ant under Conway Mutation.

The main difficulty on the conjecture is due to a lack of Lemma 5 when working with modules

(instead of vector spaces). Therefore, just controlling the dimension of the image of maps in the

exact triangle is not enough to prove Conjecture 9, one needs to better understand these maps as

maps between modules.
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