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Abstract

Describing the behavior of automobile traffic via mathematical modeling and com-
puter simulation has been a field of study conducted by mathematicians throughout
the last century. One of the oldest models in traffic flow theory casts the problem in
terms of densities and fluxes in partial differential conservation laws. In the past few
years, the rise of autonomous vehicles (driven by software without human interven-
tion) presents a new problem for classical traffic modeling. Autonomous vehicles react
very differently from the traditional human-driven vehicles, resulting in modifications
to the underlying partial differential equation constitutive laws. In this paper, we
aim to provide insight into some new proposed constitutive laws by using continuum
modelling to study traffic flows with a mix of human and autonomous vehicles. We
also introduce various existing traffic flow models and present a new model for traffic
flow that is based on an interaction between human drivers and autonomous vehicles
where each vehicle can only measure the total density of surrounding cars, regard-
less of human or autonomous status. By implementing the Lax-Friedrichs scheme
in Octave, we test how these different constitutive laws perform in our model and
analyze the density curves that form over time steps. We also analytically derive
and implement a Roe solver for a class of coupled conservation equations in which
the velocities of cars are polynomial functions of the total density of surrounding cars
regardless of type. We hope that our results could help civil engineers bring forth real
progress in implementing efficient road systems that integrates both human-operated
and unmanned vehicles.

1 Introduction and Motivation

Traffic flow is the study of how vehicles interact with each other on the road. There
have been numerous methods proposed for analyzing traffic behavior. The models
can generally be categorized into either microscopic or macroscopic views, each one
having its own advantages and disadvantages. Mathematicians such as Greenshields
used a velocity function linearly related to density, and mathematicians have sub-
sequently refined his model decades later [1]. With the development of technology
came increased computing power, allowing mathematicians to statistically verify their
predictions with computer simulations. This project draws upon the ideas of various
existing models to form a new model that accounts for both autonomous and human
drivers as well. The primary mathematical tool used for modelling traffic microscop-
ically is partial differential equations, PDEs for short, which are one of the strongest
tools for mathematically modelling the real world. Our objective for creating a new
model is challenging because while there are already many partial differential models
of traffic flow, there are not many taking autonomous vehicles into account. Thus,
we use a computer Octave simulation and analyze its results.

Aiming for smoother and more accurate density curves in our simulations, we tried
to adopt a Roe solver, an approximation Riemann solver derived by mathematician
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Phil Roe [2]. Coding a working Roe solver, we drew remarkable conclusions from our
simulations. We found that the Roe solver was hyperbolic except for certain values,
especially for the autonomous car density σ = 0. We also discovered that under a
closed system, the coupled conservation laws, when its total density is expressed as
ρ+ σ, can be modeled as a linear one dimensional conservation equation.

Prior to our work, relatively little has been done in the experimental evaluation in
autonomous vehicles. Most notably, the recent paper “Traffic Modeling—Phantom
Traffic Jams and Traveling Jamitons” conducted by mathematician Morris R. Flynn
[3]. Labeling shock waves as ‘Jamitons’, Flynn and his team investigated the buildup
of cars in a road that arise in the absence of any obstacles. One key difference
between our work and their work is that we have implemented human driven cars
in the autonomous system as well. To the best of our knowledge, we are the first
to implement such combinations of cars, and the first to code such results of the
interactions between such vehicles.

The first and second sections are the introduction and background of our research.
In Section 3, we introduce existing constitutive laws that model velocity v(ρ) as
a function of car density ρ. By describing the existing constitutive equations and
terms, we are able to define a new coupled conservation law later on that accounts for
both autonomous and human-driven vehicles. In Section 4, we explain the different
numerical methods that mathematicians have developed over the years, each one
arguably more efficient than the last. These numerical methods are implemented
in coding programs such as Matlab or Octave to plot the linear density of cars and
position to see the interaction of density curves over time steps. However, these are
all numerical methods for a 1-D traffic system and cannot simulate a system with
two kinds of vehicles. In Section 5, we propose a new system of partial differential
conservation equations that model a traffic system with both autonomous and human
vehicles, the densities of which is expressed as ρ and σ respectively. We proceed in
our research by plugging in known constitutive laws for velocity v(ρ). We also uses
the Lax-Friedrichs scheme to simulate the solution. In Sections 6 and 7, we derive the
Roe solver for a class of constitutive laws and analyze and draw conclusions from our
simulations. Finally, in Section 8, we provide conclusions and discuss future work.

2 Background and Definitions

This section gives some background on how we will define and model the traffic flow
of a system while defining some functions and variables that will be used in the paper
later.

Definition 2.1. Density Frequently written as ρ, linear density is a variable in the
modeled system on a road where the number of cars passes a specific unit length.
In a changing system where time and position is non-constant, linear density can be
written as a function ρ(x, t).

Definition 2.2. Flux Flux is defined as the number of cars passing in a specific unit
of time, or a time step. Similar to linear density, flux can be written as a function of
two variables, ρ and v, as J(ρ, v).

Although flux J can relate on other factors such as the position on the road and
derivative of density ρ, in our research, we assume that flux is only affected by density
ρ or J = J(ρ). Because the units of flux is defined as J = cars

time
, in small time steps and

position intervals, the expression can be rewritten as cars
length

· length
time

, which is ρ · v(ρ).
A macroscopic traffic model involving traffic flux, traffic density and velocity forms

the basis of the fundamental diagram. By using this diagram, we can understand and
predict the traffic laws we will implement in our macroscopic model.

2.1 The Traffic Model

When constructing a traffic model, many mathematicians begin with a conservation
law, for which we can derive and generalize for a system of cars. One of the most
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important distinctions between reality and traffic modeling is when cars are not con-
served within a system. There are multiple ways for cars to magically “reappear”
and “disappear” within a system as shown in Figure 1 Thus, the reason why we use
a conservation law is to assume the conservation of cars within our artificial traffic
model.

Our definition of a conservation law, which states that cars can never be created
nor destroyed in a fixed system, is similar to the First Law of Thermodynamics. One
can represent this algebraically within a given interval ∆x by taking the integral of
density. The right hand side of the expression is the difference in density of the cars
between the end and the beginning of the interval must be conserved. Mathematicians
Lighthill, Whitman, and Richards refine this model as we see in section 2.2.

d

dt

∫ x0+∆x

x0

ρ(x, t)dx = J(x0, t)− J(x0 + dx, t)

Figure 1: The integral definition of conservation of cars

2.2 Conservation Laws

The Lighthill-Whitman-Richards (LWR) Model is the fundamental macroscopic model,
relating density and velocity at any position x and time t. This can be derived through
noting the conservation of vehicles: number of cars in a given interval ∆x at time t is
the integral of the linear density throughout the interval, and also equal to the differ-
ence of the fluxes at the endpoints of the interval, where flux J(ρ, v) = ρ(x, t) · v(ρ).
Thus, at any point x0 at time t0 we have:

2∆x(ρ(x0, t0 + ∆t), ρ(x0, t0 −∆t)) = 2∆t(J(x0 −∆x, t0)− J(x0 + ∆x, t0))

.
Using a first-order Taylor expansion and manipulating the terms in this equality

simplifies it to a partial differential equation

∂ρ(x, t)

∂t
+
∂J(ρ, v)

∂x
= 0, x ∈ IR, t > 0

with the initial condition

ρ(x, 0) = ρ0(x), x ∈ IR

This time-dependant system of partial differential equations is usually non-linear
but take a particularly simple structure. The equation accurately describes any sys-
tem with a conserved amount of particles. Given a initial distribution of density ρ0(x),
solving the conservation law will allow us to know about the density on the road in
a future time step. In one-dimension, the equations take the form of a hyperbolic
conservation law. This conservation law can also be rewritten in the simplified form
ρt +Jx = 0, where ρ(x, t) is the linear density of cars on a road and J(ρ, v) is the flux
of cars.
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In general, it is very difficult, if not impossible, to derive exact solutions to these
equations, and hence the need to devise and study numerical methods for their ap-
proximate solution, as mathematicians have done so in the past few decades. Of
course the same is true more generally for any nonlinear PDEs, and to some extent
the general theory of numerical methods for nonlinear PDEs applies in particular to
systems of conservation laws. However, there are several reasons for studying this
particular class of equations on their own in some depth [4].

Many practical problems in science and engineering involve conserved quantities
and lead to PDEs of this class. There are certain difficulties associated with solving
these systems (e.g. shock formation) that are not seen elsewhere and must be dealt
with carefully in developing numerical methods. Methods based on naive finite dif-
ference approximations may work well for smooth solutions but can give disastrous
results when discontinuities are present, as we saw when our simulations ‘blew up’,
or diverged very quickly. Although few exact solutions are known, a great deal is
known about the mathematical structure of these equations and their solutions. This
knowledge can be exploited to develop special methods that overcome some of the
numerical difficulties encountered with a more naive approach, as we will see in our
Roe solver [4].

2.3 Shock Waves

The basis of our research is on shock waves, a fundamental field of research in traffic
flow. Mathematicians in Japan conducted an experiment where they placed a number
of cars around a circular fixed road and instructed the human drivers to drive at con-
stant speed. Despite such instructions, distances between the cars eventually started
to vary, causing a buildup of cars and forming a traffic jam, or as mathematicians
would describe it, a shock wave, that traveled backwards. This phenomenon has also
been observed in a regular road system as well.

Definition 2.3. Shock wave A shock wave is a discontinuity of flow or density,
and has the physical implication that cars change speeds abruptly without time to
accelerate or decelerate.

This unnatural behaviour of cars can be eliminated by considering high order
continuum models. However, such equations are extremely difficult to model due to
its complexity.

3 Constitutive Equations

Constitutive equations are functions that relate two physical quantities to each other
under the assumption that they are not dependant on other external variables and
factors. They are commonly used to model non-constant phenomenon such as the de-
formation of solids and fluids, electromagnetism, and friction. In our case, we examine
existing constitutive equations for traffic modeling developed by mathematicians.

Constitutive equations for human-driven vehicles have long been developed by
mathematicians for decades, describing the interactions between human-driven vehi-
cles only. Evolving from a single-lane system, variations of the original constitutive
traffic laws have been developed, such as a multiple lane system or an addition of
ramps such that cars can enter or leave the system, where the original constitutive
equations fall apart due to flux not being conserved.

The proposed constitutive equations are actually similar to the that of human-
driven vehicles in that the general curvature of the velocity and density function
is preserved. However, there are new properties of these new laws. Comparing to
human drivers, the autonomous vehicles have an almost instantaneous reaction time
and have communication between vehicles. These features allow them to drive at a
higher speed than human drivers when the density is not too high. When density
increases to certain degree, to avoid collision, the autonomous vehicles, like human
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drivers will lower their speed. Ergo, certain parameters can be controlled variables,
ones that we can manipulate in our code when plugging in the conservation laws in
order to model the behaviour of these autonomous vehicles.

Although there exist many functions that model v(ρ) as a function of linear density
ρ, such as the arctangent function and the Gauss error (erf) function with a more
natural and realistic curvature, our research only focuses on the application of three
of the simplest but most commonly-used constitutive laws.

Most constitutive laws for v(ρ) model the nature of a maximum velocity when
linear density ρ = 0, and of velocity v = 0 when density is maximized due to the
nature of traffic. Theoretically, in a clear road where linear density would be 0, a
car can cruise at maximum velocity vm. However, in a congested road where linear
density is maximized, the velocity v of a car should be approximately, or exactly equal
to, 0.

3.1 Linear Piecewise Function

Although other constitutive laws model traffic flow more accurately, one of the sim-
plest general functions modeled by our data is the linear piecewise function: a density
function where initial velocity is constant before the vehicle approaches a traffic jam,
and its velocity dramatically decreases linearly, as described below and illustrated in
Figure 2.

v(ρ) =

{
vm (ρ ≤ ρc)

− vm
ρm−ρcρ+ vmρm

ρm−ρc (ρc < ρ ≤ ρm)

Figure 2: linear piecewise function estimating a general density curve

3.2 Burger’s Equation

A fundamental partial differential equation occurring in various areas of applied math,
Burger’s Equation was derived by mathematician Johannes Martinus Burgers. The
viscid form of the equation is written

ut + uux = εuxx

where ε > 0 is the viscosity or diffusion constant [5]. This is the simplest partial
differential equation combining both propagation and diffusion. However, because
our research examines the conservative nature of a system, we only work with the
inviscid form of the equation, which can we rewritten as

ρt + ρρx = 0 where J(ρ, v) =
ρ2

2

with no diffusive terms. However, one pitfall to the model is that it does not consider
human factors and individual cars, and that it is limited to a single lane system.
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3.3 Greenshields Model

In 1935, mathematician Bruce D. Greenshields made the assumption that, under un-
interrupted flow conditions, speed and density are linearly related [1]. While Green-
shields’ model is not perfect, it is fairly accurate and relatively simple. This relation-
ship can be expressed mathematically and graphically, as shown below in Figure 3
[1]. Greenshields defined his constitutive equation as

v(ρ) = vm
(
1− ρ(x, t)

ρm

)
. Therefore, the flux equation, J(ρ, v), can be expressed as

J(ρ, v) = vm · ρ(x, t)
(
1− ρ(x, t)

ρm

)
In Figure 3.3, notice that when linear density, ρ(x, t), approaches 0, the cars are able
to reach maximum velocity vm and when ρ(x, t) approaches maximum density ρm,
the cars slow down to zero velocity. However, like the Burger’s Equation, one pitfall
to the model is that it does not consider human factors and individual cars, and that
it is limited to a single lane system.

Figure 3: Greenshields model of velocity vs density is linear

Note that the expression ρ(x,t)
ρm

could be raised to an integer power to manipulate
the curvature of the velocity vs density graph, and thus changing our density curves
in our simulations. Thus, another constitutive law arises as shown below.

J(ρ, v) = vm · ρ(x, t)
(
1−

(ρ(x, t)

ρm

)n)
where n ∈ N

4 Methods of Solving the Conservation Law

This section will explain the methods used to solve the conservation law. When work-
ing with partial differential equations, there are many different ways of solving such
characteristics. Over the years, mathematicians have derived many different ways of
solving such equations, graphing the density curves over time in a simulation with
today’s technology. One such method is the numerical method; by plugging in numer-
ical schemes in coding programs such as Matlab or Octave, one can plot densities over
a road in small time steps. Albeit occasional bugs and density curves ‘blowing up’,
mathematicians are able to plot such conservation equations when unable to solve
them analytically to a certain degree of accuracy.

Note the change in notation. Subscripts ρm are not defined as the partial derivative
of linear density in terms of m, but rather the density of the noted position m in our
system, while the superscript k is defined as the density of that moment in time k
at that particular position m. The overline is defined as the average density at that
position m.
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4.1 Method of Characteristics

The method of characteristics is a technique for solving PDEs. Although most com-
monly used in solving first-order equations, the method can be used to solve any
general hyperbolic partial differential equation.

When working with the method of characteristics, we try to find the solution of
the equation on certain curves called characteristics. In the case of the conservation
law, the curves are infinitesimal lines described by

x = x0 + J ′(ρ)t

. Because dx
dt

= J ′(ρ) for these density curves, the value of ρ does not change. Thus,
the characteristics carry the initial density to a future time step. To obtain the density
at (x, t), all we need to do is identify the characteristics that pass through that point
and find the density it carries, and manually calculate the density during the next
time step at that specific position in the system. An example of how characteristics
correspond to the density curve is shown in Figure 4.

Figure 4: Correspondence between Density Curves and Characteristics [3]

4.2 Finite Volume Method

When there are complicated constitutive equations and shock waves occur, it may
be difficult to trace the characteristics and find the solution analytically. The Finite
Volume Method is a common numerical method to approximate the solution. It
divides the road into cells and calculate how the density inside the cell change by
considering the flux in and out of the cell. The left hand side is the rate of change in
linear density at a position x, while the right hand side is the approximate change in
flux at position x.

h

k
(Un+1

i − Un
i ) = f(U n

i− 1
2
)− f(U n

i+ 1
2
)

One can substitute the constants ρ = U and J = f(U) and rewrite and achieve the
numerical recursion in terms of linear density ρ and flux J .

∆x

∆t
(ρt+1
x − ρtx) = J t

x− 1
2
− J t

x+ 1
2

Thus, simplifying with algebra, we can rewrite this to solve for unknown future density
in a recursive form:

ρt+1
x = ρtx +

∆t

∆x
(J t
x− 1

2
− J t

x+ 1
2
) .
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Figure 5: Solution for a 1-D System over time with the Upwind Method

4.2.1 The Upwind Method

The upwind method is a kind of finite volume method that we use for traffic systems
that only have one kind of car. The upwind method calculates the intercell flux
based on the direction of the characteristics. If the left travels to the right, we take
the density at the immediate left to calculate future densities, and perform similar
calculations with the right, if the characteristics are traveling to the left. Based on
the upwind method, the flux between cell x and x+ 1 at a certain time t is given by
the following equation.

J(ρx, ρx+1) =
1

2

(
J(ρx) + J(ρx+1)− a(ρx+1 − ρx)

)
In this equation, a = |J ′(ρx)| if ρx = ρx+1 and a = |J(ρx)−J(ρx+1)

ρx−ρx+1
| if ρx 6= ρx+1. Notice

that once we get the intercell fluxes, we can calculate the densities of the next time
step using the differences of each adjacent fluxes, as shown in Figure 5. The upwind
method is fairly accurate and is useful when we are trying to observe the behavior in
a traffic system with only one kind of car. The core structure of the upwind method
code is shown in Appendix A.

5 Coupled Equations

The aim of our research is to provide the simplest yet accurate model for modeling
the relationship between human drivers and autonomous cars. Here, we consider a
traffic system that contains both autonomous vehicles and human-driven vehicles.
We use ρ and J1 to represent the density and flux of human-driven cars and σ and
J2 to represent the density and flux of autonomous vehicles. The following system of
conservation equations is the general form that describe a mixed traffic system. ρt +

(
J1(ρ, σ)

)
x

= 0

σt +
(
J2(ρ, σ)

)
x

= 0

However, we assume the traffic system in which the velocity of the cars depends
on the total density rather than the respective density of human and autonomous
vehicles. We then have v1(ρ, σ) = v1(ρ + σ) and v2(ρ, σ) = v2(ρ + σ). This means
that each car cannot distinguish between autonomous and human vehicles and treat
them indiscriminately. The flux of human vehicles is thus J1(x, t) = v1(ρ+ σ) · ρ and
the flux of autonomous vehicles is J2(x, t) = v2(ρ + σ) · σ. We also assume that the
velocity decreases as the density increases. Below is the set of equations that we are
trying to solve.  ρt +

(
v1(ρ+ σ) · ρ

)
x

= 0

σt +
(
v2(ρ+ σ) · σ

)
x

= 0
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From (10), we can evaluate the partial derivatives and rewrite the expression. Notice
that v′i here equals ∂vi

∂ρ
and ∂vi

∂σ
.{

ρt + v′1(ρ+ σ) · (ρx + σx)ρ+ v1(ρ+ σ) · ρx = 0

σt + v′2(ρ+ σ) · (ρx + σx)σ + v2(ρ+ σ) · σx = 0

We can rewrite this new expression as a 2 × 2 matrix due to the symmetry between
ρ and σ. (

ρ
σ

)
t

+

(
v′1ρ+ v1 v′1ρ
v′2σ v′2σ + v2

)(
ρ
σ

)
x

= 0

5.1 Solving for the Characteristics of the Conservation Laws

By working with matrices and their eigenvalues, we can analyze the characteristics of
the coupled equation and determine whether that system is hyperbolic. To do so, we
first must consider the velocity functions that can model such behaviour. Newton’s
Method, similar to the method of characteristics, is described as(

f1

f2

)
≈
(
f10

f20

)
+∇f(u0) · (u− u0) .

Newton’s Method reveals that for a conservation law ut + f(u)x = 0, we can rewrite
f(u) as a matrix. Notice that in (13), ∇f(u0) ≈ f ′(u0) = J where J is the flux scalar
matrix of the vector 〈ρ, σ〉.

∇f(u0) = f ′(u0) = J =

(
∂J1
∂ρ

∂J1
∂σ

∂J2
∂ρ

∂J2
∂σ

)
If the eigenvalues of our 2 x 2 matrix are distinct and real, the matrix itself will be
diagonalizable and the system will be strictly hyperbolic and symmetric. Then, we
solve for the matrix’s eigenvalues to determine the characteristics of the matrix.

det

∣∣∣∣∣∂J1∂ρ − λ ∂J1
∂σ

∂J2
∂ρ

∂J2
∂σ
− λ

∣∣∣∣∣ = 0

(∂J2

∂σ
− λ
)(∂J1

∂ρ
− λ
)
− ∂J1

∂σ

∂J2

∂ρ
= 0

λ2 −
(∂J2

∂σ
+
∂J1

∂ρ

)
λ+

(∂J2

∂σ

∂J1

∂ρ
− ∂J1

∂σ

∂J2

∂ρ

)
= 0

From here we obtain a quadratic for which we can solve and find various properties
of the two eigenvalues, λ1 and λ2. We then take the discriminant of the quadratic,

∆ :
(∂J2

∂σ
+
∂J1

∂ρ

)2

− 4
(∂J2

∂σ

∂J1

∂ρ
− ∂J1

∂σ

∂J2

∂ρ

)
≥ 0

. Notice that we can factor and complete the square of the expression:

∆ :
(∂J2

∂σ
− ∂J1

∂ρ

)2

+ 4
(∂J2

∂σ

∂J1

∂ρ
− ∂J1

∂σ

∂J2

∂ρ

)
≥ 0 .

We then plug in the components of the matrix from (12), getting:(
(v′1ρ+ v1)− (v′2σ + v2)

)2

+ 4v′1v
′
2ρσ ≥ 0 .

Since the squared expression is always at least 0 and 4v′1v
′
2ρσ is always non-negative,

the discriminant will be at least 0 and there will be at least one eigenvalue. In most
cases, we will have two distinct eigenvalues which indicates that the system is strictly
hyperbolic. However, there are specific points on the ρ - σ plane that have ∆ = 0. In
the common case when v′i < 0, there can at most exist two of those points: one that
has ρ = 0 and one that has σ = 0. Because the system only has the discriminant
∆ = 0 for two specific pairs of ρ and σ, we can claim for the system to be generally
hyperbolic.
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5.2 Lax-Friedrichs Method

The Lax-Friedrichs Method is a crude numerical method that we use to approximate
the solution of the coupled conservation equation. The method derives from the
linear hyperbolic partial differential equation for u(x, t) in the form ut + uux = 0.
In the expression, like the upwind and finite volume method, the subscripts and the
superscripts are variables representing the position and grid intervals. In our case, we
take the average density of the interval and calculate and subtract the two fluxes of
the averaged positions before and after. Then the Lax-Friedrichs method for solving
the partial differential equation is given by [4]:

Un+1
i − 1

2
(Un

i+1 + Un
i−1)

k
+ a

f(Un
i+1)− f(Un

i−1)

2h
= 0 .

Here, U is the density vector, k is the time between each time step, and h is the cell
length. In the case of the scalar linear problem we are working with in the form of
Burger’s equation, we can set a = 1. Then, simplifying with algebra, we can rewrite
this to solve for the unknown future value Un+1

i as shown below.

Un+1
i =

1

2
(Un

i+1 + Un
i−1)− k

2h
(f(Un

j+1)− f(Un
j−1))

By substitution of our variables linear density

(
ρ
σ

)
= U and

(
J1

J2

)
= f(U), this

method can be written in the conservation form for our traffic model

ρt+1
x = ρtx −

∆t

∆x
[J1(x, x+ 1)− J1(x− 1, x)]

σt+1
x = σtx −

∆t

∆x
[J2(x, x+ 1)− J2(x− 1, x)]

where Ji(x, x+ 1) is the inter-cell flux between cell x and cell x+ 1 and it is given by

J1(x, x+ 1) =
∆t

2∆x
(ρx − ρx+1) +

1

2
(J1x + J1x+1)

J2(x, x+ 1) =
∆t

2∆x
(σx − σx+1) +

1

2
(J2x + J2x+1)

However, a pitfall of the Lax-Friedrichs Method is that the numerical method
implements diffusive terms, smoothing out the density curves when they should not
be, leading to inaccurate solutions. Figure 5 is a screen-shot of our coupled equations
interacting with each other in a specific. In our simulation, we plotted a Greenshield’s
Model and a high-degree polynomial of Greenshield’s Model with the same maximum
velocity, where the density curves would change over time as the time-steps increased.
Below are the two constitutive laws that we used to produce the solution in Figure 6. J1 = vm

(
1− ρ+σ

pm

)
· ρ

J2 = vm

(
1− (ρ+σ

pm
)20
)
· σ

In Figure 6, the y-axis is defined as the density ρ while the x-axis is also defined as

the specific position along the road. J1 is the blue density curve of human-driven
cars, while J2 is the red density curve of autonomous cars. The core structure of the
Lax-Friedrichs code is shown in Appendix B.

6 Roe Solver for the Coupled Equation

Derived by mathematician Phil Roe, the Roe solver involves approximately solving
the Riemann problem between every adjacent cells by considering it in a system with
linear flux. We can rewrite the coupled equation as ~ut + J~ux = 0 where ~u is the
vector 〈ρ, σ〉 and J is the Jacobian matrix. For every two adjacent cells with uL
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Figure 6: Solution for a 2-D System over time with the Lax-Friedrichs Method

and uR, the Roe solver approximates the inter-cell flux by solving the linear system
of ut + R̂(uL, uR)ux = 0 where the Roe matrix R̂ is a constant matrix and R̂u
approximates the actual flux f(u). In his paper, Roe indicated the three conditions
that the Roe matrix must follow [4]:

i R̂(uL − uR) = f(uL)− f(uR)

ii R̂ is diagonalizable with real eigenvalues

iii limuL,uR→u R̂(uL, uR) = f ′(u)

6.1 Derivation of Roe Matrix for Polynomial Flux Laws

Due to these restrictions on the Roe matrix, for each set of flux rules, we must
to analytically come up with a Roe matrix that must satisfy the three conditions.
This section presents the method we discovered to derive the Roe matrix for 2-D
polynomial flux laws. To satisfy the first condition of the Roe matrix, we must have:

Ji(ρL, σL)− Ji(ρR, σR) = ai(ρL − ρR) + bi(σL − σR) .

Here, Ji is the polynomial flux function and ai and bi are some expressions of ρL,
ρR, σL, and σR. The polynomial function Ji can be expressed as the sum of terms
in the form of kmnρ

mσn, where kmn is the coefficient. The difference for the term is
kmn(ρmL σ

n
L − ρmRσnR), which we can express as the following:

kmn(ρmL σ
n
L − ρmRσnR) =

kmn
2

((σnL + σnR)(ρmL − ρmR ) + (ρmL + ρmR )(σnL − σnR))

=
kmn

2
((σnL + σnR)(

m−1∑
j=0

ρjLρ
m−1−j
R )(ρL − ρR) +

(ρmL + ρmR )(
n−1∑
j=0

σjLσ
n−1−j
R )(σL − σR))

Let amn = kmn

2
(σnL + σnR)(

∑m−1
j=0 ρjLρ

m−1−j
R ) and bmn = kmn

2
(ρmL + ρmR )(

∑n−1
j=0 σ

j
Lσ

n−1−j
R ).

Then, amn and bmn are the expressions that allow us to have the difference for the
term kmnρ

mσn in the form of amn(ρL − ρR) + bmn(σL − σR). Adding the expressions
for each term together, we obtain the expressions needed for polynomial flux function
Ji :

Ji(ρL, σL)− Ji(ρR, σR) = (
∑

amn)(ρL − ρR) + (
∑

bmn)(σL − σR)

= ai(ρL − ρR) + bi(σL − σR)

.

We can calculate a1 and b1 for J1 and a2 and b2 for J2. Then, we obtain:

J(uL)− J(uR) =

(
a1 b1

a2 b2

)(
ρL − ρR
σL − σR

)

11



Ergo, the matrix

(
a1 b1

a2 b2

)
satisfies the first condition of the Roe matrix. For the

specific term kmnρ
mσn, its partial derivatives with respect to ρ and σ are mkmnρ

m−1σn

and nkmnρ
mσn−1. We then have:{

limuL,uR→u
kmn

2
(σnL + σnR)(

∑m−1
j=0 ρjLρ

m−1−j
R ) = mkmnρ

m−1σn

limuL,uR→u
kmn

2
(ρmL + ρmR )(

∑n−1
j=0 σ

j
Lσ

n−1−j
R ) = nkmnρ

mσn−1

This shows that for each term of Ji, the amn and bmn equal to the partial derivatives

of ρ and σ, respectively. Therefore, the matrix

(
a1 b1

a2 b2

)
satisfies the third condition

that it equals to the Jacobian as uL, uR → u.

So far, the matrix

(
a1 b1

a2 b2

)
satisfy conditions i and iii. It is likely that it also sat-

isfy the second condition of being diagonalizable with real eigenvalues. This condition
requires that the discriminant (a1− b2)2− 4b1a2 > 0. As discussed before, because of
special cases when ρ = 0 or σ = 0, we can at best have (a1− b2)2− 4b1a2 ≥ 0. Notice
that amn and bmn are formed by using some averaging between ρL and ρR and between
σL and σR as values for the derivatives. For example, kmn

2
(σnL + σnR)(

∑m−1
j=0 ρjLρ

m−1−j
R )

is formed by plugging in ρ = (
∑m−1

j=0 ρjLρ
m−1−j
R

m
)

1
m−1 and σ = (

σn
L+σn

R

2
)

1
n in ∂Ji

∂ρ
. Therefore,

if kmn is positive, we have:

mkmnρ
m−1
min σ

n
min ≤ amn ≤ mkmnρ

m−1
max σ

n
max .

Here, ρmin = min (ρL, ρR) and so on. If kmn, the coefficients in Ji, are all positive or

negative, we have (a1 − b2)2 − 4b1a2 ≥ 0, where equality can only be achieved when
ρL = ρR = 0 or σL = σR = 0. Thus, in such a case, the second condition of being
diagonalizable with real eigenvalues is generally satisfied. However, it is possible that
(a1 − b2)2 − 4b1a2 < 0 when some coefficients are positive and others are negative.

Therefore, we should check whether

(
a1 b1

a2 b2

)
satisfies the second condition. In most

cases, it meets the second condition and is in fact a Roe matrix.
Below is an example of a Roe solver with a polynomial variation of Greenshields’

Law derived from (5). The flux rule we have determined for this Roe solver is{
v1 = vm1

(
1− ρ+σ

ρm

)
v2 = vm2

(
1− (ρ+σ

ρm
)2
)

where J1 is the flux of human vehicles, J2 is the flux of autonomous vehicles, and ρm
is the maximum density that causes cars to stop. Below is the Roe matrix for this
set of flux rules:

R =

(
1− 2ρL+2ρR+σL+σR

2ρm
−ρL+ρR

2ρm

− (ρL+ρR)(σL+σR)+2σ2
L+2σ2

R

2ρm2 1− ρ2L+ρ2R+2(ρL+ρR)(σL+σR)+2σ2
L+2σ2

R+2σL·σR
2ρm2

)

As mentioned before, condition (i) and (iii) are guaranteed to be met. After
checking, we see that condition (ii) is met only when neither ρL = ρR = 0 nor
σL = σR = 0 is true. Thus, our matrix satisfies the conditions for a Roe matrix.

6.2 The Roe Solver

After deriving the Roe matrix R̂ for the two flux laws, we can then code the Roe
solver. As a finite volume method, the Roe solver requires the calculation of intercell
fluxes for each adjacent cell. As explained at the end of section 6.1, for a pair of
adjacent cells in which ρL, ρR, σL and σR 6= 0, all conditions of the Roe matrix are

12



satisfied. In this case, we calculate the intercell flux by considering the Riemann
problem in the linear system Ut + R̂Ux = 0, where R̂ is the roe matrix derived by
plugging in ρL, ρR, σL, σR value at that pair of cells. To calculate the intercell flux, we
perform the eigendecomposition on R̂, resulting in eigenvalues λ1, λ2 and eigenvectors
r1, r2. The Roe matrix R̂ then can be rewritten as QDQ−1 where D is the diagonal
matrix formed by the eigenvalues and Q is a matrix that has r1 and r2 as columns.
Then, the decoupled system can be written in the following form.{

r1t + λ1r1x = 0

r2t + λ2r2x = 0

The decoupled system simply describes two discontinuities, one in r1 and one in r2,
travelling in the speed of λ1 and λ2, respectively. In this system, the flux vector F is

simply

(
λ1r1

λ2r2

)
. Then, the intercell fluxes of the Ut + R̂Ux = 0 are given by J = QF ,

which is then used to calculate the densities of the next time step.
However, for a pair of adjacent cells that have ρL = ρR = 0 or σL = σR = 0,

the second condition of the Roe matrix might not hold. In this case, because there
is only one density left and we are left with a 1-D Riemann problem, we simply use
the upwind method to obtain the flux. The core structure of our Roe solver code is
shown in Appendix C.

7 Analysis of the Numerical Solution from the Roe

Solver

When compared to the Lax-Friedrichs method, the Roe solver has a much higher
resolution. While discontinuities in densities get smoothed out by the severe numerical
diffusion in Lax-Friedrichs method, they are preserved in the Roe solver, allowing us to
see how they transform overtime in the system. This section provides some qualitative
observations on the traffic system that uses the constitutive laws we defined in (25)
as v1 = vm1

(
1− ρ+σ

ρm

)
and v2 = vm2

(
1− (ρ+σ

ρm
)2
)
.

Through observing numerical solutions, we analyze that in a traffic system with
only one kind of vehicle, the solution tends to be a rare-fraction fan followed by a
discontinuous jump as shown in Figure 7. By using an Ansatz on the system, we
can prove that the discontinuity in densities and the slope of the rare-fraction fan
decreases until everything smooth out.

Figure 7: Solution for a 1-D System

Similar behavior occurs in a 2-D traffic system with two kinds of cars. Figure 8
shows a typical solution for the 2-D system. In the figure, the red curve describes
the density of human-driven cars, the blue curve describes the density of autonomous
cars, and the green curve describes the average density. As shown in the figure,
the average density behaves similar to that of the 1-D solution curve in the way it
consists of a rare-fraction fan followed by a shock. The discontinuity in density, or

13



Figure 8: Solution for a 2-D System over time

the shock, of the green curve also decays as the 1-D solution curve does. The red
and blue curves behaves differently from the green curve as they seems to oscillate
around the green curve in periodic waves, which also gradually diminishes. However,
the behavior described above is only an observation and needs to be proven by an
Ansatz.

8 Conclusion and Future Investigations

In our work, we investigated the interaction between autonomous vehicles and human-
driven vehicles, and discovered in our simulations that in a conserved system of density
ρ + σ, the shock waves seem to be diffusing over time. Analyzing the graph, we
observed that over time, the amplitude of the density curves gradually decreased.
Although we have yet to prove this, we also hypothesized that the density curve of
ρ+ σ was actually similar to that of a linear Greenshields’ density curve.

One way to approach the analysis of our Roe solver is to use Stability Theory.
Stability Theory addresses the stability of solutions and differential equations under
small perturbations of initial conditions. This would allow people to fully prove
the diffusion of the density curve of ρ + σ as we had observed in our Octave code
simulations.

It would be useful to create different Roe solvers with different constitutive laws,
analyze the density curves, and compare how the properties of our Greenshields Roe
solver are reflected in other constitutive laws. During those comparisons, one might
come up with specific parameters to describe the efficiency and safety of a traffic
systems. For example, one can measure the time it takes for shock waves to dissolve.
This will then allow future mathematicians to propose what kind of traffic system
functions the best.
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10 Appendix

Below, we compiled some of our code from Octave as a skeletal structure.

10.1 Appendix A: The Upwind Method

The core structure of the Upwind method Octave code we used is shown below. The
car density is written as u, and i, j and F represents time steps, cells, and the intercell
flux, respectively.

f o r i = 2 :M
f o r j = 1 : (N−1)

i f u ( j , i −1) == u( j +1, i −1)
a = abs ( Jprime (u( j , i −1)) ) ;

e l s e
a=abs ( ( J (u( j +1, i−1))−J (u( j , i −1)))/(u( j +1, i−1)−u( j , i −1)) ) ;

end
F( j +1) = 1/2∗( J (u( j +1, i −1))+J (u( j , i −1))

−1/2∗a∗(u( j +1, i−1)−u( j , i −1)) ;
end
f o r j =1:N

u( j , i ) = u( j , i −1) + dt/dx∗(F( j )−F( j +1)) ;
end

end

10.2 Appendix B: Lax Friedrichs

The core structure of the Lax-Friedrichs code we created is shown below, in which u
is the density of human-driven cars, v is the density of autonomous cars, J1 is the
constitutive law for human-driven cars, J2 is the constitutive law for autonomous
cars, F1 is the intercell flux for human-driven cars, and F2 is the intercell flux of
autonomous cars.

f o r i = 2 :M
f o r j = 1 : (N−1)

F1( j +1) = 1/2∗( J1 (u( j +1, i −1) ,v ( j +1, i −1))
+J1 (u( j , i −1) ,v ( j , i −1)))
+1/2∗(dx/dt )∗(−u( j +1, i−1)+u( j , i −1)) ;
F2( j +1) = 1/2∗( J2 (u( j +1, i −1) ,v ( j +1, i −1))
+J2 (u( j , i −1) ,v ( j , i −1)))
+1/2∗(dx/dt )∗(−v ( j +1, i−1)+v ( j , i −1)) ;

end
f o r j =1:N

u( j , i ) = u( j , i −1) + dt/dx∗(F1( j )−F1( j +1)) ;
v ( j , i ) = v ( j , i −1) + dt/dx∗(F2( j )−F2( j +1)) ;

end
end

10.3 Appendix C: Roe Solver
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f o r i = 2 :M
f o r j = 1 : (N−1)

i f ( rho ( j , i −1)>0) && ( rho ( j +1, i −1)>0)
&& ( s i g ( j , i −1)>0) && ( s i g ( j +1, i −1)>0)

rhoL=rho ( j , i −1);
s igL=s i g ( j , i −1);
rhoR=rho ( j +1, i −1);
sigR=s i g ( j +1, i −1);
R=[1−(2∗rhoL+2∗rhoR+sigL+sigR )/(2∗ a ) , −(rhoL+rhoR )/(2∗ a ) ;
−((rhoL+rhoR )∗ ( s igL+sigR )+2∗ s igL ˆ2+2∗ sigR ˆ2)/(2∗ a ˆ2) ,
1−(rhoLˆ2+rhoRˆ2+2∗( rhoL+rhoR )∗ ( s igL+sigR )
+2∗ s igL ˆ2+2∗ sigRˆ2+2∗ s igL ∗ sigR )/(2∗ a ˆ 2 ) ] ;
[V,D]= e i g (R) ;
lam1=D( 1 , 1 ) ;
lam2=D( 2 , 2 ) ;
L=inv (V) ∗ [ rhoL ; s igL ] ;
R=inv (V) ∗ [ rhoR ; sigR ] ;
uL=L ( 1 ) ;
vL=L ( 2 ) ;
uR=R( 1 ) ;
vR=R( 2 ) ;
i f ( lam1>=0)&&(lam2>=0)

F=V∗ [ lam1∗uL ; lam2∗vL ] ;
e l s e i f ( lam1<0)&&(lam2>=0)

F=V∗ [ lam1∗uR; lam2∗vL ] ;
e l s e i f ( lam1<0)&&(lam2<0)

F=V∗ [ lam1∗uR; lam2∗vR ] ;
e l s e

F=V∗ [ lam1∗uL ; lam2∗vR ] ;
e n d i f
F1( j+1)=F ( 1 ) ;
F2( j+1)=F ( 2 ) ;

e n d i f
end
f o r j =1:N

rho ( j , i ) = rho ( j , i −1) + dt/dx∗(F1( j )−F1( j +1)) ;
s i g ( j , i ) = s i g ( j , i −1) + dt/dx∗(F2( j )−F2( j +1)) ;

end
end

end
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