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Jacobian group
Jacobian: Group of all equivalence classes of degree 0

The Jacobian group exhibits many properties:

• The number of elements of the Jacobian equals the number of
spanning trees

|Z/3Z| = 3

• Finite abelian group: Direct product of cyclic groups

(Z/4Z)2

• Torsion group: Every element has finite order, exponent is
LCM of orders
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Examples:

• The Jacobian of a cycle on n vertices is Z/nZ

• The Jacobian of a complete graph on n vertices is (Z/nZ)n−2

• The Jacobian of a wedge of two graphs is the direct product
of the Jacobians of the components.
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Which groups are Jacobians of graphs?

Clancy-Kaplan-Leake-Payne-Wood (2014): The Jacobian of a
random graph is cyclic with probability approximately 80%

Every graph can be decomposed into biconnected components, so
focus on biconnected graph

Conjecture

For every positive integer n there exists a nonnegative integer
kn such that for all integers k > kn, the group (Z/nZ)k is not
the Jacobian of a biconnected graph.
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Known results

Gauded-Jensen-Ranganathan-Wawrykow-Weisman (2014): The
exponent of a biconnected graph is at least the maximum degree
of a vertex in the graph
Corollary: k2 = 0 and k3 = 1

A large biconnected graph has a vertex of high degree or a long
cycle



Known results

Gauded-Jensen-Ranganathan-Wawrykow-Weisman (2014): The
exponent of a biconnected graph is at least the maximum degree
of a vertex in the graph
Corollary: k2 = 0 and k3 = 1

A large biconnected graph has a vertex of high degree or a long
cycle



Approach

High degree vertex and long cycle are opposite ends of spectrum

Given a graph find a divisor with sufficiently large order
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its longest simple cycle.
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Evidence:

• True for arbitrary genus

• True if one edge is added to cycle; may lead to inductive
approach
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