
A Trust Model in Bootstrap Percolation

Rinni Bhansali and Laura P. Schaposnik

1



Abstract

Bootstrap percolation is a class of monotone cellular automata describing an activation process which
follows certain activation rules. In particular, in the classical r-neighbor bootstrap process on a graph
G, a set A of initially infected vertices spreads by infecting vertices with at least r already-infected
neighbors. Motivated by the study of social networks and biological interactions through graphs, where
vertices represent people and edges represent the relations amongst them, we introduce here a novel
model which we name T -bootstrap percolation (T -BP). In this new model, vertices of the graph G are
assigned random labels, and the set of initially infected vertices spreads by infecting (at each time step)
vertices with at least a fixed number of already-infected neighbors of each label.

The Trust Model for Bootstrap Percolation allows one to impose a preset level of skepticism towards
a rumor, as it requires a rumor to be validated by numerous groups in order for it to spread, hence
imposing a predetermined level of trust needed for the rumor to spread. By considering different random
and non-random networks, we describe various properties of this new model (e.g., the critical probability
of infection and the confidence threshold), and compare it to other types of bootstrap percolation from
the literature, such as U -bootstrap percolation. Ultimately, we describe its implications when applied to
rumor spread, fake news, and marketing strategies, along with potential future applications in modeling
the spread of genetic diseases.
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1 Introduction
Sooner or later most people struggle to find the perfect present: we hear from our son’s friends that certain
remote-controlled helicopter would be so fun for his 10th birthday – but will it be safe? Once we hear from
our son’s friends’ parents that the helicopter is indeed entertaining and safe for his age, we are closer to
buying it. Is this recurrent phenomenon a consequence of a natural instinct that one has, where having the
same information transmitted by different “types” of people makes it become more trustworthy? If so, we
may wonder naturally:

How many different types of people (colleagues, friends, Uber drivers, etc.) should we hear a piece of news
from, before we start transmitting it as a true fact?

Figure 1: Examples of a
social network where dif-
ferent colors–labels–describe
the different types of people
needed for gossip spreading.

Requiring a clear range for sources of information would allow members
of a society to express skepticism towards gossip and fake news. Moreover,
understanding this range could allow various industries to target wisely a min-
imum amount of consumers within each type of people, and use the natural
spreading process of information to continue the marketing on its own.

Bootstrap percolation is a particular class of monotone cellular automata
describing an activation process which follows certain activation rules, and
which has been used to model interactions within societies. In particular, in
the classical r-neighbor bootstrap process on a graph G, a set A of initially
“infected” vertices spreads by infecting vertices with at least r already-infected
neighbors. We shall introduce here a modified version of this model, which we
call Trust Model in Bootstrap Percolation (T -BP), designed to answer an equivalent question to those posed
above:

How does information percolate when a messenger only passes the information on if it has been received
from a number of different sources of certain types?

1.1 Defining the T -BP
Consider a finite or infinite graph G, a number m ∈ N, a trust vector K = (k1, . . . ,km) ∈ Nm of non-negative
numbers, and a set A := A0 of initially “infected” vertices in G. After assigning randomly a label in
{1, . . . ,m} to each vertex, we define bootstrap percolation with trust vector K (this is, a trust model for
bootstrap percolation with level K) as the process where at each time, all of the vertices which have at least
ki adjacent vertices infected with label i become infected. Hence, at each time t, the set of infected vertices
is given by

At+1 = At ∪{v ∈V (G) : |Ni(v)∩At | ≥ ki for i = 1, . . . ,m},

where Ni(v) denotes the set of adjacent vertices to v in G with label i.
Yet while it is of interest to study bootstrap percolation for a fixed trust vector K, it is also important to

consider models where families of trust vectors are allowed at the same time. Following the idea of an update
family U from [8], as described in Section 1.3.2, we shall consider a trust family T := {K1, . . . ,Kn} of trust
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vectors K j = (k j
1, . . . ,k

j
m) ∈ Nm. Then, we shall refer to Trusted Bootstrap Percolation, or T -bootstrap

percolation (T -BP), as the percolation process where A0 := A and

At+1 = At ∪{v ∈V (G) : ∃K j ∈T s.t. |Ni(v)∩At | ≥ k j
i for i = 1, . . . ,m}. (1)

At+1 = At ∪{v ∈V (G) : ∃K j ∈T s.t. |Ni(v)∩At | ≥ k j
i for i = 1, . . . ,m}. (2)

Additionally, denote by f : V (G)→ 1, ...,m the function that assigns the random labels to each vertex of

G and note that N(V ) =
m⋃

i=1
Ni(V ).

1.2 Summary of main results
Along the paper we study the above new model, T -bootstrap percolation, from different perspectives. First,
in Section 2, we look at immunity of vertices, where a vertex v is immune if for v 6∈ A0, then v 6∈ A∞. We
compute the probability that a vertex v of degree d is immune for the following models:
• T -BP as r-bootstrap percolation (see Proposition 7). Consider T -BP on a graph G with multiple

trust vectors of length m whose entries are k j ∈ {0,1}, with exactly r non-zero.
• T -BP with single trust vector K (see Proposition 14). Consider T -BP on a graph G with a single

trust vector K with entries (k1,k2, . . . ,km).
Inspired by the regular structure of natural systems in chemistry and biology, in Section 3 we study

the T -bootstrap percolation on the following two dimensional regular networks which can or can not be
understood through U -bootstrap percolation:
• Striped lattice (A case of U -bootstrap percolation, see Section 3.2.1)
• Diagonal lattice (A case of U -bootstrap percolation, see Section 3.2.2)
• Three-to-One lattice (A case of non-U -bootstrap percolation, see Section 3.3.1)
• Checkerboard lattice (A case of non-U -bootstrap percolation, see Section 3.3.2)
• Mixed lattice (A case of non-U -bootstrap percolation, see Section 3.3.3)
Finally, since social networks are best modeled by random graphs with certain particular density prop-

erties, we dedicate Section 4 to the numerical study of the T -BP on random networks.

1.3 Bootstrap Percolation
Bootstrap percolation was first introduced in the context of disordered magnetic systems in 1979 by Chalupa,
Leath and Reich [10], where the classical r-neighbor bootstrap process on a graph G was studied. Since then,
this process has been investigated on several different kinds of networks including finite grids [1, 3, 12, 13],
trees [4], and random networks [5, 14], and with many different applications in fields such as sociology
[11, 20], physics [17], and epidemiology [7].

1.3.1 Classical Bootstrap Percolation
It is important to note that classical r-neighbor bootstrap percolation is a particular case of T -bootstrap
percolation. In particular, one may consider m = 1, and set T = {K1 = (r)} to recover r-neighbor bootstrap
percolation with only one label, in which if an uninfected vertex has r infected neighbors, it will become
infected in the next time step.

5



1.3.2 U -bootstrap percolation
Recently Bollobás, Smith and Uzzell introduced in [8] a class of percolation models called U -bootstrap
percolation, which includes r-neighbor bootstrap percolation as a special case. These models have certain
update rules encoded in a set U , and in the case of two dimensional lattices, they divided the model into
three classes: subcritical, critical and supercritical. In what follows, we shall describe these models and in
the following sections, we shall study different types of T -BP and describe when they can be obtained as
particular cases of U -bootstrap percolation.

As in the various bootstrap percolation models, consider a graph G with vertex set V (G). For U -
bootstrap percolation in particular, let G = Z2. Then, consider a set A0 ⊂V (G) of initially infected vertices,
where each vertex v ∈ V (G) has probability p of being in A0. In order to determine how this initial in-
fection spreads, consider a finite collection of finite, non-empty subsets U = {X1,X2, ...,Xn} of G. Given
the above, in a U -bootstrap percolation process on G, the set At of infected vertices at time t is defined as
At+1 = At

⋃
{x ∈ G | there exists i ∈ [n] such that Xi + x ∈ At}, where A0 := A is the set of initially infected

vertices, the set U is referred to as the update family, and each Xi as an update rule.

Remark 1. One can see that r-neighbor bootstrap percolation on Zd is an example of a U -bootstrap perco-
lation model, where the update rules are the

(2d
r

)
r-subsets of the neighbors of the origin.

Along the paper we shall write [A] for the set of all vertices that eventually become infected [A] =
∞⋃

t=0
At ,

and say that A is closed under U if we have [A] =A. Following the notation of [8], we consider the unit circle
S1 ∈ R2, and for each unit vector u ∈ S1, let Hu denote the discrete half plane Hu = {x ∈ Z2 : 〈x,u〉< 0}.

Definition 2. A stable direction for U is a unit vector u such that [Hu] = Hu, or in other words, one such
that no new sites become infected when the initial set is equal to the half plane Hu. Otherwise, u is said to
be an unstable direction for U . The set S for U is the set of all stable directions for the update family U :

S := S(U ) = {u ∈ S1 | u is stable for U }.

An update rule X is said to destabilize a direction u ∈ S1 if for U = {X} one has that u 6∈ S(U ). As
mentioned earlier, it is shown in [8] that U -bootstrap percolation models can be classified into three types,
depending on their update families U :
• Supercritical: When there exists an open semicircle C ⊂ S1 which is disjoint from the set of stable

directions S ∩C = /0.
• Critical: When S ∩C 6= /0 for every open semicircle C ⊂ S1, and there is an open semicircle C ⊂ S1

that is disjoint from Int(S ).
• Subcritical: When every open semicircle in S1 has non-empty intersection with Int(S ).
When studying percolation on a graph, one of the most important quantities to consider is the critical

probability pc of the model: this is the probability of initial infection at which the probability of percolation
reaches 1

2 , or the threshold point. Note that percolation means that the entire graph G is infected at t = ∞,
which is equivalent to saying [A0] = A∞ =V (G). Notably, through the above classification system, one can
obtain insight into the value of the critical probability of infection solely based on the update family U .

6



Definition 3. The critical probability of infection is defined as

pc = inf
{

p | Pp(A∞ =V (G))≥ 1
2

}
. (3)

Remark 4. In infinite graphs, Pp(A∞ = V (G)) is always 0 or 1 due to ergodicity (as percolation is a
translation invariant) [8]. In particular, this is the setting considered in [8], and thus in such cases pc =

inf{p | Pp(A∞ =V (G)) = 1} .

When considering critical and supercritical models, it is proven in [8] that pc = 0, whilst in the case of
subcritical models, it is proven in [2] that pc > 0. In later sections, we shall consider the methods of [2] to
develop similar notation and concepts in order to address the numerous similarities between specific forms
of the Trust Model in Bootstrap Percolation and subcritical U -bootstrap percolation.

1.4 Other Models
However, while the activation process for the T -BP is primarily inspired by bootstrap percolation models,
we had many other inspirations as well: One example is the work done in [16], which uses graphs to
represent society and considers various constraints to inhibit the spread of a rumor. In their work, the
authors only allow the rumor to spread to vertices which would be “interested” in it. In a similar fashion,
our T -BP allows a rumor to spread only to vertices which are able to deem it “unbiased”. Additionally, the
use of hierarchical graphs of [16] inspired our use of those networks in Section 2.2.

From a different perspective, [9] introduces the existence of trust (and distrust) among members of a
society. However, this sense of skepticism is introduced differently in [9] than in the T -BP. Their model
bases trust on how much one trusts each person telling one the rumor, whereas the T -BP bases trust on
how many different types of people tell one the rumor (ignoring the strength of one’s relationships). This
difference is crucial because their model emphasizes psychological phenomena such as group-think and
confirmation bias, as one believe rumors which one’s “friends” (and not one’s foes) tell one, whereas ours
is meant to combat these phenomena.

2 A Trust Model for Bootstrap Percolation
Returning to the question from the introduction, we ask: How does information percolate when a messen-
ger only passes the information if it has been received by a number of different sources of certain types?
Motivated by this, we begin our study of the Trust Model for Bootstrap Percolation, defined in Section 1.1.

2.1 Immunity in T -BP
In the following subsections we shall focus on two forms of T -bootstrap percolation that are of particular
interest: T -BP as r-bootstrap percolation, and the simplest T -BP, which has single trust vector K. It should
be noted that within the T -BP, a proportion of the vertices will be immune to the disease: these vertices
cannot belong to At for any t ∈N unless they are in A0, as they cannot become infected from their neighbors.
We shall formally define the set of immune vertices by

I :=
{

v ∈V (G) : ∀K j ∈T , ∃i ∈ [m] s.t. |Ni(v)|< k j
i

}
(4)

where T = {K1, ...,Kn} and K j = {k j
1, ...,k

j
m} ∈ Nm as before.
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In order to study the T -BP on G, the vertices in I need to be removed from G, leading to a modi-
fied graph which sometimes will be disconnected, with some components that might never become infected
depending on the set A0. We shall denote by G := G−I the graph where all immune vertices and corre-
sponding edges have been removed.

In order to understand the likelihood of percolation of a T -BP model and how immune vertices disrupt
percolation on a network, it is useful to introduce the notion of diversity:

Definition 5. The diversity of a vertex v ∈ G in a T -BP model is the number Dv of different labels that
vertices in N(v) have:

Dv := |{i ∈ {1, . . . ,m} : Ni(v) 6= /0}| . (5)

2.1.1 Immunity for T -BP as r-bootstrap percolation
In what follows we shall study immunity of vertices for a form of T -BP known as “T -BP as r-bootstrap
percolation.” The T -BP as r-bootstrap percolation model has trust vectors Ki ∈ Nm which have exactly r
non-zero entries given by 1. In this setting, the cardinality of the trust family |T | is

(m
r

)
, and in this model,

at least r different neighbors must be infected in order for a vertex to be infected (“different neighbors”
meaning neighboring vertices with distinct labels).

However, even before the infection is introduced to a T -bootstrap percolation network, there exist cer-
tain vertices which will never be able to contract the infection (unless, of course, they are infected initially):
these vertices are defined as immune, and we shall them describe as follows: In the case of T -BP as r-
bootstrap percolation, a vertex is immune if it does not have neighbors of at least r distinct labels.

Example 6. Consider T -BP as 3-bootstrap percolation. In this case, the model can be used to represent the
spread of a political rumor among a society of Democrats, Republicans, and Independents. Then, labeling
the vertices with 1,2,3 to represent each political party, suppose that, in order to limit the spread of biased
(and potentially false) information, there exists a rule that an individual will only believe and pass on the
rumor, if he/she heard it from 2 people with different political backgrounds. Then, the trust family in this
model would be T = {(1,1,0),(1,0,1),(0,1,1)}, and this is equivalent to 2-neighbor bootstrap percolation
with 3 labels. Yet, if an individual knows only Democrats, then it is impossible for them to get infected.
Thus, they are immune.

From the definition of T -BP as r-bootstrap percolation, one can see that if a vertex is not immune,
then Dv ≥ r. Hence, it is of particular interest to understand which vertices v have Dv < r, since those will
comprise all of the immune vertices.

Proposition 7. Consider T -BP on a graph G with multiple trust vectors of length m whose entries are
k j ∈ {0,1}, with r non-zero. Then, for

{d
j

}
the Stirling number of the second kind, the probability of

immunity p0(d,m,r) for a vertex v with |N(v)|= d (equivalent to the probability that Dv ≤ r−1) is

p0(d,m,r) := P(Dv ≤ r−1) =

r−1
∑
j=1

[(m
j

)
( j!)
{d

j

}]
md . (6)
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Proof. We shall prove (6) through the principle of inclusion and exclusion. In order to do this, we shall first
calculate the probabilities P(Dv = i) for i = 1, . . . ,r, and use this to calculate p0(d,m,r).

Given a fixed integer n such that 1≤ n≤ r−1, in order to understand P(Dv = n) note that there are
(m

n

)
ways to choose the n acceptable labels that the neighbors may have, or in other words, ways to choose a set
N ⊂ {1, . . . ,m} with |N| = n. Once these labels are chosen, the number of surjective functions (1.1) such
that f (N(v)) = N is given by

n

∑
i=0

(−1)n−i
(

k
i

)
(n− i)d . (7)

To see this, we begin by noting that each of the d adjacent vertices in N(v) has n possible values for its
label, so there are nd functions from N(v) to N. However, not all functions will be different. To visualize
this, consider a Venn diagram where each circle As of the Venn diagram corresponds to a label s, with
1 ≤ s ≤ m, and is defined as As := { f : N(v)→ N : s 6∈ N}. For instance, every object in A1 will be a
possible configuration of neighbors of v such that none of them are of label 1.

All functions which are not surjective to N must appear in some set Ai for i ∈ N. Therefore, the number
of onto functions f : N(V )→N is given by nd−|

⋃
i∈N

Ai|. To calculate this, use the Principle of Inclusion and

Exclusion [18]. Thus, to find |
⋃

i∈N
Ai|, consider ∑ |Ax1 ∩ ...∩Ax j | for all j such that 1 ≤ j ≤ n, and xi ∈ N,

which is given by

∑ |Ax1 ∩ ...∩Ax j |=
(

n
j

)
(n− j)d , (8)

since there are
(k

j

)
ways to choose the j labels out of N that the neighbors cannot occupy, and so there are

n− j options for every neighbor’s label. Thus the number of surjective functions f : N(v)→ N is
n

∑
i=0

(−1)n−i+1
(

n
i

)
(n− i)d . (9)

From the above, one can calculate the number of different label assignments that the vertices N(v) can have,
where Dv = j: there are

(m
j

)
possibilities for j labels, which multiplied by (9) leads to(

m
j

) j

∑
i=0

(−1) j−i+1
(

j
i

)
( j− i)d . (10)

Equivalently, we can write this as
(m

j

)
( j!)
{d

j

}
where

{d
j

}
is the Stirling number of the second kind [19].

Hence, the number of different label assignments to the graph G for which the diversity Dv ≤ r−1 is

r−1

∑
j=1

[(
m
j

)
( j!)
{

d
j

}]
. (11)

Recalling that there are md possible functions f : N(v)→ {1, . . . ,m}, the probability of a vertex having
diversity Dv ≤ r−1 is given by

P(Dv ≤ r−1) =

r−1
∑
j=1

[(m
j

)
( j!)
{d

j

}]
md , (12)

which concludes the proof.
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Corollary 8. In the setting of Proposition 7, the number of vertices of degree d in I satisfies

|I | ≥
r−1

∑
j=1

[(
m
j

)
( j!)
{

d
j

}]
. (13)

Whilst in coming sections we shall analyze the behavior of the T -BP on different graphs, the case of
lattices in Zd will be of much interest, since these will illustrate some general properties of the model.
2.1.2 Immunity for the T -BP
The second form of T -bootstrap percolation we shall consider is the simplest form of T -BP in which the
infection grows with a single rule K = (k1,k2, ...,km). In this setting, given any vertex v with degree d on
a graph G, consider the vector x = (x1,x2, ...,xm) defined by xi = |Ni(v)|, where in particular, ∑

m
i=1 xi = d.

In order for a vertex to be immune under in this setting, one must have xi < ki for some integer i such that
1≤ i≤ m. We will rely on this fact for the following proposition:

Proposition 9. Consider the T -BP, with K = (k1,k2, ...,km). Then, the probability of immunity p0(d,K) for
a vertex v with |N(v)|= d is

p0(d,K) = 1−
d−(∑m−1

l=1 kl)

∑
xm=km

(
d
xm

)(
1
m

)xm
[ d−xm−(∑m−1

l=1 kl)

∑
xm−1=km−1

(
d− xm

xm−1

)(
1
m

)xm−1
[
· · ·

[ d−(∑m
l=3 xl)−k1

∑
x2=k2

(
d− (∑m

l=3 xl)

x2

)(
1
m

)x2
(

1
m

)d−(∑m
l=2 xl)

]
...

]
.

Proof. Let f (a,b,c) be the function defined as

f (a,b,c) :=
a−(∑i−1

l=1 bl)

∑
xi=bi

(
a
xi

)(
1
c

)xi
[ a−xi−(∑i−1

l=1 kl)

∑
xi−1=bi−1

(
a− xi

xi−1

)(
1
c

)xi−1

· · ·

[ a−(∑i
l=3 xl)−b1

∑
x2=b2

(
a− (xi + ...+ x3)

x2

)(
1
c

)x2
(

1
c

)a−(∑i
l=2 xl)

]
...

]
where b = {b1,b2, · · · ,bi} and a,c ∈ N. Then, our claim can equivalently be stated as p0 = 1− f (d,k,m)

for k = {k1,k2, · · · ,km}. Indeed, this can be proven with an inductive argument on the number of available
labels m.

For m = 2, the vector k = {k1,k2} satisfies k1 + k2 ≤ d. We must find the probability of assigning d
vertices to one of 2 labels such that there are at least k1 vertices of label 1 and k2 of label 2–this holds when
a vertex is not immune, so we must then subtract this from 1. This is equivalent to saying there may be x1

vertices of label 1 such that k1 ≤ x1 ≤ d− k2, and all other vertices of label 2. Note that the probability that
there are x1 vertices of label 1 is

( d
x1

)(1
2

)x1 (1
2

)d−x1 .

By summing over all possible values for x1 varying from k1 to d−k2, we obtain the overall p0 for m = 2

and K = {k1,k2} to be p0(d,{k1,k2}) = 1− f (d,{k1,k2},2) = 1−
d−k2

∑
x1=k1

( d
x1

)(1
2

)x1 (1
2

)d−x1 . Now, move on

to m = 3 with k = {k1,k2,k3}. We must find the probability of assigning d vertices to one of 3 labels such
that there are at least k1 vertices of label 1, k2 of label 2, and k3 vertices of label 3. We can approach this
with casework:
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First, note that there may be x1 vertices of label 1 such that k1 ≤ x1 ≤ d− (k2 + k3). Then, take cases
based on the value of x1. Note that given x1, there are d− x1 remaining vertices to consider, with 2 possible
labels to assign them to. Now this question is almost the same as the one with m= 2, with the only difference
being that the probability a vertex occupies one of these two labels (2 or 3) is not 1

2 , but 1
3 . So given x1,

the probability that the number of vertices of label 2 is greater than k2 and the number of vertices of label
3 is greater than k3 is just f (d− x1,{k2,k3},3). This means that given x1, the probability that the vertex is
initially not immune (we are using complementary counting) is:(

d
x1

)(
1
3

)x1

f (d− x1,{k2,k3},3). (14)

Now, as x1 can go from k1 to d− (k2 + k3), p0 for m = 3 is:

p0(d,{k1,k2,k3}) = 1−
d−(k2+k3)

∑
x1=k1

(
d
x1

)(
1
3

)x1

f (d− x1,{k2,k3},3) (15)

= 1− f (d,{k1,k2,k3},3), (16)

which provides the intuition for the inductive step: we must prove that

p0(d,{k1, ...,km}) = 1− f (d,{k1, ...,km},m),

assuming that there exists an i such that p0(d,{k1, ...,ki}) = 1− f (d,{k1, ...,ki}, i).
In order to prove the statement by induction, consider m = i+ 1, and let k = {k1,k2, · · · ,ki+1}. Using

casework once more, let the number of vertices of label 1 be x1 ∈ {k1, . . . ,d−
i+1
∑
j=2

k j}.

Then, there are d− x1 vertices which must have labels in [i+1]/{1}. By the inductive assumption, the
probability that they have at least k j vertices of label j is f (d,{k2, ...,ki+1}, i). However, note that we must
replace the 1

i terms in this formula with 1
i+1 because the probability any individual vertex has a specific

label is now 1
i+1 , meaning that it is actually f (d,{k2, ...,ki+1}, i+1). Also, the probability that there are x1

vertices of label 1 is
( d

x1

)
( 1

i+1)
x1 , so multiplying these two terms one finds that the probability that a vertex

is initially not immune given that it has x1 neighbors of label 1 is :(
d
x1

)(
1

i+1

)x1

f (d,{k2, ...,ki+1}, i+1). (17)

Since x1 can be anything from k1 to d−
i+1
∑
j=2

k j, summing over the possible values of x1 and subtracting

this summation from 1 leads to the probability

p0(d,{k1,k2, · · · ,ki+1}) = 1−
d−(∑i+1

l=2 kl)

∑
x1=k1

(
d
x1

)(
1

i+1

)x1

f (d,{k2, ...,ki+1}, i+1) (18)

= 1− f (d,{k1, ...,ki+1}, i+1). (19)

This concludes the inductive step, finalizing the proof.
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2.1.3 A Network’s Immunity
The formulas for p0 from the previous sections relate only to single vertices. In order to apply this concept
to entire graphs, we look at the expected fraction of immune vertices on any given graph, as a function of its
degree distribution P(d), which is defined to be the fraction of nodes in the graph with degree d.

Definition 10. We shall denote by p0(G,T ) the expected fraction of immune vertices for a T -BP on a
graph G, and by p0(d,T ) the probability of immunity for a vertex of degree d in G.

Corollary 11. In a T -BP on a graph G with degree distribution P(d), one has that the expected fraction of
immune vertices is

p0(G,T ) =
∞

∑
j=0

p0( j,T )P( j). (20)

2.2 Immunity on Hierarchical Networks

Figure 2: The network being built at each step n.

After finding the general formula for p0(G,T ) in
the previous section, we focus our study to hierar-
chical networks. We wish for the graphs we apply
the T -BP on to represent society. A notable quality
of many social networks is that they have a power law degree distribution, which means that the fraction
P(d) of vertices in G having degree d is approximately P(d) ∼ d−γ for some constant γ ∈ R. For social
networks particularly, γ is often around between 2 and 3. However, while social networks are relatively
random, graphs known as deterministic hierarchical networks have power law degree distributions while
also having predetermined configurations, making them “simpler” to study. Thus, it would be interesting to
investigate the T -BP on a deterministic hierarchical network with γ being approximately 2 to 3.

One such example is the graph in Figure 2, defined in [6]: Start with one node, a root node. Add
two more nodes and connect them to the root. At step n, add 3n−1 nodes each, identical to the figure in
the previous iteration (step n− 1) and connect the 2n bottom nodes to the root. The degree exponent is
γ = 1+ ln3

ln2 . From this, and using results from [6], we discover the following proofs:

Lemma 12. At n iterations, there are 2(3n−log2(d+2)) vertices of degree d.

Proof. From [6], at n iterations, there are
(2

3

)
3n−i vertices with degree 2i+1− 2. Then, by substituting d

with 2i+1−2 and solving, we find that there are 2(3n−log2(d+2)) vertices of degree d at this step.

Corollary 13. The probability a vertex has degree d is 2(d +2)− log2 3.

Proof. There are also 3n vertices total at n iterations. So the probability a vertex has degree d at n iterations
is 2(3n−log2(d+2))

3n , or 2(3− log2(d+2)), which can be simplified to 2(d +2)− log2 3.

Proposition 14. The expected fraction of immune vertices p0(G,T ) for this hierarchical network is
2n+1−2

∑
d=1

2(d +2)− log2 3 p0( j,T ).

12



Proof. According to the paper, the maximum degree of any vertex on this graph is the degree of the root,
which at step n is 2n+1− 2. Hence, this is the upper bound of the summation. To find p0, or the expected
fraction of initially immune vertices on this model with update vector set L, we need to find the probability
of immunity for a vertex with j neighbors and then multiply that by the probability that a vertex has j
neighbors. Finally, we need to sum this product across all possible j. Using this method, we find that

p0(G,T ) =
2n+1−2

∑
d=1

2(d +2)− log2 3 p0( j,T ).

2.3 Critical Probability
Having studied the immune vertices of the graph G in the previous section, we shall consider now a T -BP
for which the set A of initially infected vertices is chosen randomly from G, by setting the probability of
being initially infected to be p. To understand this model, consider the critical probability pc of infection
for which the probability of percolation is 1

2 .

Proposition 15. In a T -BP on a graph G, the critical probability of infection satisfies pc ≥ 2p0−1
2p0

.

Proof. The probability that there exists an immune vertex that is not initially infected is p0(1− pc). If
p0(1− pc) >

1
2 , then the probability of percolation is already less than 1

2 , as the existence of an uninfected
dead vertex prevents percolation. So, a lower bound for the critical probability pc is 2p0−1

2p0
.

3 Two-Dimensional Trust Model for Bootstrap Percolation
Following the more general results, the primary focus of our paper lies on the T -BP for m= 2 as 2-bootstrap
percolation on Z2. This model has K = ((1,1)). The primary motivations for using the graph Z2 are because
new bootstrap percolation models are often first studied on the 2D lattice and also because many of our
results are inspired by the past study of U -bootstrap percolation, which has only been studied on Z2.

3.1 Critical probability
Recall the definition of pc, the critical probability of infection. In [8], the authors prove that pc = 0 for criti-
cal and super-critical models. The basis of their argument is that the lack of stable directions in these models
allows for almost unrestrained growth of the infection from multiple directions, ultimately enabling percola-
tion. In contrast, the argument made in [2] proves that pc > 0 when the update family, U , is subcritical. As
a very general outline of the proof, the idea is that since so many directions are strongly stable-in particular,
there are 3 such that the triangle formed by these 3 directions contains the origin-all growth will be bounded
by triangles with side lengths perpendicular to these strongly stable directions if p is small enough, thus
preventing percolation.

Our ultimate goal would be to prove the existence of similar “triangles” on T -BP for m = 2 as 2-
bootstrap percolation, and we conjecture that, similarly to subcritical U -bootstrap percolation,

Conjecture 16. For 2-bootstrap percolation with m = 2 on Z2, pc > 0.

Thus, in the following sections, although we will study various specific models of 2-bootstrap perco-
lation with m = 2 and derive results for each of these models, the motivation will be to develop a greater
intuition for the general 2-bootstrap percolation model, along with terminology which will hopefully be
useful in approaching our conjecture.
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3.2 T -BP as U -Bootstrap Percolation
We shall dedicate this section to the study of a network on which T -BP appears as a form of U -bootstrap
percolation.

3.2.1 Striped T -BP

Figure 3: The lat-
tice configuration for
striped BP, with ver-
tices of label 1 (black)
and 2 (white).

Begin with Z2 and assign to the vertices such that the graph appears “striped”. More
rigorously, assign all vertices with even x-coordinate to label 0, and the remaining
vertices to label 1. Now, the rules of T -BP for m = 2 as 2-bootstrap percolation
still apply: if a vertex has 2 of its neighbors with different labels infected, then it too
becomes infected. So, note that for any vertex on this graph, its vertical neighbors
(the neighbors above and beneath it on the lattice) have the same label, while its
horizontal neighbors have the other label. This gives a fixed set of update rules for
all the vertices, defining U as follows:

Figure 4: The update family U for striped BP. There are 4 rules, shown here.

Lemma 17. The update family U for striped bootstrap percolation is critical.

Proof. The first step is to find the stable directions. We claim that they are {±1,0} and {0,±1}. It is easy
to verify that these work. Additionally, these four stable directions are enough to fulfill the first criteria: that
there must exist a stable direction in every open semicircle C ⊂ S1. Now, we must show that all other u ∈ S1

are not stable. Let us first focus on vectors in the first quadrant. The proof can be extended to the other
quadrants by symmetry. So, in the first quadrant, the border of any Hu will have the following components:

Figure 5: The configurations seen on the border of Hu for unit vectors u in the first quadrant.

Having the first, diagonal, component defined in Figure 5 at some point on the boundary will result in
a newly infected site from the fourth rule in U . Therefore, all u in the first quadrant are unstable. And by
the symmetry of the model, it is clear that the same holds for every quadrant–all u not on the axes will have
the “diagonal components”, and therefore will be unstable. Thus, the only stable directions are the axes.
Additionally, this model lacks any strongly stable directions, making it critical.

3.2.2 Diagonal BP
The next model is another form of 2-bootstrap percolation with m = 2, which again happens to be a form of
U -bootstrap percolation. This we call diagonal bootstrap percolation.
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Figure 6: The lattice
configuration for diag-
onal BP. Black vertices
are label 1, white are la-
bel 2.

Begin with Z2 and assign labels 1 and 2 to the vertices such that the graph
appears “diagonally striped”. Essentially, consider lines of the form y = x+ b, for
b ∈ Z. If b≡ 0,1 mod 4, make all vertices on the line have label 1, and otherwise,
assign them label 2. Next, note that for any vertex on this graph, its neighbors up
and to the left have the same label, while its neighbors down and to the right have
the other label. This gives a fixed set of update rules for every vertex, which defines
U for this model:

Figure 7: The update family U for diagonal BP. There are 4 rules, shown here.

Lemma 18. The update family U for diagonal bootstrap percolation is subcritical.

Proof. A subcritical update family is one such that for every open semicircle C ⊂ S1, there is a strongly
stable direction u such that u ∈C. Now, we claim that every u in quadrants 2 and 4 are strongly stable under
this update family U –which would then satisfy the claim that it is subcritical.

First, it is clear that the axes are stable directions. Next, look at all unit vectors u in the second quadrant.
Note that any such u will create an Hu with the components similar to those Figure 5 somewhere on the
border. The only difference is that the first component (the diagonal one), is reflected across the y-axis.
Clearly, then, no u in the second quadrant will result in new vertices being infected, because X3 and X4 both
will not destabilize any u in the second quadrant. A similar argument can be applied to the fourth quadrant,
and ultimately we find that all u in quadrants 2 and 4 are stable, making U subcritical.

3.3 Other two dimensional T -BP
In what follows we shall introduce two different networks on which the T -BP does not appear as a form of
U -bootstrap percolation.

3.3.1 3-1 BP

Figure 8: The lattice
configuration for 3-1
BP. Black vertices are
label 1, white are label
2.

Next, we investigate a different form of 2-bootstrap percolation with m = 2 which is
not a form of U -bootstrap percolation. This we call 3-1 percolation, and because it
is our first example of a model that is distinctly part of T -BP, but not U -bootstrap
percolation, we use it to define terminology useful to describing T -BP overall. Be-
gin with Z2 and assign labels to the vertices such that the graph appears as shown in
Figure 8.

Lemma 19. 3-1 bootstrap percolation is not a form of U -bootstrap percolation.

Proof. U -bootstrap percolation is defined to be a form of bootstrap percolation where every vertex in the
graph G obeys the same set of update rules, U . However, note that for 3-1 BP, not all vertices have the same
update rule. There are two possible U here:
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Figure 9: The update families U1 and U2 for 3-1 BP. There are 3 rules for each U , shown here.

Thus, 3-1 bootstrap percolation is not a specific case of U -bootstrap percolation.

Because T -BP can have multiple update families U , we must create a version of stable directions that
applies to all T -BP:

Definition 20. The direction u is a d-stable direction if there exists an i ∈ [d] such that [Hu + i] = Hu + i ,
where Hu + i indicates a fixed half-plane Hu shifted to the right i units. A direction u ∈ S1 is a strongly
d-stable direction if u ∈ I, where I ⊂ S1, such that for all directions s ∈ I, s is d-stable.

Definition 21. A graph is d-critical if the set of directions D that are k-stable (where k ≤ d), satisfy that for
every open semicircle C⊂ S1, C∪D 6= /0 and there exists a semicircle C′ ⊂ S1 such that there are no strongly
d-stable directions in C′. A graph is d-subcritical if every open semicircle C ⊂ S1 contains a strongly
d-stable direction.

Lemma 22. The 0-stable directions for 3-1 bootstrap percolation are the axes. Moreover, every other
direction u ∈ S1\{i, j,−i,− j} is 1-stable. Thus, 3-1 BP is 1-subcritical and 0-critical.

Proof. The first part is clear-simply check every element of {i, j,−i,− j} for 0-stability. Next, we focus on
vectors in the first quadrant only. The proof can be extended to the other quadrants by symmetry. So, in
the first quadrant, the border of any Hu will have the components from Figure 5. The diagonal components
imply that first, if the vertices that form the diagonal components are of the same label, then no new sites
will be infected. And if the diagonal vertices are of different labels, new sites will be infected (because
of the second update rule in U1), but translate the boundary by 1 and now they have the same label–so
[Hu +1] =Hu +1. Thus, the directions not on the axes all 1-stable.

3.3.2 Checkerboard BP

Figure 10: Lattice con-
figuration for checker-
board BP. Black ver-
tices are label 1, white
are label 2.

Begin with Z2 and assign labels to the vertices such that the graph appears as shown
in Figure 10. One may note that there are two possible update families which are
both subcritical: S1 is quadrants 2 and 4, while S2 is quadrants 1 and 3:

Figure 11: The update families U1 and U2 for checkerboard BP, with 4 update rules for each.

Lemma 23. The 0-stable directions for checkerboard bootstrap percolation are the axes. Every other di-
rection u ∈ S1\{i, j,−i,− j} is 1-stable. Thus, checkerboard BP is 1-subcritical and 0-critical.
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Proof. This proof is nearly identical to the one for Lemma 22. The first part is clear–simply check every
element of {i, j,−i,− j} for 0-stability. Next, we focus on vectors in the first quadrant only. The proof
can be extended to the other quadrants by symmetry. So, in the first quadrant, the border of any Hu will
have the components from Figure 5. The diagonal components imply that first, if the vertices that form the
diagonal components are of the same label, then no new sites will be infected. And if the diagonal vertices
are of different labels, new sites will be infected (because of the second update rule in U1), but translate the
boundary by 1 and now they have the same label–so [Hu +1] =Hu +1. Thus, the directions not on the axes
all 1-stable.

3.3.3 Mixed BP
We study this model in order to gain insight into less regular models. The network coloring is shown in
Figure 13 (Right). The possible update families are:

Figure 12: The update families U1, U2, U3, and U4 for mixed BP. There are 4, 4, 3, and 3 rules, respectively, for each.

Note the stable directions for each U : the family U1 has stable directions in quadrants 2 and 4; the
family U2 has stable directions in quadrants 1 and 3; the family U3 has stable directions in quadrants 3 and
4; and finally the family U4 has stable directions in quadrants 1 and 2. In Figure 13 (Left) one can see each
vertex by which update family Ui it has.

Figure 13: Left: Red vertices are U1, yellow are U2, green are U3, and purple are U4. Right: the coloring of the mixed
BP, where black vertices are label 1, white are label 2.

To understand the stable directions, consider some unit vector u in the first quadrant. The vertices that
can be newly infected from Hu must have update families U1 or U3, as quadrant 1 is unstable for these
families. By symmetry, it can be seen that as long as a unit vector u has Hu with a boundary such that there
are 3 consecutive diagonal vertices, it is 2-stable. An obvious example would be u = (

√
2

2 ,
√

2
2 ). An example

is displayed in Figure 14, where the process of infection is shown:
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Figure 14: The left lattice contains the vertices labeled by their update family and the right has vertices labeled by
their state (as in Figure 13). Suppose the vertices surrounded by gray-filled circles are initially infected. The newly
infected vertices are surrounded by black circles, and note that they have update families U1 and U3, as both of these
families are unstable for u in the first quadrant.

3.4 Trust Model for T -BP for m = 2 as 2-bootstrap percolation on Z2

So now we turn to the more general model: T -BP for m = 2 as 2-bootstrap percolation on Z2, with random
assigning of labels to vertices. First, we want to be able to predict whether its growth is relatively unbounded,
as in critical and supercritical models, or restricted, as in subcritical models.

Let us consider all possible update families U on the model. The reason that this model does not
already fall under the umbrella of U -bootstrap percolation is because each of its vertices obeys a different
set of update rules depending on the configuration of its neighbors, making our model non-homogeneous.
Therefore, we can ask whether each possible U , based on an individual vertex, is critical or subcritical. We
discover that out of all possible U on this model, only 1

8 are critical-the rest are subcritical. From here,
we arrive at the main Conjecture 16 from Section 3.1. We sketch here an approach that may allow us to
ultimately prove Conjecture 16.

Definition 24. A finitely stable graph is one such that there exists an integer s such that every direction
u ∈ S1 is s-stable.

Conjecture 25. Every finitely stable graph has pc > 0.

We hope to approach this problem with a method similar to that used in [2], as the growth of the infection
would hopefully be bounded by shapes with sides perpendicular to the finitely stable directions of the model.
We also define:

Definition 26. A critical-free network is a network in which the update family for every individual vertex
is subcritical.

Conjecture 27. Every critical-free network has pc > 0.

Then, if a critical-free network has pc > 0, this might be used to show that T -BP with m = 2 as 2-
bootstrap percolation on Z2 in general has pc > 0. This is because since the probability of a vertex being
critical is only 1

8 , we believe the general model is sufficiently similar to the critical-free network that it would
have pc > 0 for similar reasoning.
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4 T -BP on Random Networks
Thus far, we have studied T -BP on fairly regular graphs, mainly for simplicity. However, society is rarely
this regular-which is why for this section, we focus on Erdös-Renyi graphs, or random graphs. The results
are primarily analytical, and the codes can be found in the appendix. In particular, we study the following
properties if the model:
• The initial probability of infection p;
• The critical probability of infection pc;
• The “fraction percolated” (the fraction of graph infected by A∞)
• The probability of having an edge between two vertices, denoted den, short for density.

These probabilities are considered in terms of the main variables of the T -BP model: the time t; the number
m of labels a vertex may have; and the number r of different labels the set of infected neighbors must include
in order for a vertex to be infected. Additionally, throughout this section, for any value requiring multiple
trials, we run 30 trials. Additionally, we always look at graphs of the same size, having n (the number of
vertices, |V (G)|) equal to 10000.

4.1 Varying Density

Figure 15: This shows how the fraction percolated
varies as p varies given various den. Note that n =

10000, m = 3, r = 2. The different densities consid-
ered are shown by the differently colored curves.

The first relationship we consider is the one between the
fraction of a graph that would end up percolated and the
initial probability of infection, p. We analyzed this for
a graph with m = 3 and r = 2, with various values for
den: 0.0005,0.001,0.002,0.003,0.004,0.005. The graph
is shown in Figure 15. Notably, the metastability effect
(where a slight shift in p causes a large jump in the frac-
tion percolated) is evident in this model.

Looking at an individual curve in Figure 15, one can
determine the critical probability pc for a network with m = 3,r = 2, and some fixed value for den. There-
fore, we look at a more consolidated version of the results, as we compare the value of pc to the value of
den. We also expand our investigation to different values of m and r: we set (m,r) to be (3,2),(4,2),(4,3),
and find the graph for pc compared with den in each case, as shown in Figure 16.

Figure 16: This figure shows how pc varies as den varies. Note that n = 10000 for all cases. The pair (m,r) from left
to right is (3,2),(4,2),(4,3).

Interestingly, this seems to follow a power law curve rather precisely. For each pair (m,r), the curve that
best fits is
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• (m,r) = (3,2): pc = 0.000000019568213(den)−1.897075330420950, with correlation coefficient r2 =

0.996.
• (m,r) = (4,2): pc = 0.000000027712517(den)−1.833916660925080, with r2 = 0.995.
• (m,r) = (3,2): pc = 0.0000004688(den)−1.7465029493, with r2 = 0.993.

4.2 Varying the number of required labels

Figure 17: This shows how the fraction per-
colated varies as p does, for various r. Note,
n = 10000, m = 4, den = 0.005.

We once again look at the relationship between the fraction of
a graph that would end up percolated and the initial probabil-
ity of infection, p, but while varying the number of required
labels, r. We begin with a graph with m = 4 and den = 0.005,
with various values for r: 2,3,4, shown in Figure 17.

Notably, the metastability effect is clear here as well. As
in the previous section, we look at each individual curve
and determine the value of pc for each r. Next, we plot
r against pc, for various pairs of parameters (m,den) set to
(4,0.005),(4,0.003),(5,0.003) in Figure 18.

Figure 18: This figure shows how pc varies as r varies. Note that n = 10000 for all cases. The pair (m,den) from left
to right is (4,0.005),(4,0.003),(5,0.003).

Here, the relationship is more difficult to determine, as m and r are both small integers, and so there are
only a small number of data points available to calculate. Nonetheless, it appears to fit a power law curve
again, albeit more weakly in some cases. For each pair (m,den), the curve that best fits is
• (m,den) = (4,0.005): pc = 0.0000135564r5.3410975882, with r2 = 0.997.
• (m,den) = (4,0.003): pc = 0.0000030675r8.0395325660, with r2 = 0.975.
• (m,den) = (5,0.005): pc = 0.0000390111r4.8654339012, with r2 = 0.994.
Overall, pc seems to have a power law relationship with both den and r. This suggests that perhaps the

equation for pc is of the form pc = c f (m)re1den−e2 , where c,e1,e2 are all positive constants. Also, varying
m affects pc directly, which is why the f (m) component is present.

5 Conclusion
Bootstrap percolation has been used for years to model various percolation processes, with applications
spanning from epidemiology to rumor spreading. The Trust Model in Bootstrap Percolation has been de-
veloped to add an extra layer to the current forms of bootstrap percolation, as the vertices of the graphs
on which the infection spreads are now labeled. The T -BP was originally created to represent the spread
of information based on the basic human instinct to trust information more if it comes from a variety of
sources.

20



Using the T -BP, we first looked at the probability of a vertex being immune. We discovered p0, or the
probability of immunity, for vertices on various models: the T -BP as r-bootstrap percolation, the simplest
form of T -BP with only one trust vector, and T -BP on the deterministic hierarchical graph defined in
section 2.2. Following this, we discovered the expected number of vertices which will be immune on any
particular graph with these models. We also offer a lower bound for pc, the critical probability of infection,
based on p0. In Section 3, we looked to the T -BP with m = 2 as 2-bootstrap percolation model on Z2.
By investigating specific “colorings” of this model (equivalently, by assigning labels to the vertices on
Z2 in a non-random fashion), we were able to prove their criticality and define terminology and concepts
which will hopefully be of use in proving the conjecture that pc > 0 for this model. Finally, we concluded
our investigation by looking to random graphs (as these better represent the irregularities of society) and
deriving analytical results on these graphs by running the T -BP model on them computationally.

It would be of interest to explore the T -BP on different graphs. Particularly, deterministic hierarchical
graphs seem promising for applications in sociology and marketing, as society has the same power law
degree distribution as these graphs do. Progressing further, one may study the T-BP on random graphs with
this power law degree distribution, and eventually make the model stochastic by introducing probability of
the infection spreading from one vertex to another.

Additionally, the T-BP has several applications. A prevalent issue today is that of echo chambers. Social
media networks and search engines keep track of news a user responds positively to, and use this information
to suggest future articles and advertisements. However, this means one will increasingly only see material
that is in line with one’s stated interests. This worsens issues of polarization and group-think. To combat
this phenomenon, one might apply the T -BP to these news-presenting algorithms. In turn, it would be
interesting to acquire data from actual social networks and apply the model to it, as was done in [15]. Thus,
we might ask questions such as: does the T -BP prevent the spread of fake or highly biased news? For the
news that does manage to percolate through society, would it slow it down, or speed it up?

Finally, another interesting application to this model is in the study of the spread of genetic diseases.
Apply the T -BP to directed binary trees–representative of family trees and use 2 labels, where each label
represents a possible sex. In order for a vertex to be infected, it must be infected by two vertices above it,
where one vertex is a male and one is female. This represents how dominant X-linked genetic diseases are
only passed on if both the male and female parent have the disease. For recessive X-linked diseases, the
model would need to have 3 labels- an infected female, a female carrier, and an infected male, and would
need to be stochastic (as the probability of infection from a female carrier and infected male would only be
1
2 ).
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