
Gromov-Hausdorff Distance Between Metric

Graphs

Jiwon Choi
St. Mark’s School

January 2, 2019

Abstract

In this paper we study the Gromov-Hausdorff distance between two
metric graphs. We compute the precise value of the Gromov-Hausdorff
distance between two path graphs. Moreover, we compute the precise
value of the Gromov-Hausdorff distance between a cycle graph and a tree.
Given a graph X, we consider a graph Y that results from adding an edge
to X without changing the number of vertices. We compute the precise
value of the Gromov-Hausdorff distance between X and Y .

1 Introduction

Gromov-Hausdorff distance, a concept that was first introduced by Gromov in
his study of convergence of manifolds [2], is a very important concept in mod-
ern differential geometry because this notion allows us to evaluate the distance
between two distinct metric spaces.

Suppose we have a metric space. The standard notion of distance allows us
to determine the distance between two subspaces of a metric space. However,
when we are considering the distance between two subspaces that intersect, this
definition of distance does not give us enough information to distinguish between
the two subspaces. This definition of distance was later improved by Hausdorff.
Hausdorff proposed a way of finding the distance between two subspaces of
the metric space. Out of all the Hausdorff distances that result from different
isometric embeddings and different metric spaces, the infimum of all of them is
the Gromov-Hausdorff distance. This notion allows us find the distance between
two metric spaces, thus allowing us to compare the two metric spaces.

It is often challenging to compute the exact value of Gromov-Hausdorff dis-
tances since the process involves finding the infimum of all possible Hausdorff
distances. It is relatively simple to find the upper bound for the Gromov-
Hausdorff distance. Because the Gromov-Hausdorff distance is the infimum of
all the Hausdorff distances resulting from different methods of isometric em-
beddings, we only need to exhibit one specific isometric embedding such that
the condition is satisfied in order to find the upper bound. Nevertheless, it is
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more challenging to get the exact lower bound for Gromov-Hausdorff distance
because the condition has to told true for all possible isometric embeddings.

In this paper, we compute the exact value of the Gromov-Hausdorff distance
between specific graphs. The main difficulty in this paper is finding the lower
bound of the Gromov-Hausdorff distance. We start out with Lemma 1, which
gives the lower bound for the Hausdorff distance between two metric graphs.
From Lemma 1, we find out that the Hausdorff distance can be controlled by the
distances between points within the two metric graphs that are being consid-
ered. While finding the lower bound for the Gromov-Hausdorff distance between
specific graphs, we can use these controls to obtain the optimal lower bound.
We compute the exact value of the Gromov-Hausdorff distance between path
graphs, which are graphs that can be drawn so that all of their vertices and
edges lie on a single straight line. Path graphs are subgraphs of many more
complicated graphs. Therefore, the result we get for path graphs prove to be
significant when we later compute the Gromov-Hausdorff distance between more
complicated graphs. We consider other graphs such as cycle graphs and trees.

Finding the Gromov-Hausdorff distance between two graphs has various ap-
plications. In the biostatistics field, these results may be helpful when com-
paring large data sets in high dimensions. H Lee et al in their paper on brain
networks [3] discuss possible applications in the biostatistics field by introduc-
ing the Gromov-Hausdorff distance as an already well-established method in
shape analysis for comparing shapes of networks. Moreover, they [3] argue that
the concept can also be used for comparing the shapes of neural networks in
brains. The Gromov-Hausdorff distance between graphs has further applica-
tions in computer science. In particular, it can be used as a promising method
for shape matching and comparison. Such applications may help improve al-
gorithms for face recognition, pattern recognition, or matching of articulated
objects [4].

In Section 2, basic definitions are discussed. More specifically, the definitions
of the Hausdorff distance and the Gromov-Hausdorff distance are discussed. In
Section 3, the proof of the fundamental lemma is given. Section 4 and Section
5 are devoted to computing the exact value of the Gromov-Hausdorff distance
between graphs using the lemma. In Section 6, future directions are discussed.

2 Basic definitions

Definition 1. Let X be an arbitrary set. A function d : X ×X → R ∪ {∞} is
a metric on X if the following conditions are satisfied for all x, y, z ∈ X:

(1) Identity: d(x, y) = 0 ⇐⇒ x = y,
(2) Commutativity: d(x, y) = d(y, x),
(3) Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z).

Elements of X are called points of the metric space; d(x, y) refers to the
distance between points x and y. The Euclidean distance in R2 is an example
of a metric.
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Definition 2. Given a metric space X, a map of f : X → Z is called an
isometric embedding if for all x1, x2 ∈ X: dX(x1, x2) = dZ(f(x1), f(x2)). The
metric on Z is denoted as dZ .

An isometric embedding of X into metric space Z is distance preserving.
Using isometric embedding, we can compute the distance between two different
spaces by embedding them into a metric space Z.

Definition 3. A graph G is an ordered pair G = (V,E) consisting of a set V
of vertices, nodes or points together with a set E of edges, which are 2-element
subsets of V .

Remark 1. All graphs mentioned in this paper are finite graphs.

Definition 4. Given a point x and a graph Y embedded into a metric space
Z, the distance between point x and graph Y is defined as

dZ(x, Y ) = inf
y∈Y

dZ(x, y).

Definition 5. Given two graphs X,Y isometrically embedded into a metric
space Z, for all x ∈ X, y ∈ Y , the Hausdorff distance between X and Y is

dH(X,Y ) = max(sup
x∈X

dZ(x, Y ), sup
y∈Y

dZ(X, y)).

In a metric space Z, there exists a shortest distance from point x ∈ X to
Y . Similarly, there exists a shortest distance from point y ∈ Y to X. Out
of all these distances, the Hausdorff distance between X and Y is the longest
distance.

Remark 2. We will say that vertices x and y correspond to each other if d(x, y) =
dHX,Y .

Definition 6. The Gromov-Hausdorff distance between two graphs X and Y
is

dGH(X,Y ) = inf
i:X↪→Z,j:Y ↪→Z

dH(i(X), j(Y )).

The Gromov-Hausdorff distance between X and Y is defined to be the in-
fimum of all numbers dH(i(X), j(Y )) for all metric spaces Z and all isometric
embeddings i : X → Z and j : Y → Z. There are infinitely many isomet-
ric embeddings of X and Y into any metric space Z and different Hausdorff
distances resulting from them. Out of all possible Hausdorff distances, the
Gromov-Hausdorff distance between X and Y is the infimum.

Remark 3. When proving the lower bound for the Gromov-Hausdorff distance,
the lower bound must hold true for all possible Hausdorff distances. When prov-
ing the upper bound for the Gromov-Hausdorff distance, showing one specific
isometric embedding that exhibits a Hausdorff distance bounded by the upper
bound.
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Definition 7. Take two graph X, Y with each n and m vertices Let us denote
the vertices of X as xi for all 1 ≤ i ≤ n and the vertices of Y as yj for all
1 ≤ j ≤ m. Then, isometrically embed graphs X, Y into a metric space Z. We
say that xi corresponds to yj if

dZ(xi, yj) = dZ(xi, Y ).

In the rest of this section, we will define specific graphs that will play an
important role in the paper later.

Definition 8. We say that graph Pm is a path graph of length m−1 if it consists
of m vertices and m− 1 edges. Denote the vertices as vi for all 1 ≤ i ≤ m. All
vertices vi other than v1 and vm are connected to vi−1 and vi+1. We call v1 and
vm endpoints, and they are only connected to v2 and vm−1 respectively.

Figure 1 is a path graph with 6 vertices and 5 edges.

Figure 1: P6.

Definition 9. A graph Cn is a cycle graph if it consists of n ≥ 3 vertices
v1, v2, . . . vn and n edges, and there is an edge between vm and vm+1 for all
1 ≤ m ≤ n− 1 and an edge between v1 and vn.

Figure 2 is a cycle graph with 5 vertices and 5 edges.

Figure 2: C5.

Definition 10. A graph X is a tree if it is a set of connected edges containing
no cycle graphs as a subgraph.

In other words, a tree graph is a connected acyclic graph. Figure 3 shows
examples of a tree graph.

Figure 3: Tree graphs.
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3 Lower Bound for the Hausdorff Distance

In this section, we will prove a fundamental lemma that will help prove the
subsequent theorems in this paper. We use basic definitions to prove this lemma,
which gives us the lower bound for the Hausdorff distance between two graphs
X and Y . Notably, we use the definition of correspondence and the definition
of isometric embedding.

Lemma 1. Take two graphs X, Y and isometrically embed them into a metric
space Z. If xi ∈ X corresponds to yi ∈ Y and xj ∈ X corresponds to yj ∈ Y ,

then dH(X,Y ) ≥ dX(xi,xj)−dY (yi,yj)
2 .

Proof. Because X and Y are isometrically embedded into a metric space Z,

dX(xi, xj) ≤ dZ(xi, yi) + dY (yi, yj) + dZ(xj , yj).

Because xi corresponds to yi and xj corresponds to yj ,

dX(xi, xj) ≤ dZ(xi, Y ) + dY (yi, yj) + dZ(xj , Y ).

Moreover,
dX(xi, xj) ≤ dH(X,Y ) + dY (yi, yj) + dH(X,Y ).

Therefore, we get

dX(xi, xj)− dY (yi, yj) ≤ 2dH(X,Y ),

and
dX(xi,xj)−dY (yi,yj)

2 is the lower bound for dH(X,Y ).

Remark 4. In order to find the best possible lower bound for dH(X,Y ), we want
to maximize dX(xi, xj) and minimize dY (yi, yj).

4 Gromov-Hausdorff Distance Between Two Path
Graphs

We consider the Gromov-Hausdorff distance between two path graphs. To find
the best possible lower bound, we know from Lemma 1 that we must maximize
dX(xi, xj) and minimize dY (yi, yj). In order to do so, we consider the endpoints
of the two path graphs. Finding the Gromov-Hausdorff distance between path
graphs is significant because path graphs are subgraphs of many more compli-
cated graphs. We compute the precise value of the Gromov-Hausdorff distance
between two path graphs.

We prove that dGH(Pm, Pn) ≥ |m−n|
2 by contradiction, and we prove that

dGH(Pm, Pn) ≤ |m−n|2 by exhibiting a special isometric embedding of X,Y into
a metric space Z.
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Theorem 2. Given two graphs Pm and Pn, the Gromov-Hausdorff distance

between Pm and Pn is exactly |m−n|2 .

Proof. Assume m ≥ n.
First, let us prove that dGH(Pm, Pn) ≥ m−n

2 .
By the definition of the Gromov-Hausdorff distance between two spaces X,Y ,

in order to prove dGH(Pm, Pn) ≥ m−n
2 , we need to prove that dH(Pm, Pn) ≥

m−n
2 holds for any isometric embedding of Pm, Pn into Z. By the defini-

tion of Hausdorff distance, we need to prove that either dZ(x, Pn) ≥ m−n
2 or

dZ(Pm, y) ≥ m−n
2 for some point x ∈ Pm and some point y ∈ Pn.

In order to prove this statement, we want to show that supx∈Pm
dZ(Pn, x) ≥

m−n
2 . To maximize the lower bound, we consider the endpoints x1 and xm. In

other words, we want to show that either dZ(Pn, x1) ≥ m−n
2 or dZ(Pn, xm) ≥

m−n
2 . We can prove this by contradiction.

Assume that dZ(Pn, x1) < m−n
2 and dZ(Pn, xm) < m−n

2 . Then, for some i, j
such that 1 ≤ i, j ≤ n, dZ(x1, yi) < m−n

2 and dZ(xm, yj) < m−n
2 . Because Pm

and Pn are path graphs, each edge is of length 1, thus dY (yi, yj) = |i − j| and
dX(x1, xm) = m− 1. Since dZ(x1, yi) <

m−n
2 and dZ(xm, yj) <

m−n
2 ,

dZ(x1, yi) + dY (yi, yj) + dZ(xm, yj) < m− n + |j − i|.

Because isometric embedding is distance-preserving,

dX(x1, xm) ≤ dZ(x1, yi) + dY (yi, yj) + dZ(xm, yj),

and
m− 1 < m− n + |j − i|.

However, this is a contradiction. Thus, either dZ(Pn, x1) ≥ m−n
2 or dZ(Pn, xm) ≥

m−n
2 , and we can conclude that dGH(Pm, Pn) ≥ m−n

2 .
Second, let us prove that dGH(Pm, Pn) ≤ m−n

2 .
In order to prove this, we want to show that there exists an isometric em-

bedding of Pm, Pn into a metric space such that the dH(Pm, Pn) ≤ m−n
2 .

Consider the isometric embedding shown in Figure 4. We first build a pyra-
mid with edges and vertices as shown below. Construct the pyramid so that the
horizontal edges are each of length 1, and the diagonal edges are each of length
1
2 .

Figure 4: Isometric Embedding for dGH(Pm, Pn) ≤ m−n
2
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Consider the bases of the triangles in each layer as path graphs. The first
layer exhibits P2, the second layer exhibits P3, and so on. In this isometric
embedding, dH(Pm, Pn) ≤ m−n

2 .
Thus, since dGH(Pm, Pn) ≥ m−n

2 and dGH(Pm, Pn) ≤ m−n
2 , dGH(Pm, Pn) =

m−n
2 .

5 Gromov-Hausdorff Distance Between Graphs
that Contain Path Graphs as Subgraphs

We consider the Gromov-Hausdorff distance between a cycle graph and a tree.
Burago [1] claims in his book that the Gromov-Hausdorff distance between
two subspaces of two metric spaces is equal to the Gromov-Hausdorff distance
between the two metric spaces. Since path graphs are subgraphs of a cycle
graph, we divide up the cycle graph into multiple path graphs and use Lemma
1 to find the distance between those path graphs and the path graphs found in
the tree.

We prove the lower bound for the Hausdorff distance by contradiction, and
the upper bound is given by exhibiting a specific isometric embedding of the
two graphs into a metric space. To find the best upper bound possible, we
want to show an isometric embedding that minimizes the Hausdorff distance.
Intuitively, we want to divide up the vertices of the cycle graph as evenly as
possible to correspond to each vertex of the tree.

Theorem 3. If Cm is a cycle graph with m vertices and X is a tree where n

vertices with m > n, then dGH(Cm, X) =
dm

n e−1
2 .

Proof. First, we will prove that dGH(Cm, X) ≥ d
m
n e−1
2 . Given all isometric

embeddings of Cm, X into a metric space Z, we can find an isometric embedding
where there are at least

⌈
m
n

⌉
vertices of Cm that correspond to one vertex of

X, using the pigeon hole argument. One resulting Hausdorff distance is greater
than or equal to the Hausdorff distance between a path graph of length

⌈
m
n

⌉
and a path graph of length 1.

Since
⌈
m
n

⌉
vertices correspond to a single vertex in X, the longest possible

distance between two vertices that correspond to the same vertex is greater than⌈
m
n

⌉
. This condition holds for any isometric embedding of Cm and X. Therefore,

if xi and xj are the two vertices that are farthest apart that correspond to the
same vertex yi, then dX(xi, xj) >

⌈
m
n

⌉
. Using Lemma 1,

2dH(Cm, X) ≥
⌈m
n

⌉
− 1,

and thus

dH(Cm, X) ≥
⌈
m
n

⌉
− 1

2
,

for all possible isometric embeddings of Cm and X into a metric space. There-

fore, dGH(Cm, X) ≥ d
m
n e−1
2 .
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Second, we will prove that dGH(Cm, X) ≤ d
m
n e−1
2 . In order to prove this

statement, we need to exhibit an isometric embedding of Cm and X into metric
space Z that satisfies the condition.

Consider the following isometric embedding of Cm and X into a metric space
Z. Let p =

⌈
m
n

⌉
. Call the vertices of Cm vi where 1 ≤ i ≤ m. Then, take the

vertices v1, v1+p, . . . , v1+kp where k is an integer such that 1 + kp ≤ m, and
let them each correspond to a single vertex of X. Make the correspondence
so that each vertex of Cm corresponds to a different vertex of X. Then, take
the remaining vertices and construct the isometric embedding such that two
adjacent vertices of Cm correspond to vertices that are no longer than p apart.
For all vertices of X, at least one vertex of Cm should correspond to a single
vertex of X. Moreover, no more than p vertices of Cm must correspond to the
same vertex of X. This isometric embedding of Cm and X gives us a Hausdorff

distance less than or equal to
dm

n e−1
2 . Therefore, dGH(Cm, X) ≥ d

m
n e−1
2 .

Figure 6 shows the steps of how to construct such an isometric embedding
of C8 and X. The dotted red lines represent correspondence.

Figure 5: Isometric Embedding of C8 and X

Previously, we had used Lemma 1 to prove Theorem 3 by finding the distance
between path graphs that are subgraphs of the cycle graph and the tree. Now we
consider the Gromov-Hausdorff distance between two graphs X and Y with the
same number of vertices and different number of edges. Here, we use a different
approach because the length of the longest path graphs for both X and Y are
equal. We prove the lower bound by contradiction. To prove the upper bound,
we exhibit a specific isometric embedding of X and Y into a metric space where
the vertices of X and Y have a one-to-one correspondence.

Theorem 4. Consider a graph X with m vertices v1, v2, . . . , vm. Add an edge
between vi, vj where 1 ≤ i, j ≤ m and dX(vi, vj) = 2 to create graph Y . Then,
dGH(X,Y ) = 1

2 .
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To prove Theorem 4, we will prove the lower bound of dGH using contra-
diction by Lemma 1. To prove the upper bound, we will show an isometric

embedding that exhibits dH =
dX(vi,vj)−1

2 .

Proof. First, we will prove that dGH(X,Y ) ≥ 1
2 . In order to prove this, we need

to prove that dH(X,Y ) ≥ 1
2 for all possible isometric embeddings of X and Y .

Assume that dH(X,Y ) < 1
2 . Using Lemma 1, we get

dH(X,Y ) >
dX(vi, vj)− dX(wi, wj)

2
.

However, dX(vi, vj) = 2 and dY (wi, wj) = 1. Then, we get dH(X,Y ) > 1
2 , and

this is a contradiction. Therefore, the Hausdorff distance between X and Y is
always greater than or equal to 1

2 for all possible isometric embeddings of X
and Y . Thus, dGH(X,Y ) ≥ 1

2 .
Second, we will prove that dGH(X,Y ) ≤ 1

2 . Consider an isometric em-
bedding of X and Y where all vertices vi, v2, . . . , vm of X each respectively
correspond to w1, w2, . . . , wm of Y , and vice versa. In this isometric embed-
ding, there is a two-way one-to-one correspondence between all the vertices of
X and Y . Figure 5 shows an example of such an isometric embedding. The red
dotted lines represent the two-way correspondence between the vertices. In this
isometric embedding, dH(X,Y ) ≤ 1

2 .

Figure 6: Isometric Embedding of X and Y where m = 7

Because dGH(X,Y ) ≥ 1
2 and dGH(X,Y ) ≤ 1

2 , dGH(X,Y ) = 1
2 .

6 Conclusion and Future Directions

One possibility for future work is a deeper investigation into the Gromov-
Hausdorff distance between two graphs that have the same number of vertices
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and a different number of edges. For example, let us call the original graph
G and the new graph with additional edges but the same number of vertices
G′. Unlike in Theorem 4, we can add more than one edge to create G′. For
these graphs, can we also show that the one-to-one correspondence between the
vertices of the two graphs is the only isometric embedding that works.
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