
Compression of Genomic Variants using Convolutional
Autoencoders

Andrew Zhang and Kalyan Palepu
Mentor: Dr. Gil Alterovitz

7th Annual PRIMES Conference
May 22, 2017

Genomic Sequence Data
● Genome sequence data is key for disease diagnosis, and precision medicine
● With the development of High Throughput Sequencing (HTS) technology,

more data is produced daily
○ An individual genome can be hundreds of gigabytes in size

● The massive amount of data is very difficult to store and process
○ This is why we need to compress the data!

Genomic Variants
● The basic idea behind genomic variants is that most genomes are very similar

○ Generally, less than 1% of the genome is different among different people

● Therefore, it is generally better to store the differences between an
individual’s genome and some reference genome

● VCF: Variant Call Format. It is a text file that stores only the variations with a
reference genome.

○ Example: At position 1452, the reference was A, but this genome had C
○ At position 4214, the reference was T, but this genome had A

● Our project compresses these VCF variant files

Past Research in Variant Compression
● DNAZip

○ Does not leverage biological patterns
○ Compresses VCF files by splitting the data into two sections:

■ Variants without position (e.g. A became G, then T became A). These
are also known as SNPs
● This part of the data was compressed referencing a database of

common variant strings
■ Distances between positions (smaller than absolute positions)

● We focused on compressing these distances further

0

SNP1, loc = 100 SNP2, loc = 104

Distance = 4

What is an Autoencoder?
● A form of neural network

○ Comprised of nodes which take some input
and compute some output based on that
input

● The autoencoder is trained to output
the data which was input

● Because the number of nodes in
the middle is less than the number
of inputs, the data is effectively
compressed!

○ The nodes before the smallest layer
comprise the encoder network, and the
nodes after the smallest layer comprise the
decoder network

Convolutional Autoencoder

● A normal autoencoder has a fixed input size;
to compress large strings of data, we split it
into “segments,” and compress each
segment individually

● A convolutional autoencoder, generally used
for images, creates overlapping segments, to
make sure we don’t skip important patterns.

GTACGGGGGGGGATTC

Normal Segments:

Convolutional Autoencoder Segments:

GATCGGGG

GGGGGGGG

GGGGATTC

Original Data:

GTACGGGGGGGGATTC

Neural Network Graph used for Distance Compression

● For encoding, we used a three layer convolutional network on the encoding
side for feature learning

○ Convolutional Autoencoder assumes inputs are images -- we convert distances to square
images

○ Convolutional Autoencoder uses much smaller set of nodes per layer, so we can build deeper
encoder

○ Convolutional Autoencoder proven to be able to learn image features in the literature -- will try
to use it to learn biological features

● For decoding, we used a single layer
○ This makes decoding faster
○ Also minimize decoder parameter size

Conv NN graph -- continue

Input 3rd conv
layer Decoding

layer

1st conv
layer

2nd
conv
layer

X
Y

Reshape
dists to form
img

Output size
reduced by r --
compression ratio

Errors
● No autoencoder is perfect, so we do get some errors when reproducing the

data
○ We faithfully reproduce over 90% of the data

● However, genomic data compression must be lossless
○ Some diseases are the result of a single variant

● To make the autoencoder lossless, we record an “error matrix,” which stores
all of the errors that the autoencoder has

Test results with JW data
● Parsed file size: 35MB.

Include locations parsed from JW VCF file

● GZIP performance: 8.47MB
● Autoencoder performance: 7.18MB

○ Decoder weight size: 6.48MB
○ Encoded data size: 0.078MB
○ Error matrix size: 0.622MB
○ Better than GZIP even with decoder matrix

○ Almost 5x compression!

Results -- Conv Autoencoder compare with DNAZip
● Not better when including the decoder

size, our goal is to generalize the
decoder, so that we don’t have to store
the decoder for every file
○ This is likely to happen, given that we

have had success sharing decoders for
multiple individual files

● Autoencoder compressed data alone:
0.72MB

● DNAZip (best case estimate): 2.5MB
● Convolutional Autoencoder w/o decoder

weights is 3.5x better than DNAZip

Future Work
● Have compressed 77% of the distances, ~2.5 millions, using autoencoder.

We will work on to cover ~90%; compress the rest using statistical methods
● As stated before, we are working on creating a universal decoder, so that we

do not need to store a decoder for each file.

Conclusion
● Built a convolutional autoencoder to compress 77% of all distances
● Tested with James Watson’s sequenced data in VCF format
● Compression ratio better than GZIP, and better than DNAZip if excluding

decoding matrix

Acknowledgements
● Dr. Gil Alterovitz and Maksym Korablyov
● MIT PRIMES
● Our Parents
● Andrew Gritsevskiy and Adithya Vellal

