Maps between Critical Groups of Group Representations

Ayush Agarwal
Dougherty Valley High School, California

MIT PRIMES USA
May 20, 2017

Mentor: Christian Gaetz
Massachusetts Institute of Technology
Introduction to Chip Firing

\[[0, 0, 4]^t \quad [1, 1, 2]^t \quad [2, 2, 0]^t \quad [3, 0, 1]^t \]
Definitions for the Graph Case

Let there be v_i chips on node i of our graph G. Define a chip configuration, $v = [v_0, v_1, .., v_l]^t \in \mathbb{N}^{l+1}$.
Definitions for the Graph Case

- Let there be v_i chips on node i of our graph G. Define a chip configuration, $v = [v_0, v_1, \ldots, v_i]^t \in \mathbb{N}^{l+1}$.
- A firing on a graph G is defined by sending a single chip from a node i to all of its neighbours.
Definitions for the Graph Case

- Let there be v_i chips on node i of our graph G. Define a chip configuration, $v = [v_0, v_1, \ldots, v_l]^t \in \mathbb{N}^{l+1}$.
- A firing on a graph G is defined by sending a single chip from a node i to all of its neighbours.
- **Stable Configurations** are chip configurations $v < d^C$ which do not permit additional firings.
Definitions for the Graph Case

- Let there be v_i chips on node i of our graph G. Define a chip configuration, $v = [v_0, v_1, \ldots, v_l]^t \in \mathbb{N}^{l+1}$.
- A firing on a graph G is defined by sending a single chip from a node i to all of its neighbours.
- \textit{Stable Configurations} are chip configurations $v < d^C$ which do not permit additional firings.
- \textit{Recurrent Configurations} are stable configurations v such that for all chip-configurations w, selectively adding chips to w and stabilizing yields v.
A Laplacian Matrix, \(L(G) = D - A \), where \(D \) is the degree matrix such that \(D_{ij} = \text{deg}(\text{node } i) \) if \(i = j \) and \(D_{ij} = 0 \) if \(i \neq j \). \(A \) is an adjacency matrix such that \(A_{ij} \) is the number of edges from node \(i \) to node \(j \).

Define a dynamical firing on node \(i \) that sends \(v \) to \(v - r_i \), where \(r_i \) corresponds to the \(i \)th row of \(L(G) \), the Laplacian Matrix of \(G \). Let \(d^C \) be the diagonal of \(L(G) \).
Example of Graph Laplacian

\[L(G) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \]

\[[0, 0, 4]^t \quad [1, 1, 2]^t \quad [2, 2, 0]^t \quad [3, 0, 1]^t \]
Critical Groups

Definition
Let G be a digraph on n vertices with global sink s. The critical group of G is the group quotient:

$$K(G) = \mathbb{Z}^n / \text{im}(L^t(G))$$

Theorem
Let G be a digraph with a global sink. The set of all recurrent chip on G is an abelian group under the operation $(v, w) \rightarrow \text{stab}(v + w)$, and it is isomorphic via the inclusion map to the critical group $L(G)$.
Revisiting the Graph Example

\[L(G) = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \]

\[K(G) = \mathbb{Z}/3\mathbb{Z} \]

Recurrent Configurations: \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \), \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \), \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \)

Each recurrent must have order 3:
- \([1, 1]^t \) is the zero recurrent of order 1
- \([0, 1]^t \) has order 3 since \(\text{stab}([0, 3]^t) = [1, 1] \)
- \([1, 0]^t \) has order 3 since \(\text{stab}([3, 0]^t) = [1, 1] \)
A group G is a set of elements that are closed under a certain binary operator (the group operation), associativity, identity, and invertibility. For example, the 3rd roots of unity form a group under the operation of normal multiplication.
A group G is a set of elements that are closed under a certain binary operator (the group operation), associativity, identity, and invertibility. For example, the 3rd roots of unity form a group under the operation of normal multiplication.

A representation of a group G on a vector space V, is a homomorphism or map $p : G \rightarrow GL(V)$ such that:

$$p(g_1)p(g_2) = p(g_1g_2)$$

for all $g_1, g_2 \in G$
A group G is a set of elements that are closed under a certain binary operator (the group operation), associativity, identity, and invertibility. For example, the 3rd roots of unity form a group under the operation of normal multiplication.

A representation of a group G on a vector space V, is a homomorphism or map $p : G \to GL(V)$ such that:

$$p(g_1)p(g_2) = p(g_1g_2)$$

for all $g_1, g_2 \in G$

An explicit example for the cyclic group C_3 with elements $1, g, g^2$ is:

$$1 \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad g \rightarrow \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \quad g^2 \rightarrow \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$$
Analogy to the Group Case

For a representation V of the group G: Define the McKay-Cartan Matrix to be $\tilde{C} = nl - M$, where n is the dimension of V and:

$$\chi V \chi_i = \sum m_{ij} \chi_j$$

The chip-firing game applies to any \mathbb{Z}-matrices and we introduce the McKay-Cartan matrix here instead of the graph Laplacian Matrix. The reduced McKay-Cartan Matrix can be defined as the submatrix by removing the first row and column. In this way, the critical group is defined analogously as:

$$K(V) = \mathbb{Z}^n / \text{im}(C^t(V))$$
The Abelian Group Case

In the case of abelian groups, we have a complete classification of the map p and found an exact correspondence of p to regular covering maps on graphs. From Reiner-Tseng, we also have a combinatorial interpretation of the kernel of our map. In fact, we have discovered the following theorem:

Definition

The Cayley Graph of a group G with generating set S has elements of the group as its node and edges between g and gs for elements $s \in S$. The nodes of our Cayley Graph are the irreducible representations of G and the edges correspond to the choice of our faithful representation V.

Theorem

There is a surjection of critical groups from $K(V)$ to $K(\text{Res}_H^G V)$ corresponding to the map p, a graph covering map on the Cayley Graphs of each group.
Let $G = C_6 = \langle g \mid g^6 = e \rangle$ and consider the representation $V = V_{w^2} \oplus V_w$, where V_{w^k} sends $g \rightarrow w^k$ where $w^6 = 1$. Consider the subgroup $H = C_2$ and the regular covering can be depicted by:
General Maps Between Critical Groups

Define the map \(p : \mathbb{Z}^{l+1} \rightarrow \mathbb{Z}^{l'+1} \), with standard matrix \(A \), such that:

\[
\text{Res}V_i = \bigoplus W_j A_{ij}
\]

Theorem

The following diagrams commute:

\[
\begin{array}{ccc}
\mathbb{Z}^{l+1} & \xrightarrow{C^t(V)} & \mathbb{Z}^{l+1} \\
\downarrow p & & \downarrow p \\
\mathbb{Z}^{l'+1} & \xrightarrow{C^t(\text{Res}V)} & \mathbb{Z}^{l'+1}
\end{array}
\]

\[
\begin{array}{ccc}
\mathbb{Z}^{l'+1} & \xrightarrow{C^t(\text{Res}V)} & \mathbb{Z}^{l'+1} \\
\downarrow p^t & & \downarrow p^t \\
\mathbb{Z}^{l+1} & \xrightarrow{C^t(V)} & \mathbb{Z}^{l+1}
\end{array}
\]

Hence, we have a map, \(\pi : K(V) \rightarrow K(\text{Res}V) \) on cosets:

\[
\pi : u + \text{im}(C^t(V)) \rightarrow p(u) + \text{im}(C^t(\text{Res}V))
\]
Proof Outline

- From characters, p corresponds to restriction of virtual representations, considered in \mathbb{Z}^{l+1}
Proof Outline

- From characters, p corresponds to restriction of virtual representations, considered in \mathbb{Z}'^{l+1}
- p^t corresponds to induction of virtual representations in $\mathbb{Z}'^{l'+1}$.
Proof Outline

- From characters, p corresponds to restriction of virtual representations, considered in \mathbb{Z}^{l+1}
- p^t corresponds to induction of virtual representations in $\mathbb{Z}^{l'+1}$.
- Check that $\text{Res}V_1 \otimes \text{Res}V \cong \text{Res}(V_1 \otimes V)$ (Commutativity with M)
Proof Outline

- From characters, p corresponds to restriction of virtual representations, considered in \mathbb{Z}^{l+1}
- p^t corresponds to induction of virtual representations in $\mathbb{Z}^{l'+1}$.
- Check that $\text{Res}V_1 \otimes \text{Res}V \cong \text{Res}(V_1 \otimes V)$ (Commutativity with M)
- Check that $\text{Ind}W_1 \otimes V \cong \text{Ind}(W_1 \otimes \text{Res}V)$
It is known that p is surjective as a linear map and also as a map of cosets: $p : K(S_n) \rightarrow K(S_{n-1})$.
The Symmetric Group

- It is known that \(p \) is surjective as a linear map and also as a map of cosets: \(p : K(S_n) \to K(S_{n-1}) \).
- Whenever \(p \) is surjective as a linear map, \(p^t \) must be injective as a map of cosets: \(p^t : K(S_{n-1}) \to K(S_n) \).
The Symmetric Group

- It is known that p is surjective as a linear map and also as a map of cosets: $p : K(S_n) \rightarrow K(S_{n-1})$.
- Whenever p is surjective as a linear map, p^t must be injective as a map of cosets: $p^t : K(S_{n-1}) \hookrightarrow K(S_n)$.
- Induction and restriction of irreducible representations is well-understood with the concept of Young Diagrams (Binary Matrix for p).
Theorem from Gaetz

Let γ be the reflection representation of S_n and let $p(j)$ denote the number of partitions of the integer j. Then:

$$K(\gamma) \cong \bigoplus_{i=2}^{p(n)-p(n-1)} \mathbb{Z}/q_i\mathbb{Z}$$

where

$$q_i = \prod_{1 \leq j \leq n, p(j) - p(j-1) \geq i} j$$

Lemma

The kernel of our map, p, for γ is as follows:

$$\ker(p) = (\mathbb{Z}/n\mathbb{Z})^{p(n)-p(n-1)-1}$$
Future Work

- Describe the kernels of our maps in terms of "voltage critical groups," with some combinatorial structure (group elements in the graph case)
Future Work

- Describe the kernels of our maps in terms of "voltage critical groups," with some combinatorial structure (group elements in the graph case)
- Give explicit formulas and/or bounds on critical groups for specific representations of the symmetric group (Using repeated character values and injectivity of p^t)

Theorem from Gaetz

If χ_γ is real-valued, as in the symmetric group case, and $\chi_\gamma(c)$ is an integer character value achieved by m different conjugacy classes, then $K(\gamma)$ contains a subgroup isomorphic to $(\mathbb{Z}/(n - \chi_\gamma(c))\mathbb{Z})^{m-1}$
Future Work

- Describe the kernels of our maps in terms of "voltage critical groups," with some combinatorial structure (group elements in the graph case)
- Give explicit formulas and/or bounds on critical groups for specific representations of the symmetric group (Using repeated character values and injectivity of p^t)

Theorem from Gaetz

If χ_{γ} is real-valued, as in the symmetric group case, and $\chi_{\gamma}(c)$ is an integer character value achieved by m different conjugacy classes, then $K(\gamma)$ contains a subgroup isomorphic to $(\mathbb{Z}/(n - \chi_{\gamma}(c))\mathbb{Z})^{m-1}$

- Investigate other potential maps such as dualization (commutes with the same diagram)
Future Work

- Describe the kernels of our maps in terms of "voltage critical groups," with some combinatorial structure (group elements in the graph case)
- Give explicit formulas and/or bounds on critical groups for specific representations of the symmetric group (Using repeated character values and injectivity of p^t)

Theorem from Gaetz

If χ_γ is real-valued, as in the symmetric group case, and $\chi_\gamma(c)$ is an integer character value achieved by m different conjugacy classes, then $K(\gamma)$ contains a subgroup isomorphic to $(\mathbb{Z}/(n - \chi_\gamma(c))\mathbb{Z})^{m-1}$

- Investigate other potential maps such as dualization (commutes with the same diagram)
- Identify connections to chip firing
My mentor, Christian Gaetz, for his continuous advice and support throughout my initial research experience.
Acknowledgements

- My mentor, Christian Gaetz, for his continuous advice and support throughout my initial research experience.
- Vic Reiner for suggesting the project regarding maps between critical groups
Acknowledgements

- My mentor, Christian Gaetz, for his continuous advice and support throughout my initial research experience.
- Vic Reiner for suggesting the project regarding maps between critical groups
- The MIT Math Department and MIT-PRIMES Program
Acknowledgements

- My mentor, Christian Gaetz, for his continuous advice and support throughout my initial research experience.
- Vic Reiner for suggesting the project regarding maps between critical groups
- The MIT Math Department and MIT-PRIMES Program
- Dr. Tanya Khovanova, Prof Pavel Etingof, Dr. Slava Gerotvich
Acknowledgements

- My mentor, Christian Gaetz, for his continuous advice and support throughout my initial research experience.
- Vic Reiner for suggesting the project regarding maps between critical groups
- The MIT Math Department and MIT-PRIMES Program
- Dr. Tanya Khovanova, Prof Pavel Etingof, Dr. Slava Gerotvich
- My parents and brother for their unwavering support