Investigating Mixed Memory-Reinforcement Models for Random Walks

Ria Das, Phillips Exeter Academy
Mentor: Andrew Rzeznik

Sixth Annual MIT-PRIMES Conference
May 21, 2016
Random Walks in Biology

Definition

A random walk is a path that consists of a series of random steps.

Examples

Path of a molecule in a gas
Motion of a slime mold towards food
Movement of ants between food source and anthill

Not necessarily purely random
Definition

A **random walk** is a path that consists of a series of random steps.
Random Walks in Biology

Definition

A **random walk** is a path that consists of a series of random steps.

Examples
Random Walks in Biology

Definition

A **random walk** is a path that consists of a series of random steps.

- **Examples**
 - Path of a molecule in a gas
Definition

A random walk is a path that consists of a series of random steps.

Examples

- Path of a molecule in a gas
- Motion of a slime mold towards food
Definition

A **random walk** is a path that consists of a series of random steps.

Examples

- Path of a molecule in a gas
- Motion of a slime mold towards food
- Movement of ants between food source and anthill
Random Walks in Biology

Definition

A random walk is a path that consists of a series of random steps.

Examples

- Path of a molecule in a gas
- Motion of a slime mold towards food
- Movement of ants between food source and anthill

Not necessarily purely random
Memory and Reinforcement

Memory: higher probability of moving along same direction of motion
Favors boundaries of environment

Reinforcement: higher probability of moving along previous paths taken by other particles
Ants following trails of chemical pheromone
Causes slower spread of particles away from starting location
Memory and Reinforcement

- **Memory**: higher probability of moving along same direction of motion

Reinforcement: higher probability of moving along previous paths taken by other particles

Ants following trails of chemical pheromone

Causes slower spread of particles away from starting location
Memory and Reinforcement

- **Memory**: higher probability of moving along same direction of motion
 - Favors boundaries of environment

Reinforcement: higher probability of moving along previous paths taken by other particles
- Ants following trails of chemical pheromone
- Causes slower spread of particles away from starting location
Memory and Reinforcement

- **Memory**: higher probability of moving along same direction of motion
 - Favors boundaries of environment

- **Reinforcement**: higher probability of moving along previous paths taken by other particles
Memory and Reinforcement

- **Memory**: higher probability of moving along same direction of motion
 - Favors boundaries of environment

- **Reinforcement**: higher probability of moving along previous paths taken by other particles
 - Ants following trails of chemical pheromone
Memory and Reinforcement

- **Memory**: higher probability of moving along same direction of motion
 - Favors boundaries of environment

- **Reinforcement**: higher probability of moving along previous paths taken by other particles
 - Ants following trails of chemical pheromone
 - Causes slower spread of particles away from starting location
Goals

Memory and reinforcement have been studied separately. Build a model in which memory and reinforcement are both factors. More realistic biologically. Possible optimum memory-reinforcement mix for least travel time. Reproduce and explain phenomena such as death spiral.
Goals

- Memory and reinforcement have been studied separately
Goals

- Memory and reinforcement have been studied separately
- Build a model in which memory and reinforcement are both factors
Goals

- Memory and reinforcement have been studied separately
- Build a model in which memory and reinforcement are both factors
 - More realistic biologically

Ria Das, Phillips Exeter Academy Mentor: Andrew Rzeznik
Investigating Mixed Memory-Reinforcement Models
Goals

- Memory and reinforcement have been studied separately
- Build a model in which memory and reinforcement are both factors
 - More realistic biologically
 - Possible optimum memory-reinforcement mix for least travel time
Goals

- Memory and reinforcement have been studied separately
- Build a model in which memory and reinforcement are both factors
 - More realistic biologically
 - Possible optimum memory-reinforcement mix for least travel time
 - Reproduce and explain phenomena such as death spiral
Memory Models

- Memory involves angles θ of deflection
- Memory parameter m

Figure: General intersection in a graph
Memory Models

- Simple model: Rectangular Grid
Memory Models

\[\frac{1}{4}(3m + 1) \]

\[\frac{1}{4}(1 - m) \]

\[n_i \]

\[\frac{1}{4}(1 - m) \]
Memory Models

- General graph

Figure: General intersection
Memory Models

- Assign U and L weights to forward and backward directions.

Figure: General intersection

\[W(\theta) = (U - L) f(\theta) + L \]
Memory Models

- Assign U and L weights to forward and backward directions

![Diagram showing L and U with angle θ](image)

Figure: General intersection

$$W(\theta) = (U - L)f(\theta) + L$$
Memory Models

\[f(\theta) = e^{\frac{U-1}{2-U}(\pi-\theta)} - 1 \]

Figure: Graph of \(f(\theta) \) vs. \(\theta \)

Ria Das, Phillips Exeter Academy Mentor: Andrew Rzeznik
Investigating Mixed Memory-Reinforcement Models
Memory Models

\[f(\theta) = \frac{e^{\frac{U-1}{2-U}(\pi - \theta)}}{e^{\frac{U-1}{2-U}\pi} - 1} \]

Figure: Graph of \(f(\theta) \) vs. \(\theta \).
Memory Models

Ria Das, Phillips Exeter Academy Mentor: Andrew Rzeznik
Investigating Mixed Memory-Reinforcement Models
Reinforced Random Walks

Probability depends on pheromone concentration (d_{ij}) and edge length (l_{ij}).
Reinforced Random Walks

- Probability depends on pheromone concentration (d_{ij}) and edge length (l_{ij})

Figure: General edge E_{ij}
Reinforced Random Walks

- Mean flow rate (\bar{I}_{ij}) equation based on edge weights (Ma Q, et. al.):

$$
\bar{I}_{ij} = \left(\frac{N_i}{\sum_{e \in E_i} \frac{d_e}{l_e}} - \frac{N_j}{\sum_{e \in E_j} \frac{d_e}{l_e}} \right) \left(\frac{d_{ij}}{l_{ij}} \right)
$$

- N_i is the number of particles at node n_i
- E_i is the set of all edges around node n_i
- d_e is the pheromone concentration on an edge e
- l_e is the length of an edge e
Mixed Model

Weighted average of pure memory and pure reinforcement probabilities

Memory weight is m

Reinforcement weight is $1 - m$
Mixed Model

- Weighted average of pure memory and pure reinforcement probabilities
Mixed Model

- Weighted average of pure memory and pure reinforcement probabilities
- Memory weight is m
Mixed Model

- Weighted average of pure memory and pure reinforcement probabilities
- Memory weight is m
- Reinforcement weight is $1 - m$
Results

Pure memory on 7 x 7 grid: memory=1.0, reinforcement=1, evaporation=0.01, reflection=0.1, times=1000

Ria Das, Phillips Exeter Academy Mentor: Andrew Rzeznik
Investigating Mixed Memory-Reinforcement Models
Results

- **Pure memory** on 7 x 7 grid: memory=1.0, reinforcement=1, evaporation=0.01, reflection=0.1, times=1000
Results

- **Pure reinforcement** on 7×7 grid: memory=0, reinforcement=1, evaporation=0.01, reflection=0.1, times=1000
Results: Mixed Memory Reinforcement Model

(a) $m = 0$

(b) $m = 0.1$

(c) $m = 0.3$

(d) $m = 0.4$
Results: Mixed Memory Reinforcement Model

(a) $m = 0.5$
(b) $m = 0.6$
(c) $m = 0.7$
(d) $m = 1$

Ria Das, Phillips Exeter Academy Mentor: Andrew Rzeznik
Investigating Mixed Memory-Reinforcement Models
Shortest Arrival Time

Fractional Arrival Time (0.02) vs. Memory

Ria Das, Phillips Exeter Academy Mentor: Andrew Rzeznik
Investigating Mixed Memory-Reinforcement Models
Generalized Graph Model

- Early results
Future Work

Further simulations on generalized graph model
Finding optimum memory-reinforcement mixes on general graphs
Refining optimum mix analysis on rectangular grids
Comparing and validating key simulation results with experimental results
Constructing a continuous-space, continuous-time model with partial differential equations rather than discrete time-steps
Reproducing the death spiral
Future Work

- Further simulations on generalized graph model
Future Work

- Further simulations on generalized graph model
- Finding optimum memory-reinforcement mixes on general graphs

Ria Das, Phillips Exeter Academy Mentor: Andrew Rzeznik
Investigating Mixed Memory-Reinforcement Models
Future Work

- Further simulations on generalized graph model
- Finding optimum memory-reinforcement mixes on general graphs
 - Refining optimum mix analysis on rectangular grids

Ria Das, Phillips Exeter Academy Mentor: Andrew Rzeznik
Investigating Mixed Memory-Reinforcement Models
Future Work

- Further simulations on generalized graph model
- Finding optimum memory-reinforcement mixes on general graphs
 - Refining optimum mix analysis on rectangular grids
- Comparing and validating key simulation results with experimental results
Future Work

- Further simulations on generalized graph model
- Finding optimum memory-reinforcement mixes on general graphs
 - Refining optimum mix analysis on rectangular grids
- Comparing and validating key simulation results with experimental results
- Constructing a continuous-space, continuous-time model with partial differential equations rather than discrete time-steps
Future Work

- Further simulations on generalized graph model
- Finding optimum memory-reinforcement mixes on general graphs
 - Refining optimum mix analysis on rectangular grids
- Comparing and validating key simulation results with experimental results
- Constructing a continuous-space, continuous-time model with partial differential equations rather than discrete time-steps
- Reproducing the death spiral
Acknowledgements

Thanks to

- My mentor Andrew Rzeznik
- My parents
- and the MIT-PRIMES program.