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Abstract

We study the projections of a knot K that have only n-crossings. The

n-crossing number of K is the minimum number of n-crossings among all

possible projections of K with only n-crossings. We obtain new results

on the relation between n-crossing number and (2n− 1)-crossing number

for every positive even integer n.

1 Introduction

Knots have been around for thousands of years, but they have only attracted

the attention of mathematicians in the last 150 years [7]. In 1867, the physicist

William Thomson [10] hypothesized that atoms were knots in a medium called

the ether. As a result, many scientists were motivated to study knots and

mathematicians began to classify knots in tables. Although the Michelson-

Morley experiment of 1887 [9] dismissed Thomson’s atom/knot hypothesis, knot

theory has over time become a promising field of mathematical research in its

own right.

A knot is a closed curve in R3 that is homeomorphic to a circle [7]. Two

knots are equivalent if one can continuously deform one knot into the other knot.
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An effective way to study knots is to consider the projection of a knot onto a

plane. The knot diagram of a knot is a projection of the knot with additional

information about overcrossing or undercrossing at each crossing point in the

diagram. In 1927, Reidemeister [8] showed that two knot diagrams represent

the same knot if and only if they are related by a finite sequence of Reidemeister

moves, which consist of a twist move, a poke move, and a slide move.

Traditionally, mathematicians have only studied regular knot projections, in

which every crossing of a knot has two strands. The study of multi-crossing

projections of knots was initiated by Adams in papers [1, 2, 3] around 2010 to

go beyond regular projections.

A n-crossing is a crossing in a projection of a knot or link that has n strands

that bisect the knot. A n-crossing projection is a projection such that all of

the crossings are n-crossings. For each crossing, we identify the heights of the

strands in an n-crossing with integers 1, 2, . . . , n, where i > j indicates that

strand i crosses over strand j. In 2013, Adams proved that given any integer

n ≥ 2 and any knot, there exists a n-crossing projection [1]. The n crossing

number of a knot or link K, denoted by cn(K), is defined to be the minimum

number of n-crossings among all possible n-crossing projections of K. Adams

further showed that cn ≥ cn+2 for all n ≥ 2 by local moves at each crossing [6].

In other words, cn(K) of the same parity forms a decreasing sequence. He also

showed that c2(K)
3 ≤ c3(K) ≤ c2(K) − 1.

The motivation to study the multi-crossing number cn(K) lies in the fact

that it is a topological invariant that can distinguish 51#31 from 51#31 [4].

There is a chance that cn(K) can distinguish mutant knots, which no polynomial

invariant can distinguish.

In this paper, we show that for any positive even integer n and any knot K,

cn(K) ≥ c2n−1(K). We are able to turn an even n-crossing projection into a
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Figure 1: An orientation induced state of a double crossing. [6]

(2n − 1)-crossing projection by a series of global and local moves. This is the

first general result on the relation between cn(K) with different parities.

2 Cn(K) ≥ C2n−1(K)

A state marker at a given crossing is a pair of dots placed at the corners of two

opposite regions near the crossing [6]. If the projection D is oriented, then we

may use the orientation to position a state marker at each crossing as illustrated

in Figure 1. We place a state marker in between two strands if the two adjacent

strands agree in orientation. If we label the state marker at every crossing by

using the orientation, we call this the orientation induced state of D.

Lemma 1. For any even crossing, there is an odd number of state markers.

For any odd crossing, there is an even number of state markers.

Proof. Let there be an orientation induced n-crossing. We bisect the given n

crossing and select one of the halves. Let the kth strand be k strands away from

the bisecting line in the counterclockwise direction. If the kth strand agrees with

the previous strand in the counterclockwise direction, then let xk = 0. If the

same pair does not agree, then let xk = 1.

Thus, we have

x1 + x2 + · · · + xn ≡ 1 (mod 2).
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If n is even, then there must be an odd number of zeros, and thus an odd number

of state marker pairs. If n is odd, there must be an even number of zeros, and

thus an even number of state marker pairs.

This immediately gives

Corollary. Every orientation induced even crossing has state markers.

A version of the lemma below has been shown in [6] for regular projections.

We slightly modify the proof to generalize for any n-crossing projection.

Lemma 2. Any orientation induced state of multi-crossing knot projection has

an even number of state markers in each region.

Proof. Let R be a complementary region of K. If R is a multi-connected do-

main, then split the vertex or vertices so that each strand connects two different

vertices and introduces no extra crossings. As we traverse the boundary of R,

we encounter an even number of vertices where the orientation of the edges on

∂R reverses from clockwise to counter-clockwise or vice versa. These are exactly

the vertices that contribute a dot to R. Thus R contains an even number of

dots and each region has an even number of state markers.

Given a knot diagram D, a crossing circle for D is a circle C embedded in

the projection plane such that C meets D transversely in some set of crossings

of D [6]. We use the orientation induced state to form crossing circles of D.

Lemma 3. Every even crossing projection of a knot or link has at least one

crossing circle.

Proof. Because of Lemma 2, we can connect two state markers within any re-

gion that has state markers. Then, within that region, we can connect the

state marker to its opposite pair through the crossing. Connecting all the state

markers in this manner forms at least one crossing circle.
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Figure 2: Converting a 3 crossing to a 5 crossing [6]

In [6], Adams made the observation that any n-crossing can always be in-

creased to an (n + 2)-crossing. After passing through the crossing on any of

the n strands, we can locally loop back and forth underneath the crossing two

more times before continuing on as before. This process is shown for turning a

3-crossing into a 5-crossing in Figure 2. We use this process on the remaining

crossings that do not have (2n − 1) strands when we turn an even n-crossing

projection into a (2n− 1)-crossing projection in the following theorem.

Theorem 4. For any positive even integer n and any knot K, cn(K) ≥ c2n−1(K).

Proof. Assume that K is a minimal n-crossing projection, where n is an even

integer. We choose a strand that is adjacent to its crossing circle by Lemma

3. We can pull that over stand along the crossing circle, as shown in the third

image of Figure 3. We do this for each crossing circle. Because of Lemma 1,

there is now an odd number of strands of at most 2n − 1 at each crossing. As

desired, we add an extra even number of crossings so that each crossing has

2n−1 strands. We do so by locally looping back and forth so that an n crossing

becomes a n+2 crossing as shown in Figure 2. We now have a (2n−1)-crossing

projection with the same number of crossings as our even n crossing projection.

Thus, cn ≥ c2n−1.
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Figure 3: The steps to create a 4-crossing projection into a 7-crossing projection

via crossing covering circles. To form a 7-crossing projection, local moves in

Figure 2 are needed to add strands to the top right and bottom crossings.

Remark. Most even n-crossing projections can be turned into a odd crossing

projection with fewer than 2n− 1 crossings. If there is only one crossing circle

in a even n-crossing projection of a knot K, then cn(K) ≥ cn+1(K).

Corollary. For any knot K, cn(K) ≥ c2n−1(K).

Proof. Because cn ≥ cn+2 [6], the corollary holds for odd n.

3 Conclusions and future directions

We developed a method to turn any even crossing projection to an odd crossing

projection. We used this method to show that cn(K) ≥ c2n−1(K) for any

positive even integer and any knot K.

One possible direction for future research would be to develop a general

method to convert an odd crossing projection to an even crossing projection,

hopefully losing one crossing in the process. With this, we would be able to

show that cn(K) > c2n−1(K) or cn(K) > c2n(K) for odd integer n. Even

crossing projections pose new difficulties, however, since not every odd crossing

projection has state markers and crossing covering circles necessary to add extra
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crossings. It is important to consider local crossing cases rather than global cases

(i.e. with crossing circles) for odd crossing projections.

Another possible direction for future research is to show that the crossing

number is monotonic, i.e. cn(K) ≥ cn+1(K) for every positive integer n. The

computer generated results of [4] suggest that the multi-crossing numbers up to

c9 of all the prime knots with at most 9 crossings have been monotonic.

Finally, it would be useful to improve the results of [5] and find additional

bounds on übercrossing and petal numbers for knots.
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