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Scene Understanding
Recognize objects and components

Answer questions about scene

Image obtained from Wikimedia Commons under a “free for reuse and modification” license



Why is scene understanding hard
Scene understanding is easy for humans.

What is this a picture of?

What is the man doing?

What is the man’s jersey number?

How fast is the horse going?

These questions are second nature for humans to
answer, but are really difficult for a computer.



Scene Understanding
Scene: Polo
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Scene Understanding
Object: Human
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Current approaches
Classify objects and infer the scene context based on the types of objects present

Types of objects present: Horse, Human, Stick, Grass, Tree —> Scene is Polo

Top-down approach; gets the gist of the scene



Google image captioner

Image source: Google paper “Show and Tell: A Neural Image Caption Generator,” CVPR 2015 



Another example

Computer: A zebra, of course!

Human: A horse in a zebra 
costume, of course!

Image source: Google Images



Current approaches lack compositionality
A compositional representation is one where complicated objects or scenes are 
represented by putting together simpler parts.

Compositionality is second nature to humans, but not to computers!



Alternative approach
Goal: accomplish scene understanding by creating an abstraction that includes 
information about the following:

● The type of each object and each component

● How each component is related to the object that it is a part of, and vice versa 
(thereby encoding the specifics of each object)



Vision as inverse graphics
Alternate paradigm:

Analyze an image by attempting to synthesize it



Program-based model

Code in 
graphics 

programming 
language

Graphics Model Scene Image
render approximates

Scene understanding algorithm

generates input



Reduction of the problem
How can we create an algorithm that generates programs of lines and circles to 
match given scenes of lines and circles?

The scene will consist of one to two black lines and circles drawn on a white 100 
pixel by 100 pixel binary raster canvas.



MetaPost (MP)
MetaPost (MP) is a graphics programming language similar to LaTeX’s TikZ — 
except it renders PNGs six times faster from command line.

Images you can draw with lines and circles range from:

quite simple... ...to more complex

draw (38,78) -- (80,35);
draw fullcircle scaled 6 shifted (57,91) withcolor black;

draw (20,40) -- (80,40) -- (80,50) -- (60,70) -- (20,68) -- cycle;
draw (75,55) -- (60,55) -- (60,70);
draw fullcircle scaled 15 shifted (30,35) withcolor black;
draw fullcircle scaled 15 shifted (70,35) withcolor black;



Representation of MP programs

Pure code offers no compositional structure

draw (38,78) -- (80,35);
draw fullcircle scaled 6 shifted (57,91) withcolor black;



Syntax tree

Program

Draw Draw

LinePath Circle

Pair

Numeric
38

Numeric
78

Pair

Numeric
80

Numeric
35

Numeric
6

command1 command2

path path

pair1 pair2

x y x y

radius

Pair

Numeric
57

Numeric
91

x y

center

Code:
draw (38,78) -- (80,35);
draw fullcircle scaled 6 shifted (57,91) withcolor black;



Search Problem
There are ~1016 different programs just consisting of two lines; how do we search 
through such a large possible space?

Technique inspired by evolution: genetic algorithm



·······

Genetic algorithm

Generation 1: N=40 individuals

Compute fitness 43.0 75.8 47.4 30.6 50.4 56.3 40.5 39.329.6

Best 10 (ɑ=25%) are survivors

Copy and mutate

Generation 2: 40 individuals

·······

·······

63.1

⋮
⋮

⋮
⋮

Generation G=20: 40 individuals ·······

Single best scorer is winner



Fitness as a distance metric
We determine fitness by calculating the distance between a candidate and the 
goal scene image.  Fitness and distance are inversely proportional.



Naive pixelwise distance



Downside of pixelwise distance

scene candidate 1 candidate 2

Does not account for proximity



Hausdorff distance
For two sets of points P and Q:

Farthest distance between each point in P and its closest point in Q, and vice 
versa.



Desired mutation function
1. From any starting point, the mutation function should be able to hone in on 

the goal scene image, like gradient descent

2. The mutation function should be able to jump out of a local minimum within a 
few generations of falling into it, which is something gradient descent on its 
own cannot do.

3. The mutation function should be able to bridge the gap between near (low 
distance) and exact (zero distance).



Mutation
● Trickles down recursively to each Numeric

● New value of Numeric chosen from Gaussian distribution that narrows over 
time



Moderate initial success



Local minimum trap



Avoiding the trap
● Hausdorff distance too discrete?  Consider other distance metrics

● Tweak survival rate ɑ

● Tweak mutation Gaussian’s σ decay and reset rates

● N = 40, G = 20 may be too small



Other distance metric
One possible alternative is the average Hausdorff distance:

Average distance between each point in P and its closest point in Q, and vice 
versa.



More run examples

N = 100, ɑ = 0.25, G = 40; s = 5



More run examples

N = 100, ɑ = 0.25, G = 40; s = 2



More run examples

N = 150, ɑ = 0.25, G = 60; s = 2



Future work
Programs that grow new objects

● Start with one line or circle
● Fit it somewhere on the image
● Introduce the next line or circle once the partial image matches
● Repeat

Mutating one object at a time is much faster than trying to mutate everything 
at once



Future work
Neural network to assist in the growth of a program

Looks at partial image and goal scene image and suggests what type of object 
needs to be added



Long-term goals
This is preliminary work as a proof-of-concept for the program induction approach 
to computer vision

Farther down the road, the goal is to expand to more complex 2D color images 
and eventually to 3D scenes, with representations in 3D graphics systems like 
CAD software.
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Questions?



Benefits of syntax tree: #1
A syntax tree takes full advantage of object-oriented programming.

Python classes for:

● Program
● Draw command
● LinePath
● Circle
● Pair (a 2D point)
● Numeric (an integer value, usually a coordinate)



Benefits of syntax tree: #2
It is easy to convert a syntax tree into MP code.

Programs are stored internally as syntax trees, and to obtain the image output one 
simply runs a recursive toCode() function on the tree’s root and compiles the 
image to a PNG via a command-line call to the MP compiler.



Mutation: Gaussian distribution
The Gaussian distribution is centered around the current value of the Numeric, 
and it has standard deviation σ which determines how volatile the mutation will be

Trade-off between volatility, speed, and accuracy

● Large σ (take larger steps)
○ Approach correct value more quickly
○ Can’t settle down on correct value

● Small σ (take smaller steps)
○ Approach correct value more slowly
○ Settles down effectively on correct value



Mutation: Picking σ
Potential solution to the trade-off problem: why not do both?

● At start, σ is relatively large
● Over time, σ decays exponentially

○ Narrows Gaussian distribution
○ Jump in each mutation decreases over time; hones in on value

● Occasionally, σ will reset to its original value
○ Accelerates steps if they are taking too long to approach correct value
○ Helps jump out of local minimum traps



Genetic algorithm
This algorithm has a few parameters:

● N = 40: population size

● ɑ = 0.25: survival rate

● G = 20: number of generations



Grid snapping
Rather than allow lines and circles to go wherever, they can be snapped to a grid

All Numerics are rounded to multiples of s, the snap factor



Genetic algorithm

Image obtained from Wikimedia Commons under a “free for reuse and modification” license



Genetic algorithm
For much of the remainder of the talk I will be discussing populations that have 
gone through significant genetic mutations and frequent purging to ensure only the 
very fittest survive.

The “organisms” in my population are MetaPost programs!


