
The PRIMES 2016 Math Problem Set

Dear PRIMES applicant!

This is the PRIMES 2016 Math Problem Set. For complete rules,
see
http://math.mit.edu/research/highschool/primes/apply.php

(for MIT PRIMES), and
http://math.mit.edu/research/highschool/primes/usa/apply-usa.

php

(for PRIMES-USA).
Note that this set contains two parts: “General Math problems” and

“Advanced Math.” Please solve as many problems as you can in both
parts.

You can type the solutions or write them up by hand and then scan
them. Please attach your solutions to the application as a PDF file.
The name of the attached file must start with your last name, for
example, “smith-solutions.” Include your full name in the heading of
the file.

Please write not only answers, but also proofs (and partial solu-
tions/results/ideas if you cannot completely solve the problem). Be-
sides the admission process, your solutions will be used to decide which
projects would be most suitable for you if you are accepted to PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

WARNING: Posting these problems on problem-solving web-
sites is strictly forbidden! Applicants who do so will be disqualified,
and their parents and recommenders will be notified.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day. Instead, think about them, on
and off, over some time, perhaps several days. We encourage you to
apply if you can solve at least 50% of the problems.

We note, however, that there will be many factors in the admission
decision besides your solutions of these problems.

Enjoy!
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General math problems
Problem G1. Let N be a positive integer. A soon to be bankrupt

casino lets you play the game G(N). In the game G(N), you roll a
typical, fair, six-sided die, with faces labeled 1 through 6, up to N
times consecutively. After each roll, you may either end the game and
be paid the square of the most recent number you rolled, or roll the
die again hoping for a better number — on the N -th roll you must
take the money and cannot roll again. For example, in the game G(2)
you might first roll a 5, but, hoping for a 6, you roll again, only to be
disappointed to roll a 1 on your second and final roll, and you walk
away with $1.

(a) Describe a strategy that maximizes the expected value of playing
G(N).

(b) What is this maximal expected value?
Problem G2. (a) Let n be an even positive integer. Can one divide

the numbers 1, ..., n into three nonempty groups, so that the sum of
numbers in the first group is divisible by n + 1, in the second one by
n+ 2, and in the third one by n+ 3?

(b) For which odd positive integer numbers n can one do this?
Problem G3. Suppose you play a game whose goal is to collect

three cards of the same suit. In your first move, you take three cards
from a standard 52-card deck at random. Call them C1, C2, C3.

1. If C1, C2, C3 are all of the same suit, you win.
2. If C1, C2, C3 are all of different suits, you put them back, shuffle,

and take three cards one more time. If now all are of the same suit,
you win, otherwise, you lose.

3. If among C1, C2, C3, exactly two cards are of the same suit,
you put the third card (the odd one out) back into the deck, shuffle,
and pull out a card. If it is the same suit as the other two, you win,
otherwise, you lose.

What is the chance of winning? (Write the answer as a fraction in
lowest terms).

Problem G4. In a couples therapy session, n couples are to be
seated at a round table (in 2n chairs), but no person is allowed to sit
next to his/her spouse. How many seat assignments are there? What
is the number of seatings for 5 couples?

Problem G5. A zero-one matrix A is said to contain another zero-
one matrix P if P is a submatrix1 of A, or some submatrix of A can

1A submatrix is obtained from a matrix by crossing out some rows and some
columns.
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be transformed to P by changing some ones to zeroes. Otherwise A is
said to avoid P .

Consider the following pattern avoidance game, denoted by PAG(n, P ):
Starting with the n×n all zeroes matrix, two players take turns chang-
ing zeroes to ones. If any player’s turn causes the matrix to contain
the pattern P , then that player loses.

If no dimension of P exceeds n, then PAG(n, P ) will always have a
winner. Define W (n, P ) to be the winner of PAG(n, P ) if both players
employ optimal strategies.

(a) Determine W (n, P ) for every n ≥ k when P is a k by 1 matrix
with every entry equal to 1.

(b) Determine W (n, P ) for every n ≥ 2 when P is a 2 by 2 identity

matrix: P =

(
1 0
0 1

)
Problem G6. Suppose that n pine trees grow at points T1, ..., Tn

of the plane (no three on the same line). A cyclic order C of T1, ..., Tn
(i.e., an order up to cyclic permutation) is called visible if there exists
a point P in the plane from which an observer sees the trees T1, ..., Tn
in the order C. The observer has a 360 degree vision, starting at an
arbitrary angle and sweeping clockwise. Observation points are such
that no two trees are on the same line of vision. The positions and
labeling of the trees are fixed. E.g. if there are 4 trees, and tree 1 in
the East, tree 2 in the West, tree 3 in the North, and tree 4 in the South
from the observer then the order is 1423, or any cyclic permutation of
these (e.g. 3142).

Show that if n ≥ 7 then there exists a cyclic order which is not
visible. What about n = 6?

Problem G7. A permutation s of n elements has order 2016 (i.e.,
the smallest number of times you need to repeat s to get to the original
position is 2016). What is the smallest possible value of n? Give
an example of such s for the minimal n. (Hint: consider the cycle
decomposition of s).
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Advanced math problems
Problem M1. There are n piles with coins. In one move you can

pick several piles and take the same number of coins from those piles.
Given a set of piles, its piles number is the smallest number of moves
you need to remove all coins from all the piles. For example, if you have
three piles with 1, 2, and 3 coins each, you can remove all the coins in
three moves by treating one pile at a time. But the piles number is 2,
as the smallest number of moves is 2.

Find the piles number (with proof) for the following sets of piles:

• 1, 2, 3, 10, 20, 30, 100, 200, 300.
• 1, 2, 3, 11, 12, 13, 101, 102, 103.
• 1, 3, 4, 7, 11, 18, 29, 47, 76, 123.
• Any sequence of natural numbers of length n where each term

starting from the third one is the sum of two previous terms.

Problem M2. Let fn(x) = 1 + x+ x2

2!
+ ...+ xn

n!
.

(a) Show that fn(x) > 0 for all real x if n is even, and that fn has a
unique real root xn for n odd.

Hint: use the relationship between fn and its derivative.
(b) Show that all complex roots of fn are simple (i.e., if a is a root

of fn then f ′n(a) 6= 0).
(c) Let n = 2k + 1 for positive integer k, and c = limk→∞

xn

n
(it is

known to exist). Find c. (Represent the answer as a root of an equation,
and compute it to 4th digit precision). Hint: Use the relationship
between fn(x) and the function ex.

Problem M3. Let p be a prime.
(a) Find the number of square matrices A of size n over the field Fp

of p elements such that Ap = A.
(b) Suppose that p ≥ 3. Find the number of square matrices of size

n over Fp such that A2 + 1 = 0 (where 1 is the identity matrix and 0
is the matrix of all zeros). You may have to consider two cases for p.

Problem M4. Suppose we are given integers m,n > 0, and a
collection S of (distinct) subsets of some ambient set A, each of size
at most m. Assume |S| > (n − 1)mm!. Prove that there exist n sets
A1, . . . , An ∈ S such that the intersections Ai ∩Aj are the same for all
pairs (i, j) with i 6= j.

Problem M5. Find the number of colorings of the faces of the
cuboctahedron (https://en.wikipedia.org/wiki/Cuboctahedron) in
n colors, up to rotations (i.e. two colorings equivalent by rotation are
regarded as the same).
Problem M6. Let Di, i ≥ 1 be open disks of radii ri < 1 contained

in the unit disk D, such that D = ∪i≥1Di.
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(a) Show that for each 0 < a < 1 the series
∑

i r
a
i is divergent.

(b) Show that
∑

i ri is divergent.
(c) For any a > 1, can you pick Di so that

∑
i r

a
i is convergent?

(d) Can you solve (a),(b) if the union of the disks Di is not necessarily
the whole D but a subset D′ ⊂ D of full area (i.e., area π)?

Hint. Consider the intersection of Di with the circle of radius 1− t
centered at the origin, or (for (d)) the annulus between this circle and
the unit circle.
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