
An Index-Type Invariant of Knot Diagrams and
Bounds for Unknotting Framed Knots

Albert Yue

Abstract

We introduce a new knot diagram invariant called self-crossing in-
dex, or SCI. We found that SCI changes by at most ±1 under framed
Reidemeister moves, and specifically provides a lower bound for the num-
ber of Ω3 moves. We also found that SCI is additive under connected
sums, and is a Vassiliev invariant of order 1. We also conduct similar
calculations with Hass and Nowik’s diagram invariant and cowrithe, and
present a relationship between forward/backward, ascending/descending,
and positive/negative Ω3 moves.

1 Introduction

A knot is an embedding of the circle in the three-dimensional space without self-
intersection. Knot theory, the study of these knots, has applications in multiple
fields. DNA often appears in the form of a ring, which can be further knotted
into more complex knots. Furthermore, the enzyme topoisomerase facilitates
a process in which a part of the DNA can temporarily break along the phos-
phate backbone, physically change, and then be resealed [13], allowing for the
regulation of DNA supercoiling, important in DNA replication for both grow-
ing fork movement and in untangling chromosomes after replication [12]. Knot
theory has also been used to determine whether a molecule is chiral or not [18].
In addition, knot theory has been found to have connections to mathematical
models of statistic mechanics involving the partition function [13], as well as
with quantum field theory [23] and string theory [14].

Knot diagrams are particularly of interest because we can construct and
calculate knot invariants and thereby determine if knots are equivalent to each
other. While this may seem easy to do, knots are not always trivially equivalent,
especially since knots can become increasingly complex and since it might be
necessary to further complicate the knot before they can reach the desired state
(if at all possible), like in the case of “hard unknot diagrams” [7].

In this paper, we introduce a new knot diagram invariant called self-crossing
index, or SCI. We calculate the behavior of SCI under Reidemeister moves
for knots and framed knots, as well as several other properties of the diagram
invariant. Three of the main theorems we will prove are as follows:

Theorem 1.1. For framed Reidemeister moves, the diagram invariant SCI only
changes under framed Reidemeister Type III moves, where each move changes
SCI by ±1. Specifically, SCI increases by 1 under forward Ω3 moves and de-
creases by 1 under backward Ω3 moves.

Theorem 1.2. The diagram Dn in Figure 14, which has 8n − 2 crossings,
satisfies

1

2

(
3n2 − n+ 2

)
≤ dfr(U,Dn)
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Theorem 1.3. The family of unknot diagrams Ln can be unknotted in n to 2n

moves as an unknot diagram, and requires at least n(n+1)
2 moves to unknot as

framed unknot diagrams. In other words,

n ≤ d(U,Ln) ≤ 2n

and
n(n+ 1)

2
≤ dfr(U,Ln).

We also conduct similar calculations and determine properties for Hass-
Nowik diagram invariant with linking number and cowrithe, and present a rela-
tionship between forward-backward, ascending-descending, and positive-negative
Ω3 moves.

2 Definitions

Because three-dimensional objects are generally difficult to imagine and manip-
ulate on paper, a knot in R3 or S3 is represented by a knot diagram, a projection
of the knot onto a 2D plane or a sphere, S2. This projection may have places
of self-intersection between exactly two points of the knot, known as crossings,
and a break is made in one of the two strands to indicate which strand is above
which in the actual knot. At a given crossing, the part of the diagram on top is
the overstrand, and the part below is the understrand.

It is easy to see that multiple knot diagrams can represent the same knot.

Definition 2.1 (equivalent knot diagrams). Two knot diagrams D and E are
considered equivalent if they represent the same knot.

We can produce equivalent knot diagrams using planar isotopies, deforma-
tions of a projection that preserve the number and relative locations of the
crossings, and Reidemeister moves, shown in Figure 1. In fact, Reidemeister
proved the following well-known theorem about Reidemeister moves:

Theorem 2.2 (Reidemeister). Diagrams D and E are equivalent if and only if
D and E are connected by a sequence of Reidemeister moves.

For simplicity and concision, we will refer to Reidemeister moves of Type I,
II, and III as Ω1, Ω2, and Ω3 moves in this paper, respectively.

Definition 2.3 (orientation). Given a knot diagram D, we can assign a di-
rection or orientation, denoted by an arrow on the curve, that is consistent
throughout the entire diagram.

Due to the orientation, each of the three Reidemeister moves has several
different cases, seen in Figures 2-4.

Also, we can define a forward oriented Reidemeister move for all three types.
Forward Ω1 moves create a loop and extra crossing. Forward Ω2 moves overlap
two strands, creating two new crossings. For forward Ω3 moves, we use the
definition given by Suwara [19].

Definition 2.4 (forward and backward Ω3 move). Let the vanishing triangle
be formed by the three crossings involved in the Ω3 move. Assign an orientation
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Figure 1: Reidemeister moves of Type I, II, and III (top to bottom).

to the vanishing triangle so that the direction cycles the strands in a cyclic top-
middle-bottom order. Let m be the number of sides of the vanishing triangle
whose orientation agrees with the orientation of the corresponding segment on
the knot diagram, and let q = (−1)m. Any Ω3 move changes m by ±1 or ±3,
so q changes under any Ω3 move. In particular, a forward Ω3 moves changes
the value of q from +1 to −1. A backward oriented Reidemeister move causes
the opposite of whatever the forward move does.

Note that the left-to-right Reidemeister moves in Figures 2-4 are the forward
moves.

One of the main interests of knot theory is determining if two knot pro-
jections represent the same knot. Despite decades of research, mathematicians
still do not have an algorithmic method to classify knot diagrams according to
equivalence. Thus, being able to find tighter bounds has implications on devel-
oping an algorithm to find a series of Reidemeister moves between two diagrams
(or the nonexistence of one), and ultimately to determine whether two diagrams
are equivalent. A simplified version of this question is how many moves it takes
to “unknot” a nontrivial unknot projection, where the trivial unknot projection
is simply a circle.

Definition 2.5 (unknotting). Given a projection of the unknot, the process of
unknotting refers to a sequence of Reidemeister moves that changes the original
projection into the trivial projection.

Lackenby [10] showed that any projection of the unknot requires at most
(236n)11 Reidemeister moves to unknot.

Hass and Nowik [8] introduced a knot diagram invariant involving smooth-
ing (Definition 3.3) and linking number, and subsequently provided an infinite
family of unknots with 7n − 1 crossings that had a quadratic lower bound in
n for the minimal number of Reidemeister moves needed to reach the trivial
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Figure 2: Right (a, c) and left (b, d) oriented Reidemeister moves of type I.

Figure 3: (a-b) Matched (Ω2m) and (c-d) unmatched (Ω2u) oriented Reidemeis-
ter moves of type II.

Figure 4: Oriented Reidemeister moves of type III.
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unknot diagram [9]. In this paper, we constructed new diagram invariants to
further bound the minimal number of Reidemeister moves needed to unknot an
oriented diagram.

As seen with Hass and Nowik, knot diagram invariants are useful in deter-
mining bounds for the number of Reidemeister moves.

Definition 2.6 (knot diagram invariant). A knot diagram invariant is a value
(usually an integer) that is assigned to a knot diagram. This value is invariant
under any isotopies of the plane.

An example of a diagram invariant is the writhe of a knot diagram.

Definition 2.7 (sign of a crossing). Let C be the set of all crossings in oriented
knot diagram D. Take any crossing c ∈ C . The sign of the crossing c, sgn(c),
when the crossing is turned so the strands are oriented bottom right to top left
and bottom left to top right, is 1 if the bottom left to top right strand is the
overstrand and −1 if the bottom right to top left strand is the overstrand (see
Figure 5).

Figure 5: Rule for calculating the sign of a crossing.

Definition 2.8 (writhe). Let C be the set of all crossings in oriented knot
diagram D. Then the writhe of D, denoted as w(D), is

w(D) =
∑
c∈C

sgn(c).

3 Curve invariants

In this paper, a (generic) curve is a smooth immersion of the circle into the
plane with intersecting double points, but has neither self-intersection points
with multiplicity greater than 2 nor points of self-tangency.

Reidemeister moves can be applied to curves, with the crossings simply being
ignored. Notice that this means that there exist non-equivalent knot diagrams
with underlying curves (obtained by removing the distinction between the over-
and understrand) that are connected by a series of Reidemeister moves. Curves
have curve invariants, the most well-known being the Arnold invariants J+, J–,
and St.

Definition 3.1 (positive and negative Ω3 move). Assign an orientation to the
sides of the vanishing triangle from the first to the last to appear if we move
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along the knot beginning at an arbitrary point. Let n be the number of sides
of the vanishing triangle whose orientation agrees with the orientation of the
corresponding segment on the knot diagram, and let q′ = (−1)n. Then a Ω3
move is considered positive if it changes q′ from −1 to +1, and negative if the
reverse occurs.

Definition 3.2 (Arnold [1]). The Arnold invariants J+, J–, and St are defined
by the following rules:

1. Orientation of the curve does not affect the invariants.

2. J+ changes by +2 under matched Ω2 moves, and remains unchanged under
unmatched Ω2 moves and Ω3 moves.

3. J– changes by +2 under unmatched Ω2 moves, and remains unchanged
under matched Ω2 moves and Ω3 moves.

4. St changes by +1 under positive Ω3 moves (and −1 for negative Ω3), and
remains unchanged under Ω2 moves.

5. For curves K0 and Ki, for i ∈ N0 (see Figure 6),

(a) J+(Ki+1) = 2i, J+(K0) = 0;

(b) J–(Ki+1) = −3i, J–(K0) = −1;

(c) St(Ki+1) = i, St(K0) = 0.

Figure 6: The base cases Ki for which the Arnold invariants are defined.

Hayashi, Hayashi, Sawada, and Yamada [6] introduced several knot diagram
invariants based on the Arnold invariants and writhe: J+/2+ St, J–/2+ St, and
J–/2 + St±w/2. These diagram invariants were then used to get bounds for
unknotting. The description of how they change under Reidemeister moves is
in the Appendix, Table 1.

We can define the smoothing operation of a crossing of a curve (or knot
diagram) in the following way:

Definition 3.3. Let c be a crossing in the oriented curve C. Then the smooth-
ing of c results in a two (potentially intersecting) curves created by removing
crossing c and replacing it with two non-intersecting strands that preserve the
original orientation, while leaving the rest of C the same.

Note that while D must be oriented, the smoothing operation is independent
of the orientation as reversing the orientation of C reverses the orientation for
both strands, resulting in the same two non-intersecting strands after smoothing.

In addition, we can define similar “indices” for edges and regions.

Definition 3.4 (edge and region). Let C be a curve. Curve C may be oriented
or not. An edge of C is any connected segment of the curve that ends at both
sides at a crossing and does not contain any crossings. A region is any connected
component of the complement of C.
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Given an oriented curve C, we can assign a winding number ind(r) to each
region r in the knot diagram. To define the winding number, we use the following
definition:

Definition 3.5 (left and right of a curve). Let l be an oriented curve in the
plane P . Let v be another oriented curve in P , such that v intersects l at point
A. Let ~nl and ~nv be vectors beginning at A tangent to l and v, respectively.
Then v crosses to the left (right) of l if (~nl, ~nv) is a positively (negatively)
oriented basis of the plane. Suppose a curve l that divides an (infinite) area
into two distinct regions. Then a curve that crosses to the left of l begins in
the region on the right of l and ends in the region on the left of l. Figure 7
illustrates the relative positions of the left and right regions with respect to an
oriented edge.

Figure 7: The left and right regions with respect to an oriented curve.

Thus we can define the winding number, also oftentimes called the index,
with respect to the curve, in the following way:

Definition 3.6 (winding number of a region). Let C be an oriented curve. Let
r be a region of D, and let P be any point in r. Draw a oriented half-line l from
P directed towards the point at infinity such that it does not pass through any
crossings of C. Then ind(r), the winding number of region r, is the number of
times C crosses l to the left minus the number of times C crosses l to the right.

Definition 3.6′. The winding number of region r, ind(r), is also commonly
defined as the net number of counterclockwise turns around any point of the
region.

The winding number of a region can also be calculated with the following
two rules: the winding number of the unbounded exterior region is 0 and for
any edge of D, the winding number of the region on the left is one more than
that of the region on the right, as seen in Figure 8.

Using winding number, we can define similar values for edges and crossings.

Definition 3.7. For an edge e in the curve, let R be the set of two regions
adjacent the edge. Then let

hInd(e) =
1

2

∑
r∈R

ind(r).

Definition 3.8. For a crossing c in the curve, let R be the set of four regions
that surround the crossing. Then let

qInd(c) =
1

4

∑
r∈R

ind(r).
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Figure 8: Rule for winding numbers of adjacent regions.

Simply put, hInd(c) is the average of the winding numbers of the two regions
adjacent to the edge e, and qInd(c) is the average of the winding numbers of
the four regions surrounding the crossing c.

Figure 9: For any integer k, the winding numbers of the four regions surrounding
a crossing.

These values were used by Viro [22] to find explicit formulas for J+ and J–

and by Shumakovitch [17] to find explicit formulas for St.

Theorem 3.9 (Viro [22]). Let C be a curve with n double points. Let C̄ be the
diagram obtained by smoothing all crossings of C, and let R(C̄) be the set of
regions in C̄. Then

J+(C) = 1 + n−
∑

r∈R(C̄)

(
χ(r) qInd2(r)

)
,

J–(C) = 1−
∑

r∈R(C̄)

(
χ(r) qInd2(r)

)
,

where χ is the Euler characteristic.

Fix p as an arbitrary point on the oriented curve C which differs from all
n crossings. Label the edges from 1 to 2n by following the orientation of the
curve and with the edge containing p being labeled 1.

Definition 3.10 (weight). Weight ω(x) is defined for crossings, edges, and
regions. Take a crossing c, such that the edges ei and ej point towards c and
have labels i and j, respectively, with ei crossing to the right of j (see Figure
10). Let sgn(k) be the sign of the integer k. Then,

ω(c) = sgn(i− j),
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Figure 10: Calculation of weight for crossing c and the edges ei and ej pointing
towards c, and the contribution to the weight of the surrounding regions.

ω(ei) = sgn(i− j),

ω(ej) = − sgn(i− j),

where sgn(x) of a real number x is 1 if x > 0, −1 if x < 0, and 0 if x = 0.
Let rW be the region directly to the left of ei, rE be the region directly to

the right of ei, rS be the region directly to the right of ei and left of ej , and rN
be the remaining region surrounding c (see Figure 10). The weight of a region
is the sum of the contributions by each crossing, ωc(r), and

ωc(rW ) = ωc(rE) =
1

2
sgn(i− j),

ωc(rN ) = ωc(rS) = −1

2
sgn(i− j).

Theorem 3.11 (Shumakovich [17]). Let C be an oriented curve. Let R, E , C
be the set of regions, edges, and crossings of C, respectively. Then

St(C) =
∑
c∈C

(ω(c) qInd(c)) + δ2 − 1

4
,

St(C) =
1

2

∑
e∈E

(
ω(e) hInd2(e)

)
+ δ2 − 1

4
,

St(C) =
1

3

∑
r∈R

(
ω(r) ind3(r)

)
+ δ2 − 1

4
,

where δ is equal to the hInd of the edge that the initial point p lies on.

One thing that is not as well defined is how J+, J–, and St change under
one Ω1 move. For completeness, we will calculate more precise values for the
change of each invariant, utilizing the explicit formulas mentioned above.

Theorem 3.12. Under a forward Ω1 move, J– changes by −2 qInd(c)− 1 and
J+ changes by −2 qInd(c).

Proof. One property that is useful for determining the Euler characteristic of a
region of C̄ is that χ is an invariant under homotopy equivalences, which includes
retractions. Therefore, we can take a region with h holes in it and retract it
into a graph with one vertex and h edges, each looping around a distinct hole
in the region. This implies that χ(r) = 1− h.
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The addition of a loop by a forward Ω1 move affects J+ and J– in two ways:
adding a new region, and changing the Euler characteristic for the region the
loop is made in. Let c be the crossing created by the Ω1 move. Then the new
region in C̄ has Euler characteristic 1 − 0 = 1 and quarter-index qInd(c) + 1.
The Euler characteristic of the region surrounding the loop decreases by 1, say
from χ1 to χ1 − 1, and the quarter-index remains as qInd(c). Thus, the change
to J– is

∆ J– = −(qInd(c) + 1)2 − ((χ1 − 1) qInd2(c)− χ1 qInd2(c)) = −2 qInd(c)− 1

under one forward Ω1 move.
Since J+ = J– +n, where n is the number of crossings, it quickly follows that

J+ changes by −2 qInd(c) under a forward Ω1 move.

Theorem 3.13. Arnold invariant St changes by + qInd(c) under a left Ω1 move
and − qInd(c) under a right Ω1 move.

Proof. The addition of a loop by a forward Ω1 move adds one more crossing to
evaluate to determine St. While the numbering changes with the addition of two
new edges, this does not impact the weights of any other crossing because it does
not change the sign of the difference of the two intersecting edges. Let the three
edges connected to the new crossing be numbered k, k+1, and k+2, increasing
in the direction of the orientation. If the initial point is on the original edge, we
can ensure that the point is on the new edge k = 1. Also, if the diagram is the
trivial unknot diagram, then the enumeration of edge k + 2 is actually 1, but
this does not affect the following calculations. The change in St is dependent
on whether the loop is made on the left or right of the curve. If it is on the
left of the curve, the weight of the crossing is ω(c) = sgn(k + 1− k) = +1. On
the other hand, if it is on the left of the curve, the weight of the crossing is
ω(c) = sgn(k − (k + 1)) = −1. Thus, St changes by + qInd(c) under a left Ω1
move and − qInd(c) under a right Ω1 move.

As the sign of the crossing does not affect the change of St under a Ω1 move,
St changes by +2 qInd(c) under a left framed Ω1 move and −2 qInd(c) under a
right framed Ω1 move.

4 The Self-Crossing Index

4.1 The invariant

In this section, we introduce a new knot diagram invariant, called the self-
crossing index or SCI. The definitions made for curves in Section 2 can also be
applied to knot diagrams by simply using the underlying curve of the diagram.

Definition 4.1 (Self-Crossing Index). Let D be an oriented knot diagram and
let C (D) be the set of crossings of D. Then

SCI(D) =
∑

c∈C (D)

sgn(c) qInd(c).

An oriented knot diagram D is considered ascending if there exists an initial
point or lowest point p on the diagram such that the understrand is passed first
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for all crossings when following along D starting at p in the direction of the
orientation. For ascending knots diagrams, Shumakovitch [17] shows that

St(C) =
∑
c∈C

(sgn(c) qInd(c)) + δ2 − 1

4
.

Therefore, it turns out that

Theorem 4.2. For an ascending knot diagram D and its underlying curve C,

SCI(D) = St(C)− δ2 +
1

4
,

where δ is equal to the hInd of the edge that the lowest point p of the ascending
diagram lies on.

This relationship, however, only holds for ascending knot diagrams, in which
the sign of a crossing is ensured to be the same as its weight, and not other knot
diagrams. However, this relation does motivate alternate definitions of SCI in
general. Like St, we can also define SCI is terms of its edges or regions. Note
that these formulas do not come directly from Shumakovitch’s formulas for St,
as SCI = St−δ2 + 1

4 only applies for ascending diagrams.

Definition 4.3. Using a set-up similar to that used to define weight (Definition
3.10), for a crossing c,

ω̃(ei) = sgn(c),

ω̃(ej) = − sgn(c),

ω̃(rW ) = ω̃(rE) =
1

2

∑
c∈C (r)

sgn(c),

ω̃(rN ) = ω̃(rS) = −1

2

∑
c∈C (r)

sgn(c),

where C (r) is the set of all crossings around the region

Theorem 4.4 (Alternate formulas of SCI). Let D be an oriented knot diagram
and let E (D) and R(D) be the set of edges and regions of D, respectively. Then

SCI(D) =
1

2

∑
e∈E (D)

ω̃(e) hInd2(e),

SCI(D) =
1

3

∑
r∈R(D)

ω̃(r) ind3(r).

Proof. To show that these three formulas of SCI are equivalent, we will show
that the calculations are equivalent around one crossing, c. Using the original
definition, that would be sgn(c) qInd(c). To simplify calculations, let α = qInd c.
Then hInd(ei) = α+ 1

2 , hInd(ej) = α− 1
2 , ind(rW )α+ 1, ind(rE) = α− 1, and

ind(rN ) = ind(rS) = α.
Then the sum for the edges pointing towards c becomes

1

2

(
sgn(c)

(
α+

1

2

)2

− sgn(c)

(
α− 1

2

)2
)

= α sgn(c).
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Similarly, we can consider the regions around c, and consider the contribution
to ω̃(r) that c makes (i.e. sgn(c)), since ind3(r) is constant for a region r and the
contribution to ω̃(r) can be separated into each crossing, allowing us to rewrite
the definition of SCI using regions as

SCI(D) =
1

3

∑
c∈C (D)

∑
r∈R(c)

sgn(c) ind3(r),

where C (D) is the set of crossings in D and R(c) is the set of four regions
surrounding a crossing c. Calculating, we get that

1

3

(
sgn(c)

2

(
(α+ 1)

3
+ (α− 1)

3
)
− sgn(c)

2

(
α3 + α3

))
= α sgn(c).

Thus, all three definitions are equivalent at each crossing, and thus for any knot
diagram D, and can be used to define SCI.

4.2 Notable properties of SCI

SCI behaves in a predictable manner and thus can be used to find bounds for
the number of framed Reidemeister moves between two framed knot diagrams.
Unfortunately, SCI does not behave in a controlled manner under Ω1 moves,
being able to be changed by any integer value that corresponds to the qInd of
the crossing that is created/removed. However, we can make a slight adjustment
to the allowed Reidemeister moves to obtain the framed Reidemeister moves:

Figure 11: Framed Reidemeister moves of Type I, II, and III (top to bottom).

Forward framed Ω1 moves are a combination of two Ω1 moves that create two
loops with opposite sign (see Definition 2.7) on the same side of the segment
of the knot diagram. Framed Ω2 and Ω3 moves are just the usual Ω2 and
Ω3 moves. Thus, we will continue to refer to Ω2 and Ω3 moves without the
preceding “framed” term, even when considering framed knots.

Like with Reidemeister moves and knot diagrams, classifications of moves,
like forward-backward, generally remain the same, with the conventional Ω1
move being replaced with its framed counterpart. There is also a similar theorem
of equivalence for framed knot diagrams.
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Theorem 4.5. Two framed knot diagrams D and E represent the same framed
knot (are equivalent) if and only if there exists a sequence of framed Reidemeister
moves connecting them.

In turns out that there is another way to determine if two framed knot
diagrams are equivalent, proven by Trace [20].

Theorem 4.6 (Trace [20]). Two framed knot diagram D and E are equivalent if
and only if they have the same writhe and D and E are equivalent knot diagrams.

Now we can calculate the change of SCI under each framed Reidemeister
move and prove Theorem 1.1.

Proof of Theorem 1.1. For framed Ω1 moves, each move creates or removes two
crossings of opposite sign. Also, note that the qInd of each crossing is equal to
the winding number of the region the crossing is contained within, and therefore
both are equal. Thus, the change to SCI causes by a framed Ω1 move is 0.

For Ω2 moves, each move creates or removes two crossings of opposite sign.
Similar to framed Ω1 moves, the quarter-index of the two crossings is equal,
meaning that SCI does not change under Ω2 moves.

Figure 12: Changes to winding numbers of regions adjacent to the crossings
involved in a Ω3a move.

For Ω3 moves, there are eight cases of the move that need to be considered
[19]. These eight cases are displayed in Figure 4. It turns out for all eight
that SCI increases by 1 in the forward direction, meaning that SCI changes
by 1 under any forward Ω3 move and by −1 under any backward Ω3 move.
For example, in the Ω3a case (see Figure 12), the signs of the crossings remain
unchanged as +1, −1, and +1, and the quarter-indices of the three crossings
increases by 1, resulting in a total change of SCI of +1.

In addition to Reidemeister moves, SCI also behaves in a predictable fashion
under an operation known as a connected sum between knots.

Definition 4.7 (connected sum). A connected sum is an operation conducted
on two projections D and E that produces a new knot diagram D#E. To do so,
place D and E close to each other, and select a small segment from the curve of
each knot, such that it is adjacent to the infinite exterior region, remove them,
and connect the two knots together at the endpoints of the removed segments
so there is no overlap between the two new strands. An example is shown in
Figure 13. Note that for knot diagrams, this operation is not uniquely defined,
as it depends on the edges chosen.
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Figure 13: The connected sum of a trefoil and figure-eight knot.

Definition 4.8. A knot diagram invariant I is additive if, for any two knot
diagrams D and E and any connected sum D#E,

I(D#E) = I(D) + I(E).

Theorem 4.9. The knot diagram invariant SCI is additive.

Proof. The connected sum of D and E leaves the signs of the crossings un-
changed, as the operation only changes a very small segment of each diagram.
In addition, the winding numbers of the regions do not change, as the operation
simply merges together two regions, one from each diagram, and assigns it the
same winding number as before. As the winding number of the regions adjacent
to each crossing remain constant, so do the quarter-indices for the crossings.

We will also consider SCI as a Vassiliev diagram invariant.

Definition 4.10. Let I be a knot invariant. Let K be a knot and let D be
a diagram of K with n crossings. Let S be the set of those n crossings, and
for m ≤ n, let Sm be a subset of S such that |Sm| = m. Then ISm

(D) can be
defined recursively such that

ISm
(D) = I(Sm\{c})(D)− I(Sm\{c})(Dc),

where c is an arbitrary crossings in Sm and Dc is the same as D except with
the crossing c changed. Alternatively, we can define this as

ISm
(D) =

∑
X⊆Sm

(−1)|X|I(DX),

where X is the set of crossings that have been changed and |X| is the cardinality
of X.

Definition 4.11. Let I be a knot invariant. Let Dx be the set of all knot
diagrams of a knot K with at least the x crossings, and Sk be a subset of k
crossings of the diagram. Then I is defined as a Vassiliev invariant of order m
if and only if ISm+1

(D) = 0 for all D ∈ Dm+1 for all knots K, and there exists a
diagram D′ ∈ Dm for some knot K ′ such that ISm

(D′) 6= 0. An invariant which
has this property is often said as having finite type m.

This easily generalizes to knot diagram invariants. Notice that any curve
invariant, when turned into a knot diagram invariant, is a Vassiliev diagram
invariant of order 0, since the sign of the crossings does not affect the value of
the invariant.

We can calculate the order of SCI as a Vassiliev invariant.
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Theorem 4.12. SCI is a Vassiliev invariant of order 1.

Proof. Let a be a crossing of a knot diagram D. Let the knot diagram Da be
equivalent to D except at crossing a, which has the opposite sign in Da with
respect to D. Then, for any crossing c 6= a on D and Da, the sign and quarter-
index of c is the same on both diagrams. For crossing a, its quarter-index is the
same on both diagrams, as changing the sign of the crossing does not affect the
winding number of the regions in the diagram. Therefore,

SCI{a}(D) = SCI(D)− SCI(D{a})

= SCI(D)− (SCI(D)− 2 sgn(a) qInd(a))

= 2 sgn(a) qInd(a).

Let b 6= a be another crossing on D. Then

SCI{a,b}(D) = SCI{a}(D)− SCI{a}(D{b})

=
(
SCI(D)− SCI(D{a})

)
−
(
SCI(D{b})− SCI(D{a,b})

)
= 2 sgn(a) qInd(a)− 2 sgn(a) qInd(a)

= 0.

Thus, SCI{a1,a2}(D) = 0 for all knot diagrams D with at least two crossings.
Any SCI{a1,a2,··· ,ak}(D) = 0 for k ≥ 2 for all knot diagrams D with at least k
crossings, which is easily proven by induction since

SCI{a1,a2,...,an}(D) = SCI{a1,a2,...,an−1}(D)− SCI{a1,a2,...,an−1}(D{an}).

Therefore SCI is a Vassiliev invariant of order 1.

4.3 A family of framed diagrams with quadratic bounds
for unknotting

Let U be the trivial projection of the unknot (i.e. a circle). Let dfr(U,D) be
the minimal number of framed Reidemeister moves needed to unknot D. In
this section we will introduce a family of framed unknot diagrams Dn, adapted
from a family presented by Hass and Nowik [9]. Then we will show that as n
increases, dfr(U,Dn) grows quadratically with respect to n and the number of
crossings in Dn (Theorem 1.2):

Proof of Theorem 1.2. Through computation, we find that

SCI(Dn) =
1

2

(
3n2 − n+ 2

)
.

Since SCI(U) = 0, and SCI changes at most 1 for every framed Reidemeister
move, the lower bound for dfr(U,Dn) is 1

2

(
3n2 − n+ 2

)
.

Hass and Nowik [9] found a lower bound of 2n2 + 3n − 2 using HNlk (see
Definition 5.1) for regular Reidemeister moves for a similar family of unknots
without the n− 1 forward Ω1 moves with negative crossings on the right. The
quadratic lower bound for Dn from HNlk is 2n2 + 2n − 1. We can show this
using the same homomorphism used by Hass and Nowik [9]. We can calculate
that

HNlk(Dn) = nXn + nX−n + (2n− 1)X−1 + (4n− 1)Y0.
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Figure 14: The family of unknots Dn.

Let g : GZ → Z be the homomorphism defined by g(Xk) = 1 + |k| and g(Yk) =
−1− |k|. Then

g (HNlk(Dn)) = 2n2 + 2n− 1.

Let R be the set of Xk + Yk, Xk + Yk+1, Xk+1 − Xk, and Yk+1 − Yk, for all
integers k, and their negatives, which represent all possible changes of HNlk

under framed Reidemeister moves. Since |g(r)| ≤ 1 for all r ∈ R, the lower
bound for the number of framed Reidemeister moves to unknot Dn obtained
from HNlk is 2n2 + 2n− 1.

This lower bound is higher than that found by SCI, which has 3
2 as the

quadratic coefficient. However, SCI is still useful, as it provides bounds on the
minimal number of Reidemeister Type III moves. HNlk does not provide such
a bound, as the homomorphism g still changes under unmatched Ω2 moves. In
fact, HNlk should not be expected to provide a lower bound for the minimal
number of Ω3 moves needed for unknotting. Notice that (Xk + Yk+1)− (Xk +
Yk) = Yk+1 − Yk, so the change of HNlk under some Ω3 moves is the same
as under a forward unmatched Ω2 move and a backward matched Ω2 move.
Therefore, the value of HNlk is not sufficient to distinguish between Ω3 moves
and the previously-mentioned combination of Ω2 moves.

Moreover, note that the minimal number of framed Reidemeister moves for
unknotting can be degrees higher than that for Reidemeister moves. One ex-
ample is the following family of unknot diagrams Ln and Theorem 1.3.

Proof of Theorem 1.3. Let d(U,D) be the minimal number of Reidemeister moves
to unknot D. Unknotting using Reidemeister moves clearly requires at most 2n
moves when using backwards Ω1 moves. In addition, calculating HNlk (Defini-
tion 5.1) gives us

HNlk(Ln) = nX0 + nY0.

The set of Xk + Yk, Xk + Yk+1, Xk+1 − Xk, and Yk+1 − Yk, for all integers
k, and their negatives represents all possible changes of HNlk under framed
Reidemeister moves. Then the minimal construction of HNlk(Ln) is done with
n additions of X0 + Y0. Thus, the lower bound is n, and

n ≤ d(U,Ln) ≤ 2n.
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Figure 15: A family of unknots Ln.

However, calculating SCI for Ln gives that

SCI(Ln) =
n(n+ 1)

2
.

Thus, dfr(U,Ln) ≥ 1
2 (n2+n), meaning dfr(U,Ln) is at least an entire degree

higher than d(U,Ln)

In fact, we can further strengthen the bound to

dfr(U,Ln) ≥ n(n+ 1)

2
+ n =

n(n+ 3)

2

because SCI provides a lower bound for the number of Ω3 moves only, and
the 2n crossings, which remain unchanged in amount after the Ω3 moves, are
removed in at least n Reidemeister moves. (specifically, n moves, each of type
I or II).

5 Other diagram invariants

5.1 Hass-Nowik diagram invariant

Just like smoothing a crossing of a curve results in two (potentially intersecting)
curves, smoothing one crossing of a knot diagram results in a two-component
link diagram. Recall the definition of Hass and Nowik’s diagram invariant [8]:

Definition 5.1 (Hass-Nowik diagram invariant [8]). Let C+(D) be the set of
positive crossings and C−(D) be the set of negative crossings in oriented knot
diagram D. Let GS be the free abelian group with basis {Xs, Ys}s∈S . Let D
denote the set of all diagrams of D produced from planar isotopy. Also, let Dc

denote the two-component link diagram obtained by smoothing D at crossing
c. Then for an invariant φ : L→ S, for some set S, HNφ : D→ GZ is

HNφ(D) =
∑

c∈C+(D)

Xφ(Dc) +
∑

c∈C−(D)

Yφ(Dc).
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Hass and Nowik’s diagram invariant is useful because it can be used to
determine a lower bound on the number of Reidemeister moves between two
equivalent knot diagrams.

It turns out that this diagram invariant that Hass and Nowik introduced
using linking number has the same property as SCI under the connected sum
operation.

Theorem 5.2. The knot diagram invariant HNlk is additive. In other words,
given two knot diagrams D and E,

HNlk(D#E) = HNlk(D) + HNlk(E).

Proof. Let C (D) and C (E) be the sets of crossings in D#E that were part
of the projection of D and E prior to connected sum operation, respectively.
Also let d and e be the parts of D#E that come from D and E, respectively.
To calculate the linking number for a two-component link, we simply add the
signs of every crossing between the two components and divide by 2. When a
smoothing operation is conducted on a crossing a ∈ C (D), then e is contained
entirely within one of the two components. Thus, none of the crossings in C (E)
contribute to the linking number of the generated two-component link, meaning
that link from smoothing a ∈ C (D) in D#E has the same linking number as
the link from smoothing a in D. Similarly, the linking number of the link from
smoothing crossing b ∈ C (E) of D#E is the same as that of the link from
smoothing b in E. Thus, HNlk(D#E) = HNlk(D) + HNlk(E).

Figure 16: Diagram of the (2, 5)-torus knot

Like SCI, we can consider HNlk as a Vassiliev diagram invariant. In fact,
we will show that HNlk is not a Vassiliev diagram invariant. We can prove this
with the following evaluation of HNlk for (2, p)-torus knot and diagrams where
some of its crossings are changed, for prime p 6= 2. Figure 16 depicts the typical
projection of the (2, 5)-torus knot. Let t(2, p) refer to the diagram of the (2, p)-
torus knot with p crossings where following the orientation would lead to an
alternating path of being the over- and understand of crossings, like the one in
Figure 16.

Theorem 5.3. Let S be the set of the p positive crossings of t(2, p). Let Sk
be a subset of S with cardinality k, where 0 ≤ k ≤ p, and t(2, p)Sk

be the knot
diagram of t(2, p) with the crossings of Sk changed. Then

HNlk(t(2, p)Sk
) = (p− k)X p−2k−1

2
+ kY p−2k+1

2
.

Proof. For t(2, p) and t(2, p)Sk
= t(2,−p), this can be shown fairly easily, as

smoothing any crossing in the diagram results in the t(2, p− 1) and t(2,−p+ 1)
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torus links, respectively. (While all the crossings of t(2, p) are positive, the
crossings of t(2,−p) are all negative.) In each of these links, each of the two
components alternate being the over- and understrand if we trace it along its
orientation. Thus,

HNlk(t(2, p)) = pX p−1
2

and
HNlk(t(2, p)Sp

) = HNlk(t(2,−p)) = pY− p−1
2
.

To prove the theorem for the remaining t(2, p)Sk
for 1 ≤ k < p, we first

prove the following lemma.

Lemma 5.4. Every crossing in the 2-link created by smoothing a crossing of
t(2, p) or t(2, p)Sk

is a crossing between the two components.

Proof. This can easily be seen for t(2, p), as a smoothing creates the t(2, p− 1)
torus link. Since changing the sign of a crossing cannot suddenly make that
crossing a self-crossing of one of the components, all crossings of t(2, p)Sk

are
also crossings between the two components.

Consider the knot diagram t(2, p)Sk
, in which 1 ≤ k < p. Then the diagram

has p− k positive crossings and k negative crossings. When one of the positive
crossings is smoothed, there are p − k − 1 positive crossings and k negative
crossings between the two components of the resulting link. Since the linking
number is half of the sum of signs of the crossings between the two components,
smoothing any of the p − k positive crossings results in a total contribution of
(p − k)X p−2k−1

2
. Similarly, smoothing any of the k positive crossings results in

a total contribution of kY p−2k+1
2

. Thus,

HNlk(t(2, p)Sk
) = (p− k)X p−2k−1

2
+ kY p−2k+1

2

as desired.

This allows us to determine if HNlk has a finite order as a Vassiliev diagram
invariant.

Corollary 5.5. The Hass-Nowik invariant with linking number, HNlk, is not a
Vassiliev diagram invariant.

Proof. For the sake of contradiction, assume that HNlk is a Vassiliev diagram
invariant of order n. Let S be the set of crossings of a knot diagram D with n
crossings.

Let us consider the diagram of the torus knot t(2, p) for a prime p > n. This
knot diagram has p crossings, and let S = Sp be the set of all of the crossings.
Let Sk denote an arbitrary set of k crossings from S. We know that

HNlk(t(2, p)) = pX p−1
2
.

We must get a term ofX p−1
2

to cancel out with the term given by HNlk(t(2, p)),

so one of the t(2, p)Sk
must have a crossing that can be smoothed to create a

2-link with the linking number p−1
2 . However, Theorem 5.3 clearly shows that

none of this knot diagrams have a HNlk that can cancel out HNlk(t(2, p)). Thus
(HNlk)Si

6= 0. But this implies that if HNlk is a Vassiliev invariant, then HNlk
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must be a Vassiliev invariant of order ord > n, which is a contradiction to our
original assumption. Since primes can be infinity large, this contradiction occurs
for any n. Thus the only possibility is that HNlk is not a Vassiliev invariant.

5.2 Cowrithe

From Hass and Nowik [8], we get the following definition of cowrithe. We have
changed the sign to fit the sign conventions of Hayashi, Hayashi, Sawada, and
Yamada [6].

Definition 5.6 (cowrithe). Let D be an oriented knot diagram. Let f : GZ → Z
be the homomorphism defined by f(Xn) = n and f(Yn) = −n. Then the
cowrithe of D is f(HNlk).

To determine how cowrithe changes under Reidemeister moves, we require
another classification of Ω3 moves:

Definition 5.7 (ascending and descending Ω3 moves [15]). Follow the orien-
tation of the knot diagram. An Ω3 move is ascending if the three segments
involved are passed in order bottom-middle-top, and descending if the three
segments involved are passed in order top-middle-bottom.

We can establish a relationship between forward/backward, positive/negative,
and ascending/descending Ω3 moves. Consider a Reidemeister move of type III.
Let q equal to 1 for forward Ω3 moves and −1 for backward Ω3 moves. Similarly,
r equals to 1 for ascending Ω3 moves and −1 for descending Ω3 moves.

Theorem 5.8. A Ω3 move is positive if qr = 1 and negative if qr = −1.

Specifically, forward ascending and backward descending Ω3 moves are pos-
itive, and forward descending and backward ascending Ω3 moves are negative
Ω3 moves.

Proof. The eight cases of Ω3 moves can be placed into two groups based on the
bottom-middle-top orientation of the vanishing triangle. Cases a, d, e, and g are
clockwise, and cases b, c, f, and h are counterclockwise. We will prove Theorem
5.8 for Ω3a and Ω3b moves, as the others can be done with similar casework.

Figure 17: Diagrams for forward (a) ascending and (b) descending Ω3a moves.

For ascending Ω3a moves, of the three strands involved in the move, the
bottom strand continues around the diagram and eventually connects to the
middle strand, the middle to the top, and the top to the bottom. The order-of-
appearance orientation of the vanishing triangle, introduced in Definition 3.1,
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is clockwise. This makes q′ = −1 for this diagram. Once the Ω3 move is made,
the order-of-appearance orientation remains clockwise, and q′ = +1. Thus, an
ascending Ω3a move is positive.

For descending Ω3a moves, of the three strands involved in the move, the
bottom strand connects to the top strand, the top to the middle, and the middle
to the bottom. The order-of-appearance orientation of the vanishing triangle is
counterclockwise. This makes q′ = +1 for this diagram. Once the Ω3 move is
made, q′ becomes −1. Thus, a descending Ω3a move is negative.

Figure 18: Diagrams for forward (a) ascending and (b) descending Ω3b moves.

For ascending Ω3b moves, of the three strands involved in the move, the
bottom strand connects to the middle strand, the middle to the top, and the
top to the bottom. The order-of-appearance orientation of the vanishing triangle
is counterclockwise. This makes q′ = −1 for this diagram. Once the Ω3 move
is made, q′ becomes +1. Thus, an ascending Ω3b move is positive.

For descending Ω3b moves, of the three strands involved in the move, the
bottom strand connects to the top strand, the top to the middle, and the middle
to the bottom. The order-of-appearance orientation of the vanishing triangle is
clockwise. This makes q′ = +1 for this diagram. Once the Ω3 move is made, q′

becomes −1. Thus, a descending Ω3a move is negative.

Using this, we can provide more specific changes to cowrithe under Ω3 moves.

Theorem 5.9. Cowrithe does not change under (framed) Ω1 and unmatched
Ω2 moves, decreases by 1 under forward matched Ω2 and forward ascending (i.e.
positive) Ω3 moves, and increases by 1 under forward descending (i.e. negative)
Ω3 moves.

Hayashi, Hayashi, Sawada, and Yamada [6] have provided a relationship
between cowrithe and the Arnold invariants.

Theorem 5.10 (Hayashi, Hayashi, Sawada, Yamada [6]). Let D be an oriented
knot diagram with n crossings, writhe w, and cowrithe x. Then x+n/2∓w/2 =
4c2−(J– /2+St±w/2), where c2 is the coefficient of x2 in the Alexander-Conway
polynomial of D. Furthermore, x + n/2 − w/2 (resp. +w/2) does not change
under forward Ω1 moves that create a positive (negative) crossings and matched
Ω2 moves, and increases by 1 under forward Ω1 moves that create a negative
(positive) crossings, unmatched Ω2 moves, and negative Ω3 moves.

6 Future investigations

I would be useful to determine if there exists a family of unknot diagram that
has a lower bound for unknotting of order at least n3, where n is the number
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of crossings. Related to this, are there other integer-valued index-type invari-
ants for (framed) knot diagrams that change by at most one under (framed)
Reidemeister moves that can?

Also, Theorem 4.2 provides a relationship between SCI and St for ascending
knot diagrams, namely SCI−St = δ2 − 1/4. This naturally poses the question:
what is SCI−St for other knot diagrams?

Finally, for framed knots, SCI “counts” the number of (forward minus back-
ward) moves of Type III; the number of crossings “counts” the number of for-
ward Ω1 and Ω2 moves; and cowrithe “counts” the number of positive Ω3 moves
minus the number of forward matched Ω2 moves; half of winding number counts
forward Ω1 moves; (again, positive minus negative and forward minus back-
ward). It would be interesting to determine how many linearly independent
invariants that “count” some kinds of moves are there?
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8 Appendix

Below is a table of knot diagram invariants and how they change under different
types of forward Reidemeister moves: type 1, framed type 1, matched and
unmatched type 2, and ascending and descending type 3.

Ω1 framed Ω1 Ω2m Ω2u Ω3asc. Ω3desc.
writhe ±1 0 0 0 0 0

number of crossings +1 +2 +2 +2 0 0
winding number ±1 0 0 0 0 0

SCI sgn(c) qInd(c) 0 0 0 +1 +1
HNlk X0 if sgn(c) = +1, X0 + Y0 Xk + Yk+1 Xk + Yk Xk −Xk+1, Xk+1 −Xk,

Y0 if sgn(c) = −1 Yk+1 − Yk Yk − Yk+1

cowrithe 0 0 -1 0 -1 +1
J+ −2 qInd(c) −4 qInd(c) +2 0 0 0
J– −2 qInd(c)− 1 −4 qInd(c)− 2 0 +2 0 0
St qInd(c) if on left 2 qInd(c) if on left 0 0 +1 -1

− qInd(c) if on right −2 qInd(c) if on right
J+/2 + St 0 0 +1 0 +1 -1
J–/2 + St −1/2 -1 0 -1 +1 -1

J–/2 + St +w/2 0 if sgn(c) = +1 -1 0 -1 +1 -1
-1 if sgn(c) = −1

J–/2 + St−w/2 -1 if sgn(c) = +1 -1 0 -1 +1 -1
0 if sgn(c) = −1

x+ n/2− w/2 0 if sgn(c) = +1 +1 0 +1 -1 +1
+1 if sgn(c) = −1

x+ n/2 + w/2 +1 if sgn(c) = +1 +1 0 +1 -1 +1
0 if sgn(c) = −1

Table 1: Multiple knot diagram invariants and their changes under Reidemeister
moves for knots and framed knots. The crossing c is the crossing created by the
Ω1 move. In a Ω1 move, St changes by + qInd(c) if the loop is on the left of the
curve, and by − qInd(c) if the loop is on the right of the curve.

Results for HNlk come from Hass and Nowik [8], although we distinguished
between changes from ascending and descending Ω3 moves. Change for cowrithe
follows from HNlk. Changes for J+ and J– follow from Viro’s formulas [22] and
Theorem 3.12. Similarly, changes for St follow from Shumakovitch’s formula
[17] and Theorem 3.13. Changes for J+/2 + St, J–/2 + St, and J–/2 + St±w/2
were taken from Hayashi, Hayashi, Sawada, and Yamada [6].
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