Metrics for Comparing 3D Neuron Segmentations in Expansion Microscopy Connectomics

By Albert Gerovitch
Mentors: Adam Marblestone, Daniel Goodwin (Boyden Lab)
Background Information
Neurons

- **Functional unit (cell) of the nervous system**
 - Convey information in the brain
 - Electrical and chemical signals
- **Provide foundation for brain function**
 - Understanding the brain
Synapses

- Connections between neurons
 - Signals transferred
- Knowing shape of neuron would help track signals
- Looking at individual neurons for now
 - Multi-cell connected networks later
Expansion Microscopy Connectomics

- Study of comprehensive maps of connections in the nervous system
- Traditional light microscopy up to 300nm
- Expansion microscopy works by physically expanding tissue
 - Allows large 3D images at high resolutions
 - Color
 - 5x can see down to 60nm

(Chen, Tillberg, Boyden 2014)
Segmentation

- Finding and isolating shape of individual neuron(s)
- Laborious for humans, computers would accelerate process
- Difficulties with misleading background “noise,” isolating individual neuron
Goal

- Implement metrics to evaluate the performance of a computer algorithm at segmenting neurons in 3D
- Ultimately find the best segmentation algorithm
Obtaining Segmentations

1. Raw Data
2. Segmentations
3. Adjusted

- Algorithm #1
- Algorithm #2
- MATLAB `imclose, imfill`
Metrics of Segmentation Performance
Metrics of Segmentation Performance

- Compare segmentation from computer vs. human ("ground truth")
- Error types: deletion, split (incorrect boundary), merger (incorrect gap)
- Ideal metric: tolerate minor differences, strongly penalize splits/mergers (topological disagreements)

Evaluation metrics:

- **Pixel error** - count number of pixels where computer disagrees with human
 - Misleading, fails to notice intuitive disagreements
- **Rand error** - fraction of pixels pairs that belong to same region in one segmentation but not other
- **Warping error** - count of topologically-relevant boundary labeling errors
Visual comparison of evaluation metrics

- Human interpretation
- Contains deletion, split, and merger
- Contains no serious errors

(Jain, Seung, Turaga)

Visual comparison of evaluation metrics
Visual comparison of evaluation metrics

- Human interpretation
- Contains deletion, split, and merger
- *Pixel error* misleading
- Contains no serious errors

(Jain, Seung, Turaga)
Visual comparison of evaluation metrics

- Human interpretation
- Contains deletion, split, and merger
- *Pixel error* misleading
- Contains no serious errors
- *Warping error* and *Rand error* much better representation

(Jain, Seung, Turaga)
Developing an Application
Working with Pixel Error

- *Pixel error* - count number of pixels where computer disagrees with human
- Wrote program in Java
- Able to:
 - Give score as decimal
 - Visualize error
 - See where segmentations differ
 - Provide feedback for developers of algorithms
 - Export result as TIFF
Working with Rand Error

- **Rand error** - fraction of pixels pairs that belong to same region (connected component) in one segmentation but not other

- Able to:
 - Give score as decimal

- Improvements:
 - Solve accuracy issues
 - Generate visualization
Working with Warping Error

- *Warping error* - fraction of topologically-relevant boundary labeling errors
- Able to:
 - Give accurate score as decimal
- Improvements:
 - Generate visualization
 - Improve speed (currently ~10 min to run)
Conclusions
Results

- Wrote program able to compare two segmentations with pixel, rand, and warping error
 - Visualize/export pixel error
- Applied application to expansion microscopy data
 - Converted segmentations to common format (TIFF image)
- Ongoing: Collaborating with Boyden Lab researchers to provide feedback for algorithms
Future Plans

- Visualize results of Rand and Warping error
 - Provide better feedback for algorithm developers
- Add capability to evaluate multi-cell segmentations
- Automate scoring and improving algorithms
Sources

- http://expansionmicroscopy.org/15.01.chen.FULL.pdf
- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975605/#S7title
- imagej.net/Topology_preserving_warping_error
Acknowledgements

● Dr. Adam Marblestone and Daniel Goodwin, my mentors, for suggesting the project and guiding me through the process
● MIT PRIMES program, and in particular Dr. Slava Gerovitch and Dr. Pavel Etingof, for making this experience possible and Slava for being a wonderful dad
● Prof. Ed Boyden, Nick Barry, Grace Huynh, and the entire Synthetic Neurobiology group, for giving me the opportunity and resources to work on this amazing research