
A Next Generation Partial Differential Equation Solver

Aaron Yeiser

October 30, 2016

Abstract

When solving differential equations in multiple dimensions, mesh generation is required to

discretize the geometry of the domain. Current numerical techniques, such as finite element

methods, are numerically unstable on meshes containing skinny triangles. Here, we develop

a novel numerical method that is numerically stable even on meshes with skinny elements.

Our method is spectrally accurate on each element, and the discretization size can be adapted

to suit a wide variety of applications. Our algorithm alleviates the current burden on mesh

generation algorithms of avoiding skinny triangles, allowing meshes to instead be optimized for

the efficient solution of time-dependent partial differential equations. We can also simulate the

Navier–Stokes equations at moderate Reynolds numbers with our method.

1 Introduction

Differential equations are one of the most powerful tools that we can use to analyze and model the

world [1]. Phenomena as diverse as viscous fluid flow, heat dissipation, acoustic scattering, and

structural deformations can all be modeled by differential equations. Unfortunately, differential

equations rarely have analytic solutions, so the only feasible way to solve a differential equation is

to perform numerical calculations. In two dimensions or more, it is usually necessary to discretize

the geometry of the domain, and this discretization is often achieved with a mesh. A mesh is

simply a collection of polygons or polyhedrons that partition a domain to a certain resolution, and

those mesh elements are typically triangles or higher-dimensional analogues of triangles. Meshes

are computationally convenient because they can be used to discretize a wide variety of complicated

geometries. Finite element methods are currently the method of choice for solving a wide variety of

engineering problems, such as electromagnetism, heat transfer, and fluid dynamics. They represent

the solution as a piecewise polynomial, with each polynomial piece corresponding to a mesh element.

Finite element methods use a weak formulation of the differential equation, defining a suitable inner-

product to impose the equation. If the inner product is represented as 〈 · , · 〉, and the differential

operator is L, then the matrix operator A is defined by

Aij = 〈L[ui], vj〉,

where ui and vj are test and trial basis functions. By using basis functions with compact support,

one can make this matrix operator extremely sparse. Adaptive finite element methods try to

optimize the solution by varying the location of the mesh vertices, the degree of the piecewise

polynomial basis functions, the size of the mesh elements, or a combination of the three strategies.

Finite element methods are widely used throughout industry, but they have one major drawback—

they are slow and numerically unstable when the underlying mesh contains skinny triangles [6].

The skewness of a mesh element can be defined as the fraction

optimal cell size− cell size

optimal cell size
,

where the optimal cell size is the area of the equilateral triangle with the same circumcircle as the

element. It is computationally expensive to generate meshes completely free of skinny triangles,

and the computational cost depends on the geometry of the region. In addition, skinny triangles

1

can actually lead to more efficient simulations, if they could be handled in a numerically stable

manner. For instance, rapid fluid flow over the surface of an airfoil will only require high resolution

perpendicular to the airfoil surface. Rather than representing the region around the airfoil with an

enormous numbers of tiny quality triangles, one can simply use fewer skinny triangles parallel to

the surface of the airfoil.

My method takes a radically different approach to solving differential equations than do finite

element methods and standard spectral element methods. Finite element methods focus on solving

differential equations on the entire mesh all at once, and current spectral element methods use

dense, ill-conditioned matrices. The heart of my method is a fast, sparse, spectral partial differential

equation (PDE) solver that operates individually on each element. We can generate almost-banded

well-conditioned matrices to represent any linear differential operator. Rather than using the

weak formulation of the differential equation, like finite element methods, we construct a family

of sparse discrete differential operators that directly map a function in the basis of Chebyshev

polynomials to its derivatives in so-called ultraspherical polynomials. In fact, we can construct

a sparse discrete differential operator for any linear partial differential operator of low order. By

removing rows of the operator corresponding to the highest-frequency components and replacing

them with boundary condition rows, we have a well-conditioned matrix equation for any well-posed

problem on a square domain. We can map the square domain onto a quadrilateral, and transform

the differential equations accordingly. Even for skinny quadrilaterals, the transformed differential

equations are still numerically stable to solve. Finally, we stitch three quadrilaterals together to

form a triangle, using the Schur complement method, and we can use similar techniques to stitch

together thousands of triangles. The Schur complement method allows us to solve for all of the

interior boundary conditions of the mesh, and then independently compute the solution to the

differential equation on each individual element—a process that can be easily parallelized. My

method is able to handle a mesh containing skinny triangles, or a mixture of skinny and non-skinny

elements. It is also able to represent solutions to differential equations extremely accurately on

each mesh element, significantly reducing the number of elements required for an accurate solution.

2

2 Spectral methods

When solving differential equations, the problem is often simplified by viewing the solution as the

sum of several basis functions. Depending on the type and domain of the function being analyzed,

different sets of basis functions are used. For instance, sines and cosines are a natural basis for

periodic functions. For nonperiodic functions, natural sets of basis functions include monomials or

Chebyshev polynomials.

2.1 Chebyshev polynomials

Monomials are mathematically simple to handle, but they are a very numerically unstable set of ba-

sis functions for polynomials. In contrast, Chebyshev polynomials, defined as Tk(x) = cos(k cos−1 x)

for x ∈ [−1, 1], are a stable set of basis functions for representing polynomials on the unit interval.

Chebyshev polynomials oscillate between −1 and 1 on the unit interval, with Tk(−1) = (−1)n, and

Tk(1) = 1. We can represent any smooth function as an infinite Chebyshev series, and a Chebyshev

series can be truncated to produce very accurate results. For instance, the Chebyshev series for ex

can be truncated at 16 terms to produce an approximant that is accurate to machine precision [9].

We can define the kth set of Chebyshev points to be
{

cos
(
π(k−m−1)

k−1

)∣∣∣m ∈ Z, 0 ≤ m < n
}

. By

sampling a function at Chebyshev points, the transformation to Chebyshev coefficients is well-

conditioned even with large discretization sizes. Furthermore, this transformation can be rapidly

computed using a variant of the fast Fourier transform [9].

2.2 Sparse discrete differential operators

Spectral methods are especially useful for solving linear differential equations. The goal of us-

ing spectral methods is to approximate an infinitely-dimensional linear differential operator with

a finite-dimensional sparse matrix operator. We can represent a function as an infinite vector of

Chebyshev coefficients, and we can truncate that vector at an appropriate size to achieve a suf-

ficiently accurate approximation of a smooth function. If we attempted to create a differential

operator Dλ that mapped a function in the Chebyshev basis to its λth derivative in the Chebyshev

3

basis, that operator would be dense, as most of its matrix elements would be nonzero. Current spec-

tral methods map Chebyshev polynomials to Chebyshev polynomials, giving dense, ill-conditioned

differentiation matrices. In contrast, our method constructs Dλ to map a function in Chebyshev

coefficients to its λth derivative in the ultraspherical basis of parameter λ. For every positive real

λ, ultraspherical polynomials of parameter λ are orthogonal on [−1, 1] with respect to the weight

function (1−x2)λ−
1
2 . Here, we will use ultraspherical polynomials with positive integer parameter.

Using ultraspherical coefficients of parameter λ, the matrix λth differentiation matrix Dλ is

Dλ = 2λ−1(λ− 1)!

λ times︷ ︸︸ ︷
0 · · · 0 λ

λ+ 1

λ+ 2

. . .

. (1)

These operators are diagonal and hence extremely sparse, but combining different-order derivative

coefficients leads to a problem: different-order Dλ transform functions in the Chebyshev basis to

ultraspherical bases of different parameters. The solution is to create basis conversion operators,

denoted as Sλ, which convert between ultraspherical bases of different orders. Specifically, S0 con-

verts functions from the Chebyshev basis to the ultraspherical basis of parameter 1, and Sλ converts

functions from the ultraspherical basis of parameter λ to the ultraspherical basis of parameter λ+1.

For example, we can represent the differential operator ∂u
∂x +2x as the matrix operator (D1 +2S0)u.

The ultraspherical conversion operators take the form

S0 =
1

2

2 0 −1

1 0 −1

1 0
. . .

1
. . .

. . .

, Sλ =

1 0 − λ
λ+2

λ
λ+1 0 − λ

λ+3

λ
λ+2 0

. . .

λ
λ+3

. . .

. . .

, λ > 0. (2)

Since Dλ and Sλ are sparse for all valid λ, the final differential operator will be sparse and banded.

Let L be some n-order differential operator such that L = c0 + c1D1 + c2D2 + . . . + cnDn where

c0, . . . , cn are constants and Dn is equivalent to dn

dxn . If we wish to solve the differential equation

Lu = f , we create the matrix operator L. We also create vectors ~u and ~f as vectors of Chebyshev

4

coefficients approximating u(x) and f(x). Now, we can write L = c0Sn−1 · · ·S0 +c1Sn−1 · · ·S1D1 +

· · ·+ cn−1Dn−1 + cnDn, and we can write the matrix equation L~u = Sn−1 · · ·S0
~f .

In order to find a particular solution to the differential equation Lu = f , we need boundary

conditions. Since the highest ordered coefficients of f are often very close to zero, we can simply

replace the last two rows of L and the last two elements of ~f with boundary condition rows. The

(n − 1)st row of L is replaced by the row [1,−1, 1,−1, . . . , (−1)n], and the (n − 1)st element of ~f

is replaced by u(−1). Similarly, the nth row of L is replaced by the row [1, 1, 1, 1, . . .], and the nth

element of ~f is replaced by u(1). We now have a sparse, well-conditioned differential operator [7].

3 Solving PDEs in two dimensions

In two dimensions, we can write any polynomial p as its bivariate Chebyshev expansion

p(x, y) =
∞∑

i,j=0

aijTi(y)Tj(x), x, y ∈ [−1, 1].

To form a matrix operator, we can stack the columns of the coefficient matrix to form the vector

u = [a00, a10, a20, . . . , an−1,0, a01, a11, . . . , an−1,1, . . . , an−1,n−1]T . (3)

We use Kronecker products (denoted as ‘⊗’) in order to construct differential operators in two

dimensions. For example ∂u
∂x is represented as D1 ⊗ I and ∂u

∂y is represented as I ⊗ D1. To put

together differential operators, we can use the identity (A⊗B)(C⊗D) = AC⊗BD, so to represent

an operator like ∂3

∂x∂y2
, we use D1 ⊗ D2. We can also add Kronecker products to construct more

complicated operators; for instance,

∂2

∂x2
− ∂2

∂x∂y
+ 2

∂

∂x
⇐⇒ D2 ⊗ S1S0 − S1D1 ⊗ S1D1 + 2S1D1 ⊗ S1S0. (4)

A derivation of this two-dimensional sparse operator construction can be found in [8].

Boundary rows are slightly more complicated for two dimensions. If we have some arbitrary dif-

ferential operator L with discretization size n× n, the rows in L corresponding to the two highest

order row and column coefficients are removed and replaced with boundary condition rows.

For m = 1, 2, . . . , n− 2, we find that

5

• Lower boundary condition row mn−1 is deleted and elements in columns m(n−1)+1 to mn

are set to 1,−1, 1,−1, . . . , (−1)n.

• Upper boundary condition row mn is deleted and elements in columns m(n − 1) + 1 to mn

are set to a row of ones.

For m = 1, 2, . . . , n, we see that

• Left boundary condition row n(n− 2) +m is deleted and elements in columns

m,m+ n,m+ 2n, . . . ,m+ n(n− 1) are set to 1,−1, 1,−1, . . . , (−1)n.

• Right boundary condition row n(n− 1) +m is deleted and elements in columns

m,m+ n,m+ 2n, . . . ,m+ n(n− 1) are set to a row of ones.

We only need n−2 boundary conditions for the lower and upper boundary conditions of the square

because the value of u at those endpoints is already predetermined by the left and right boundary

conditions.

To make the boundary condition rows sparse, we use the spectral decomposition of each boundary

condition. On the square, we have the four cases, corresponding to the four boundaries:

u(x, 1) =

n−1∑
j=0

(
Tj(x)

n−1∑
i=0

aij

)
, u(x,−1) =

n−1∑
j=0

(
Tj(x)

n−1∑
i=0

(−1)iaij

)
,

u(1, y) =
n−1∑
i=0

Ti(y)
n−1∑
j=0

aij

 , u(−1, y) =
n−1∑
i=0

Ti(y)
n−1∑
j=0

(−1)jaij

 .

(5)

These equations result in the boundary condition rows shown in red and black in Figure 1. Figure

1 also shows the structure of the linear system used to solve a second-order PDE.

3.1 Quadrilateral domains

The method of constructing matrices described above works only on square domains. We now

adapt existing spectral methods to solve differential equations on quadrilaterals, triangles, and

finally meshes. To solve differential equations on a triangle, the most obvious solution is to map

the triangle onto the square [−1, 1]2. Unfortunately, this approach maps one vertex of the triangle

onto an entire edge of the square, or it produces a hanging node on the triangle that becomes a

6

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Figure 1: The leftmost figure shows the matrix structure of a second-order two-dimensional partial

differential operator with a discretization size 10 × 10, and the rightmost figure shows the same

operator with discretization size 30×30. Nonzero elements of the matrix are colored, and black and

red elements correspond to boundary rows. Black elements are equivalent to 1 and red elements

are equivalent to −1. With a discretization size of n× n, the matrix has dimensions n2 × n2, but

the bandwidth only grows linearly with n.

vertex of the square. Either method of directly mapping the triangle to the square is prone to

numerical instability, as well as impracticality when stitching multiple triangles together.

The solution that I found was to partition each triangle of the mesh into three quadrilaterals using

the medians of the triangle. Let r and s be coordinates on the square, and let x and y be the

coordinates on the (convex) quadrilateral. Also, let the quadrilateral have coordinates (x1, y1),

(x2, y2), (x3, y3), and (x4, y4), with (x1, y1) mapped to (1, 1) and (x2, y2) mapped to (−1, 1).

I found the following bilinear map from the square to the quadrilateral:

x = a1 + b1r + c1s+ d1rs, y = a2 + b2r + c2s+ d2rs, (6)

where

a1 =
1

4
(x1 + x2 + x3 + x4) , b1 =

1

4
(x1 − x2 − x3 + x4) ,

c1 =
1

4
(x1 + x2 − x3 − x4) , d1 =

1

4
(x1 − x2 + x3 − x4) ,

(7)

7

and a2, b2, c2, and d2 are similarly defined with y1, y2, y3, and y4.

The transformation from the quadrilateral to the square is more complicated, but it is well-defined

over the entire domain of the quadrilateral and it will not be needed.

When the quadrilateral domain is mapped onto the square, the differential equations on the quadri-

lateral are also distorted. Through the use of the chain rule, we obtain

ux = urrx + ussx,

uy = urry + ussy,

uxx = urr(r
2
x) + 2urs(rxsx) + uss(s

2
x) + urrxx + ussxx,

uxy = urr(rxry) + urs(rxsy + sxry) + uss(sxsy) + urrxy + ussxy,

uyy = urr(r
2
y) + 2urs(rysy) + uss(s

2
y) + urryy + ussyy.

(8)

We still need to evaluate derivatives rx, ry, sx, sy, rxx, rxy, ryy, sxx, sxy, and syy. Using the Inverse

Function Theorem, we can invert the Jacobian of the transformation to obtainrx ry

sx sy

 =

xr xs

yr ys

−1

=
1

det(x, y)

 ys −xs

−yr xr

 , det(x, y) = xrys − xsyr. (9)

Using these equations, we can also find second derivatives rxx, rxy, ryy, sxx, sxy, and syy. These

derivatives can be represented as a bivariate cubic polynomial divided by det(x, y)3.

3.2 Triangular element construction

Since it is not practical to map a triangular domain to a single square, we can stitch together three

quadrilateral domains to form a triangle. We can impose Dirichlet conditions on the exterior of

the triangle, and Dirichlet and Neumann conditions along the interior boundaries for continuity

and differentiability of the solution. The process of stitching together quadrilaterals is most easily

done by treating the interior edges as independent variables. Although extra rows and columns are

added to the differential operator, the resulting matrix equation can easily be simplified using the

8

Schur complement method. The structure of the linear system is
A11 0 0 A1Γ

0 A22 0 A2Γ

0 0 A33 A3Γ

AΓ1 AΓ2 AΓ3 AΓΓ

u1

u2

u3

uΓ

 =

f1

f2

f3

fΓ

 . (10)

The Aii blocks are standard matrices for solving differential equations on a quadrilateral. The AiΓ

blocks effectively replace some of the boundary condition elements of the right hand side, enforcing

continuity along the internal boundaries. The AΓi and AΓΓ blocks use the transformation from the

square to the quadrilateral to compute the normal derivative of the solution along the boundaries,

enforcing differentiability. The vectors u1, u2, and u3 correspond to the interior regions of each of

the three quadrilaterals. The vector uΓ corresponds to the interior boundary conditions, and it is

broken into three parts, with one part corresponding to each interior boundary condition.

Using the Schur complement method, we can solve for uΓ as follows:

Σ = AΓΓ −AΓ1A
−1
11 A1Γ −AΓ2A

−1
22 A2Γ −AΓ3A

−1
33 A3Γ,

Ψ = fΓ − f1A
−1
11 A1Γ − f2A

−1
22 A2Γ − f3A

−1
33 A3Γ,

uΓ = Σ−1Ψ.

(11)

Then, we can solve for the rest of u1, u2, u3 as follows:

u1 = A−1
11 (f1 −A1ΓuΓ), u2 = A−1

22 (f2 −A2ΓuΓ), u3 = A−1
33 (f3 −A3ΓuΓ). (12)

By using the Schur complement method, we are essentially performing blockwise elimination on

the linear system in Equation 11. Chapter 3 of [5] gives a guide to using the Schur complement

method for domain decomposition. The entire process can be parallelized, which would be very

useful for a mesh containing thousands or millions of triangles.

Figure 2 provides a logical numbering scheme for edges, vertices, and quadrilateral regions. For

each interior region uj , vertex j of the triangle is mapped to the upper right corner of the square

[−1, 1]2. The vector uΓ is split into three subvectors of length n corresponding to the three interior

boundaries of the triangle.

When stitching together two different domains, it is necessary to ensure that the solution is con-

tinuous and differentiable across the boundaries. The AiΓ blocks provide most of the boundary

9

Vertex 1

Vertex 2

Vertex 3

O
uter Edge 2

O
ut

er
 E

dg
e

3

Outer Edge 1

Inner Edge 3

Inner Edge 2

Inner Edge 1

u2
u3

u1

Figure 2: Each colored region u1, u2, and u3 is given its own matrix. Vector uΓ is split between

inner edges 1, 2, and 3.

conditions for continuity of the solution. As an example, we will construct the A1Γ block. The

lower boundary of region u1 corresponds to inner edge 2, and the left boundary of u1 corresponds to

inner edge 3. Columns 2n+ 1 through 3n of A1Γ correspond to the constraints between inner edge

3 and u1. There are n rows in A11 that constrain the left boundary of u1: rows n(n−2)+1 through

n(n− 1). Therefore, these elements of f1 are set to zero, and the elements in row n(n− 2) +m and

column m+ 2n for m = 1, 2, . . . , n of A1Γ are set to −1. Thus, inner edge 3 is entirely constrained

to the left edge of u1.

To constrain the lower edge of u1 to inner edge 2, we use columns n+ 1 through 2n of A1Γ. Unlike

for the left edge, there are only n − 2 boundary condition rows in A11 for the lower edge. We set

the elements in row mn−1 and column m+n for m = 1, 2, . . . , n−2 of A1Γ to −1. This procedure

constrains the lowest frequencies of inner edge 2 to the lower edge of u1, but it leaves two degrees of

freedom. In order to create a well-conditioned matrix, these additional degrees of freedom must be

handled as special cases in the AΓi and AΓΓ blocks. Otherwise, we would have redundant boundary

conditions at the centroid of the triangle.

The AΓi and AΓΓ blocks force the solution to be differentiable across interior boundaries, as well as

being continuous at the endpoints of the interior boundaries. We will demonstrate how to construct

Neumann boundary conditions for interior edge 1.

10

Suppose that interior edge 1 has endpoints (x1, y1) and (x2, y2). Let us define α = ∆x√
(∆x)2+(∆y)2

and β = ∆y√
(∆x)2+(∆y)2

, so that α2 +β2 = 1. We can now define the derivative perpendicular to the

boundary as

D⊥ = βux − αuy = β(urrx + ussx)− α(urry + ussy) = ur(βrx − αry) + us(βsx − αsy). (13)

Substituting for the inverse derivatives, we have

det(r, s)D⊥ = ur(βys + αxs)− us(βyr + αxr). (14)

With some more substitution, we obtain

det(r, s)D⊥ = ur[(βc2 + αc1) + r(βd2 + αd1)]− us[(βb2 + αb1) + s(βd2 + αd1)], (15)

where x = a1 + b1r + c1s+ d1rs and y = a2 + b2r + c2s+ d2rs.

Setting constants qb = βb2 + αb1, qc = βc2 + αc1, and qd = βd2 + αd1 gives

det(r, s)D⊥ = ur(qc + qdr)− us(qb + qds). (16)

Interestingly, the determinant for these quadrilateral domains is very simple and symmetrical. In

Appendix A, we can show that for any quadrilateral defined by a triangle as shown in Figure 2, we

have

det(r, s) =
a
(
r + s+ 4

)
48

, (17)

where a is the area of the triangle. This fact allows us to factor out the determinant when stitching

together two quadrilaterals in the same triangle, and it allows us to factor out the determinant up

to a constant when stitching together two adjacent triangles.

We can define constants qb2 , qc2 , and qd2 on u2, and qb3 , qc3 , and qd3 on u3.

First consider finding the derivative perpendicular to the left edge of u2. Since r = −1, we can

write det(−1, s)D⊥(−1, s) = (qc2 − qd2)ur− (qb2 + qd2s)us. We can easily compute us by taking the

derivative of uΓ along the edge. The factor of −(qb2 + qd2s)us is represented by the matrix operator

AΓΓ(1 :n, 1:n) = −(qb2I + qd2M1[x])D1. (18)

The ur term requires a derivative independent of uΓ. We can reorganize the equation for u to get

u(r, s) =

n−1∑
i=0

Ti(s)

(
n−1∑
j=0

aijTj(r)

)
, ur(r, s) =

n−1∑
i=0

Ti(s)

(
n−1∑
j=0

aijT
′
j(r)

)
. (19)

11

We know that T ′i (1) = i2 and T ′i (−1) = (−1)i+1i2. We will modify the submatrix AΓ2(1 : n, :),

which corresponds to inner edge 1 and u2. Let us create a n× n2 matrix D⊥r . Row j of D⊥r has

elements j, n+ j, 2n+ j, . . . , n(n− 1) + j set to [0, 1,−4, 9,−16, . . . , (−1)n(n− 1)2]. Finally, we set

AΓ2(1 :n, :) = (qc2 − qd2)S0D⊥r .

Now, we must consider the lower edge of u3. We set the submatrix AΓ3(1 : n, :) = (qc3 −

qd3)S0D⊥s . Row j of D⊥s has elements n(j − 1) + 1, n(j − 1) + 2, n(j − 1) + 3, . . . , nj set to

[0, 1,−4, 9,−16, . . . , (−1)n(n− 1)2].

Finally, we set AΓΓ(1 :n, 1:n) = −((qb2 + qc3)I + (qd2 + qd3)M1[x])D1.

The highest order derivative rows of uΓ are sacrificed in order to set continuity boundary conditions.

Rows n, 2n, 3n of AΓi and AΓΓ are set to zero, as well as rows n − 1 and 2n − 1. Rows n, 2n, 3n

of AΓΓ use to set the outside nodes of uΓ to the exterior boundary conditions. Rows n − 1 and

2n− 1 are used to set the first and second inside nodes of uΓ to the third inside node of uΓ. One

derivative boundary condition is left in place.

3.3 Constructing differential operators on meshes

The key to designing a mesh solver is strict bookkeeping. Every triangle in the mesh is given a

unique number, as is every vertex and every edge. We can define our mesh with a list of coordinates

of vertices, and a list of the vertices contained in each triangle. It is important that all of the vertices

are numbered in counterclockwise order. Next, each edge can be given a unique number. We must

also list the two vertices and triangles adjacent to each edge, as well as the outer edge number of

each triangle that contains that edge. Finally, we must complete the vertex list by listing whether

the vertex is on the interior of the mesh, and also listing one edge that contains that vertex.

Now that we have organized the mesh, we can begin constructing matrices. We can generate Aii

matrices for each quadrilateral, and we can construct the AΓi, AiΓ, and AΓΓ matrices for each

triangle. Running through the edge list, we handle two separate cases—exterior boundary edges

and interior boundary edges. For each exterior boundary edge, we set the outside boundaries of

the quadrilaterals and the center node to the specified boundary conditions. For each interior

boundary edge, we set continuity and differentiability conditions across the edge and at the center

12

nodes, similarly to inside of each triangle. Finally, we run through the vertex list. Outside vertices

have interior edge endpoints set to the exterior boundary conditions. Interior vertices have all of

the interior edge endpoints containing that vertex set to the one edge endpoint listed in the vertex

list. We use the Schur complement method to solve the problems of the universe, and voilà, we

have a solver that even works on skinny triangles.

4 Stability and Conditioning

0

10

5
×10-101

0

1

4
3.5

3
2.5

2-5
1.5

2

-2

10

5
×10-101

0

0

×10-15

4
3.5

3
2.5

2-5
1.5

2

Figure 3: Even on skinny quadrilaterals, our method is still numerically stable. Our only limitation

on the skinniness of mesh elements is roundoff error in actually defining the element.

We will prove that Poisson’s equation∇2u = f and the screened Poisson equation∇2u−k2u = f are

numerically stable on any quadrilateral. The key to the following proof is the maximum principle.

The following two lemmas can be found as Theorems 1 and 2 in section 6.5.1 in [1].

Lemma 1. Let the uniformly elliptic partial differential operator

L[u] =

n∑
i,j=1

aijuxixj +
n∑
i=1

biuxi ,

with coefficients aij and bi continuous. Let L[u] = f on domain Ω with boundary ∂Ω. If f ≥ 0 on

Ω, then the maximum value of u occurs on ∂Ω. If f ≤ 0 on Ω, then the minimum value of u occurs

on ∂Ω.

13

Figure 4: Using the Schur complement method, quadrilateral domains can be stitched together to

solve differential equations on triangles. The solution is numerically stable even for skinny triangles.

Lemma 2. Let the uniformly elliptic partial differential operator

L[u] =

n∑
i,j=1

aijuxixj +

n∑
i=1

biuxi + cu,

with coefficients aij, bi, and c continuous. Let L[u] = f on domain Ω with boundary ∂Ω, and let

c < 0 on Ω. If f ≥ 0 on Ω, then the maximum positive value of u occurs on ∂Ω. If f ≤ 0 on Ω,

then the minimum negative value of u occurs on ∂Ω.

We will show that Poisson’s equation and the screened Poisson equation are numerically stable

under perturbations to the boundary conditions and perturbations to the right hand side.

Theorem 1. Let L[u] =
∑n

i,j=1 aijuxixj +
∑n

i=1 biuxi + cu, with c ≤ 0. Let u be the solution to

L[u] = f on domain Ω with boundary ∂Ω, and u(∂Ω) = g. If v is the solution to L[u] = f with

boundary conditions u(∂Ω) = g + ε, then max |v − u| ≤ max |ε|.

Proof. Let us write v = u + δ. Since L is a linear operator, we know that L[v] = L[u] + L[δ] = f .

Therefore, L[δ] = 0, with δ(∂Ω) = ε. By Lemma 2, we know that if δ achieves a nonnegative

maximum on the interior of Ω, then δ is constant. Similarly, if δ achieves a nonpositive minimum on

the interior of Ω, then δ is constant. If max |δ| > max |ε|, then δ will achieve a nonpositive minimum

or a nonnegative maximum on the interior of Ω. However, Lemma 2 states that δ must then be

constant, so therefore max |δ| = max |ε|, hence a contradiction. Therefore, max |δ| ≤ max |ε|.

14

Figure 5: Our method is numerically stable even on a mesh containing both skinny and fat triangles.

Theorem 1 proves that a perturbation to the boundary conditions of any elliptic partial differential

equation of the form
∑n

i,j=1 aijuxixj +
∑n

i=1 biuxi + cu with c ≤ 0 will not be amplified in the

solution, even on a skinny domain. We now need to show that perturbations to the right hand side

will not be amplified in the solution to the screened Poisson equation.

Theorem 2. Let L[u] = uxx + uyy − k2u, and let u be the solution to L[u] = f on domain Ω with

boundary ∂Ω, and u(∂Ω) = g. Let r be the radius of the smallest circle completely containing Ω. If

s is the solution to L[s] = f + ε with boundary conditions s(∂Ω) = g, then max |s− u| ≤ max |ε|r2
4

Proof. First, consider the smallest disk ω with radius r that completely contains region Ω. Let this

disk have center (a, b). For (x, y) ∈ ω and c < 0, the solution t = c
(
(x− a)2 + (y − b)2 − r2

)
is

nonnegative, max t = −r2c, and txx + tyy = 4c.

Next, consider solution w such that wxx +wyy = 4c for c < 0 and w = 0 on ∂Ω. The solution w− t

satisfies (w − t)xx + (w − t)yy = 0 and w − t ≤ 0 on ∂Ω, since t ≥ 0 for all (x, y) ∈ Ω. By Lemma

1, (w − t) ≤ 0 for all (x, y) ∈ Ω. Therefore, maxw ≤ −r2c.

Finally, we will consider the solution v such that vxx + vyy = ε with v = 0 on ∂Ω and max |ε| = c.

By Lemma 1, v is bounded above by w+ satisfying ∇2w+ = −c and w+ = 0 on ∂Ω, and v is

bounded below by w− satisfying ∇2w− = c and w− = 0 on ∂Ω.

We can write ε = ε+ + ε−, where ε+ = max(ε, 0), and ε− = min(ε, 0).

15

Let δ+ be the solution to L[δ+] = ε− with zero Dirichlet boundary conditions and let δ− be the

solution to L[δ−] = ε+ with the same boundary conditions. By Lemma 2, δ+ ≥ 0 on Ω, and δ− ≤ 0.

We can write that ∇2δ+ = k2δ+ + ε−. Since δ+ ≥ 0, min(k2δ+ + ε−) ≥ min(ε−), so δ+ is

bounded above by the solution of ∇2v = ε− with zero Dirichlet boundary conditions by Lemma 1.

Similarly, δ− is bounded below by the solution of∇2v = ε+ with zero Dirichlet boundary conditions.

Therefore, s = u+ δ+ + δ−. Thus, max |s− u| = max(max δ+, max−δ−) ≤ max |ε|r2
4 .

The general case of Theorem 2 with implicitly defined constants can be found as Theorem 3.7 of

[2]. However, Theorem 3.7 of [2] does not explicitly provide bounds on the maximum amplitude of

the perturbation.

Theorem 1 proves that any change to the boundary conditions of the screened Poisson equation

will not be amplified in the solution on any domain. Theorem 2 proves that any change to the right

hand side of the screened Poisson equation will induce a perturbation in the solution of a dependent

on the radius of the domain. Therefore, a numerically stable algorithm exists that can solve the

screened Poisson equation accurately on any domain, so solving the screened Poisson equation on

a skinny domain is a well-posed problem.

In order to demonstrate that the condition number is bounded, let us define a skinny triangle

with coordinates (0, 0), (1, 1 + ε), (2, 2− ε). We can now define a skinny quadrilateral with vertices

(0, 0), (0.5, 0.5 + 0.5ε), (1, 1), (1, 1− 0.5ε). When we construct a differential operator matrix on that

skinny quadrilateral, we still need a preconditioner. In fact, we found that row scaling so that each

row has a supremum norm of 1 is fairly close to optimal. Figure 4 shows the condition number

(κ) of the normalized matrix for solving Poisson’s equation as ε approaches zero. Even as the

quadrilateral becomes very skinny, the condition number of the matrix is bounded from above.

ε 1 10−1 10−2 10−3 10−6 10−9 10−12

κ (×104) 0.159793 0.316152 0.963208 1.076368 1.083209 1.083215 1.083215

Figure 6: As ε approaches 0, the condition number is bounded from above.

16

5 The Navier–Stokes Equations

We decided to demonstrate our method with the direct numerical simulation of the Navier–Stokes

equations in two dimensions at moderately high Reynolds numbers. For incompressible flows, the

Navier–Stokes equation are

∂u

∂t
+ (u · ∇)u +∇p = ∇2u, ∇ · u = 0, (20)

where u is the velocity vector field and p is the internal pressure field. Note that these equations

set density and viscosity to 1, so the Reynolds number can be varied solely by changing the velocity

of the fluid or the dimensions of the domain. Since these equations are coupled and nonlinear, we

must use a multistep method. We can use a first-order projection method to linearize and decouple

the Navier–Stokes equations. With no-slip boundary conditions, we have

∇2un+1/2 − un+1/2

4t
= (un · ∇)un − un

4t
, un+1/2 = 0, on ∂Ω

∇2pn+1 =
un+1/2

4t
,

∂pn+1

∂n
= 0, on ∂Ω

un+1 = un+1/2 −4t∇pn+1,

(21)

where n is the normal vector to the boundary [4].

Navier–Stokes simulations are extremely useful in the form of wind tunnel simulations, where a

test object is placed in a steady flow and analyzed. For an incompressible flow, different boundary

conditions are applied at the inlet, outlet, walls, and test object. Typically, the test object will

have no-slip boundary conditions, and the walls will have free-slip boundary conditions. The inlet

has a constant fluid velocity and zero pressure gradient, and the outlet has a constant pressure and

zero velocity gradient.

Figure 5 shows a wind tunnel simulation of an object in a moving fluid. A tilted ellipse was chosen

to generate asymmetries in the flow, leading to vortex shedding earlier in the simulation. Future

simulations will incorporate skinny elements and higher Reynolds numbers.

17

Figure 7: At a moderately high Reynolds number (Re ≈ 400), vortex shedding is clearly visible.

Positive vorticity is shown as yellow, and negative vorticity is dark blue. This mesh has 188

triangles, with each triangle composed of three quadrilaterals with 20× 20 discretization size. The

color in this image is scaled to bring out more detail in the trailing vortices. The simulation is

equivalent to air flow through a 2 cm × 6 cm rectangle at 0.15 m/s. In total, the simulation took

about 4 hours to run 4000 time steps.

6 Future research

In its current form, our method is capable of solving time-dependent, coupled, and nonlinear

differential equations stably on a mesh with skinny triangles. For a quadrilateral with an n × n

discretization size, our method has a time complexity of O(n4) for LU decomposition and O(n3) for

back-substitution for a single right hand side. Dan Fortunado, a graduate student at Harvard, is

currently attempting to create a faster method with a time complexity of O(n2 log n) per element.

In addition, solving for the interior boundaries of large meshes currently has a time complexity of

O(n3N3), where N is the number of elements, each with discretization size n × n. A hierarchical

method can be used to divide the mesh into many different sub-domains, and then stitch the sub-

domains back together using the Schur complement method. This approach has a complexity of

O(n3N1.5).

Our method can also be adapted to operate on 3-dimensional meshes, where each tetrahedron

would be composed of four hexahedra.

18

7 Acknowledgments

My mentor Dr. Alex Townsend has been incredibly enthusiastic and accessible. He has given

me great advice, and he has been a wonderful sounding board for my ideas. In addition, Dr.

Pavel Etingof, Dr. Slava Gerovitch, and the MIT PRIMES program have provided providing the

opportunity for this research, and Dr. Tanya Khovanova provided astute feedback on my work. I

would like to thank Dr. Grady Wright for helping me debug my Navier–Stokes simulation. I would

also like to thank my teachers and administrators for incubating my desire to learn. Finally, I would

like to thank my parents for allowing me to prioritize mathematical research above everything else.

A Determinants

Let (x1, y1), (x2, y2), and (x3, y3) be the vertices of an arbitrary triangle in counterclockwise order.

By the shoelace formula, the area of the triangle is

A =
1

2

[(
x1y2 + x2y3 + x3y1

)
−
(
x2y1 + x3y2 + x1y3

)]
. (22)

We can construct three quadrilaterals from the triangle by partitioning the triangle along the line

segments connecting the centroid of the triangle to the midpoints of the sides. Without loss of

generality, let our quadrilateral contain vertex 1 of the triangle, so it has the following vertices in

counterclockwise order:(
x1, y1

)
,

(
x1 + x2

2
,
y1 + y2

2

)
,

(
x1 + x2 + x3

3
,
y1 + y2 + y3

3

)
,

(
x1 + x3

2
,
y1 + y3

2

)
. (23)

Using equations (7) and (23), we have

x =
1

24

[(
14x1 + 5x2 + 5x3

)
+
(
4x1 − 5x2 + x3

)
r +

(
4x1 + x2 − 5x3

)
s+

(
2x1 − x2 − x3

)
rs
]
, (24)

and similarly for y. We can use equations (6) and (9) to find that

det(r, s) =
(
b1c2 − b2c1

)
+
(
b1d2 − b2d1

)
r +

(
c2d1 − c1d2

)
s. (25)

Plugging in values for b1, c1, d1, b2, c2, and d2, we have

det(r, s) =
1

576

[(
(4x1 − 5x2 + x3)(4y1 + y2 − 5y3)− (4y1 − 5y2 + y3)(4x1 + x2 − 5x3)

)
+
(
(4x1 − 5x2 + x3)(2y1 − y2 − y3)− (4y1 − 5y2 + y3)(2x1 − x2 − x3)

)
r

+
(
(4y1 + y2 − 5y3)(2x1 − x2 − x3)− (4x1 + x2 − 5x3)(2y1 − y2 − y3)

)
s
]
.

(26)

19

We can note that(
n∑
i=1

vixi

)(
n∑
i=1

wiyi

)
−

(
n∑
i=1

wixi

)(
n∑
i=1

viyi

)
=

∑
1≤i<j≤n

(xiyj − xjyi)(viwj − vjwi), (27)

and use this identity to simplify (26) to obtain

det(r, s) =
1

96

[(
x1y2 + x2y3 + x3y1

)
−
(
x2y1 + x3y2 + x1y3

)](
4 + r + s

)
. (28)

Substituting in (22) and letting A be the area of the triangle gives the desired result of

det(r, s) =
A
(
4 + r + s

)
48

, (29)

B Optimization

When solving systems of equations, banded matrices are typically efficient to solve. Unfortunately,

our matrices are “almost banded,” meaning that most of the elements lie close to the main diagonal,

but a few rows extend the whole length of the matrix. Therefore, sparse LU decomposition and

Gaussian elimination have large backfill—they are forced to set many zero matrix elements to

nonzero values, resulting in a more computationally intensive solve. We found that we can use

the Woodbury matrix identity to replace the rows lying outside of the bandwidth. The Woodbury

matrix identity can compute the inverse a matrix given the inverse of another matrix and a rank-k

correction. It satisfies

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1, (30)

where A is n-by-n, U is n-by-k, V is k-by-n, and C is k-by-k [3].

In our case, we choose V to be a block of boundary condition rows, U to be a sparse binary

matrix with exactly one ‘1’ in each column and no more than one ‘1’ in each row, and C to be the

identity matrix. The replacement boundary condition rows are 1’s in columns corresponding to the

lowest-order coefficients of the solution. Our matrix A with new boundary conditions is now sparse

and banded, so fast sparse LU decomposition is possible. Therefore, once the LU decomposition is

completed, back-substitution can be evaluated for each individual right hand side extremely rapidly,

allowing a system of variables with over 60,000 degrees of freedom to be solved in under a second.

20

References

[1] L. C. Evans, Partial Differential Equations.

[2] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,

Springer, 2015.

[3] N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, 2002.

[4] J. G. Liu, Projection method I: convergence and numerical boundary layers, SIAM journal on

numerical analysis, 32 (1995), pp. 1017–1057.

[5] T. Mathew, Domain decomposition methods for the numerical solution of partial differential

equations, vol. 61, Springer Science & Business Media, 2008.

[6] J. Ruppert, A new and simple algorithm for quality 2-dimensional mesh generation, in SODA,

vol. 93, 1993, pp. 83–92.

[7] A. Townsend, Computing with Functions in Two Dimensions, PhD thesis, Oxford University,

2014.

[8] A. Townsend and S. Olver, The automatic solution of partial differential equations using a

global spectral method, Journal of Computational Physics, 299 (2015), pp. 106–123.

[9] L. N. Trefethen, Approximation theory and approximation practice, SIAM, 2013.

