Tarpan: a router that supports evolvability

Harshal Sheth, Andrew Sun

Inter-Domain Routing

- Creates paths between destination ISPs and source ones
 - e.g. Netflix to Comcast
- Paths can be used to deliver traffic (from sources to destinations)
- Provided today by BGP

Inter-Domain Routing

- Creates paths between destination ISPs and source ones
 - e.g. Netflix to Comcast
- Paths can be used to deliver traffic (from sources to destinations)
- Provided today by BGP

Inter-Domain Routing

- Creates paths between destination ISPs and source ones
 - e.g. Netflix to Comcast
- Paths can be used to deliver traffic (from sources to destinations)
- Provided today by BGP

Problem

Only one possible route

Proposed Solutions

Pathlets: gives greater freedom in route selection by presenting multiple path fragments

Problem

Only one possible route

Does not account for cost or link quality

Proposed Solutions

Pathlets: gives greater freedom in route selection by presenting multiple path fragments

Wiser: adds a *cost* value that could represent either cost or link quality

Problem

Only one possible route

Does not account for cost or link quality

Trivial to hijack routes

Proposed Solutions

Pathlets: gives greater freedom in route selection by presenting multiple path fragments

Wiser: adds a *cost* value that could represent either cost or link quality

S-BGP: adds authentication to BGP BGPsec: digital signatures in advertisements

Problem

Only one possible route

Does not account for cost or link quality

Trivial to hijack routes

BGP is rigid, assumes that all other routers are using BGP

Proposed Solutions

Pathlets: gives greater freedom in route selection by presenting multiple path fragments

Wiser: adds a *cost* value that could represent either cost or link quality

S-BGP: adds authentication to BGP BGPsec: digital signatures in advertisements

Evolvable routing protocols

Example: Deploying Wiser

- Path costs
 - represents cost of sending on link and/or link saturation
- Cost normalization
 - prevents ISPs from inflating their path costs
- Bidirectional protocol

- Path costs
 - represents cost of sending on link and/or link saturation
- Cost normalization
 - prevents ISPs from inflating their path costs
- **Bidirectional protocol** •

- Path costs
 - represents cost of sending on link and/or link saturation
- Cost normalization
 - prevents ISPs from inflating their path costs
- **Bidirectional protocol** •

- Path costs
 - represents cost of sending on link and/or link saturation
- Cost normalization
 - prevents ISPs from inflating their path costs
- **Bidirectional protocol** •

- Path costs
 - represents cost of sending on link and/or link saturation
- Cost normalization
 - prevents ISPs from inflating their path costs
- **Bidirectional protocol** •

- Path costs
 - represents cost of sending on link and/or link saturation
- Cost normalization
 - prevents ISPs from inflating their path costs
- **Bidirectional protocol** •

- Identified features needed to support evolvability
 - Pass-through support
 - Multi-protocol support

- Identified features needed to support evolvability
 - Pass-through support
 - Multi-protocol support
- - Allows routers to be simpler, but hides info from ISPs

Initial implementation sends multi-protocol data out-of-band

i.e., Wiser routers must use external service to communicate info

- Identified features needed to support evolvability
 - Pass-through support
 - Multi-protocol support
- - i.e., Wiser routers must use external service to communicate info
 - Allows routers to be simpler, but hides info from ISPs

Our work: testing BGP evolvability in-band

Initial implementation sends multi-protocol data out-of-band

Outline

- BGP and its Shortfalls
- Previous Work
- Tarpan
 - Design
 - Implementation
- Evaluation
- Conclusion and Future Work

- Favors in-band communication
- Encodes multiple protocols
- Passes through unknown protocols
- Can cross gulfs
- Inter-operates with non-Tarpan routers

Tarpan

Data Structure

- Includes information from multiple protocols
- Tarpan operates as an extension to BGP

iple protocols on to BGP

Implementation

- Implemented within Quagga, an open-source network routing suite
 - Quagga itself was a fork of Zebra
- Tarpan API for simply protocol addition
- Protocol Buffers for efficient data transfer
- Interposes on BGP route selection mechanisms
- About 2000 lines of code added or changed

Modifications within Quagga

Modifications within Quagga

- Interning
 - Custom memory management scheme
 - Breaks attributes into pieces for memory de-duplication
 - Interns most internal data structures
- Integrating with Quagga's interning system was major source of frustration

Challenges

Outline

- BGP and its Shortfalls
- Previous Work
- Tarpan
- Evaluation
 - Wiser Testing
 - Throughput Measurement
 - Large Payload Behavior
- Conclusion and Future Work

Experimental Setup

- Topologies emulated with miniNExT
- Ubuntu virtual machine on Massachusetts Open Cloud
 - 16 vCPUs
 - 64 GB RAM

Wiser Experiment Overview

- Wiser's cost normalization using bidirectional communication
- Implemented within Tarpan

Proof of concept to demonstrate that Tarpan functions as intended

Tarpan was extended to use out-of-band communication to support

Wiser Testing

- Ensuring proper Wiser functionality
- Manual verification of route selections

- Two virtual switches in miniNExT
- 8 bgpsimple scripts send actual routing tables into the router
- The router is either Tarpan or Quagga, with instrumentation for timing

Throughput Evaluation Graphs show inverted throughput (lower is better)

Tarpan Throughput

Avg.: 20,787 packets/sec

Quagga Throughput

Avg.: 21,026 packets/sec

- Test the effect of sending larger payloads to routers
- attribute

Large Payloads

Modified bgpsimple script that sends a string of certain length in an

		•
1000	1500	2000
• • • • • • • • • • • •	,	
Additional Data in Packets (byte	S)	

Future Work

- Convergence properties when running multiple protocols • Exploring incremental deployment
- Further performance and memory usage improvements

Summary

- BGP is too rigid cannot support deployment of new protocols across gulfs
- information in-band with BGP advertisements
- Wiser implemented using Tarpan's API
- Low performance overhead

Tarpan allows new protocols to be deployed across gulfs by sending

Acknowledgements

- Raja Sambasivan Mentor
- MIT PRIMES Program

Massachusetts Open Cloud - Large virtual machines for testing