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Abstract

In the modern age, public-key cryptography has become a vital component for se-

cure online communication. To implement these cryptosystems, rapid primality test-

ing is necessary in order to generate keys. In particular, probabilistic tests are used

for their speed, despite the potential for pseudoprimes. So, we examine the commonly

used Miller-Rabin and Lucas tests, showing that numbers with many nonwitnesses

are usually Carmichael or Lucas-Carmichael numbers in a specific form. We then

use these categorizations, through a generalization of Korselt’s criterion, to prove that

there are no numbers with many nonwitnesses for both tests, affirming the two tests’

relative independence. As Carmichael and Lucas-Carmichael numbers are in general

more difficult for the two tests to deal with, we next search for numbers which are

both Carmichael and Lucas-Carmichael numbers, experimentally finding none less

than 1016. We thus conjecture that there are no such composites and, using multi-

variate calculus with symmetric polynomials, begin developing techniques to prove

this.
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1 Introduction

In the current information age, cryptographic systems to protect data have become a funda-
mental necessity. With the quantity of data distributed over the internet, the importance
of encryption for protecting individual privacy has greatly risen. Indeed, according to
[EMC16], cryptography is allows for authentication and protection in online commerce,
even when working with vital financial information (e.g. in online banking and shopping).
Now that more and more transactions are done through the internet, rather than in person,
the importance of secure encryption schemes is only growing.

Thus, as some commonly used public key cryptography algorithms rely on large semi-
primes that are extremely difficult to factor, fast prime generation is vital for key gener-
ation. For example, the RSA cryptosystem is one of the most widely used systems for
cryptography—even when not used directly, its often used to encrypt the keys for other
cryptographic algorithms ([CSE11]). To implement it, RSA requires semiprimes that are
around 2048 bits (about 600 decimal digits) for its key ([EMC16]). These semiprimes are
the product of two primes, so one needs to quickly generate primes that are around 1048
bits (around 300 decimal digits). If we have a way to quickly determine if a number is
prime, we can quickly generate the necessary primes by choosing “candidate” numbers in
the right size, until we find one that is prime.

1.1 Primality Tests

Methods for determining whether or not a number n is prime are simply called primality
tests. There are two distinct types of primality tests. On one hand, deterministic tests
always decide for certain whether or not n is prime. On the other hand, probabilistic tests
determine either that n is composite, or that it might be prime. This is done by checking
whether or not n satisfies some properties which are true of all primes and few composites.
While these probabilistic tests do not always correctly determine if a number is prime,
they are generally far faster than deterministic tests. Indeed, when compared with the
fast (in the sense that it runs in polynomial-time), deterministic, Agrawal-Kayal-Saxena
(AKS) primality test, effective probabilistic primality tests are still millions of times faster
[AKS04]. Thus, probabilistic primality tests remain very relevant. Indeed, even when
attempting to prove that a number is prime, probabilistic tests can be rapidly applied to
quickly exclude most composite numbers, reducing the overall time the primality test takes.
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1.2 The Fermat Primality Test

The Fermat test is constructed from Fermat’s Little Theorem, which says that for a prime p,
and any a relatively prime to p, we have ap−1≡ 1 (mod p). So, to turn this into a primality
test, given an odd number n, we choose some positive integer a < n that is relatively prime
to n and see if an−1≡ 1 (mod n). If the congruence holds, then n might be prime. However,
if the congruence does not hold, then we know n is a composite, and we call a a witness

for n’s compositeness. Similarly, if n is actually composite, and the congruence holds for
some a, then we call that a a nonwitness, and n a Fermat pseudoprime. However, the
Fermat Primality test itself is not particularly useful; there are some n for which every a

is a nonwitness. These numbers are called Carmichael numbers, and they will play a vital
role when looking at pseudoprimes to the Miller-Rabin test.

1.3 The Miller-Rabin Primality Test

In the Miller-Rabin test, we express our odd integer n as n = 1+d ·2k, for d an odd integer.
Then, as with the Fermat test, we choose a positive integer a < n, relatively prime to n,
as a potential witness. However, with the Miller-Rabin test, we check that either ad ≡ 1
(mod n), or a2r·d ≡−1 (mod n) for some r < k. If one of these conditions hold, then n is
a probable prime. If n is actually composite, then we say that it is a strong pseudoprime,
and that a is a nonwitness. Likewise, if neither of the conditions hold, then a is a witness
to n and n is known to be composite. As this paper will not examine the Fermat test,
“witness” and “nonwitness,” when used to describe an integer a, will be used to mean a
“witness” or “nonwitness” for the Miller-Rabin test. For a given n, we will use N(n) to
denote the number of Miller-Rabin nonwitnesses to n. We will focus on this test, and the
Lucas Probable Prime test which we now introduce.

1.4 The Lucas Probable Prime Test

To construct the weak Lucas test, we first define the Lucas Sequences U and V , when
given two integers P and Q, by U0 = 0, U1 = 1, Uk+2 = PUk+1−QUk, and V0 = 2, V1 =

P, Vk+2 = PVk+1−QVk. Then, let D = P2− 4Q, and let ε(n) denote the Jacobi symbol(
D
n

)
. We have the following as a well-known theorem:

Theorem. [Arn97] Let p be a prime number, relatively prime to 2QD. Set p− ε(p) = 2kq

for q an odd integer. Then, p|U2kq.
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Note that this condition can be viewed as analogous to the condition for the Fermat test.
So, just like with the Fermat test, there is a stronger form of the statement; if p is prime,
then one of the following conditions is satisfied: p|Uq or there exists some i, 0 ≤ i < k,
where p|V2iq.

Let O be the ring of algebraic integers in Q(
√

D). Then, [Arn97] shows that each Lucas
sequence is in a one-to-one correspondence with the norm-1 elements τ in O where τ−1
is a unit in O/n. Furthermore, [Arn97] also shows that for a given Lucas sequence, if n is
relatively prime to 2QD, then n|Uk ⇐⇒ τ

k ≡ 1 (mod n) and n|Vk ⇐⇒ τ
k ≡−1 (mod n).

In light of these equivalences, we will often study the Lucas test with algebraic integers,
not with Lucas sequences.

Now, we can turn the Lucas condition into a primality test, starting with some n rel-
atively prime to 2QD and setting n− ε(n) = 2kq for q odd. If, for a composite n, either
n|Uq or there is some i, 0≤ i < k, where p|V2iq, then we call n a strong Lucas pseudoprime,
since it satisfies the strong form of the Lucas test, and the pair of parameters (P,Q) (or the
corresponding quadratic integer τ), a nonwitness.

We will now introduce some notation that is useful when talking about Lucas pseudo-
primes. Suppose n > 2 factors into primes as n = pe1

1 · · · p
em
m . Let εi denote ε(pi). Then,

for 1 ≤ i ≤ m, let pi− εi = 2kiqi for qi odd. Finally, let SL(D,n) denote the number of
nonwitnesses, analogous to N(n) for Miller-Rabin nonwitnesses.

The Lucas test, when used correctly, can be highly independent of the Miller Rabin test,
making it particularly interesting. Indeed, several algorithms exploit this independence to
yield extremely powerful primality tests; of particular note is the Baillie-PSW test, for
which there are no known composite n which are “probably prime.”

1.5 This Research

In Section 2, we begin by examining prior results about numbers with many nonwitnesses
for both the Miller-Rabin and Lucas Pseudoprime tests. We define our concept of “Lucas-
Carmichael numbers” as an analog of the Carmichael numbers, but for the Lucas Probable
Prime test, and give a categorization of numbers with many nonwitnesses for both the
Miller-Rabin and Lucas tests in terms of Carmichael and Lucas-Carmichael numbers. In
order to prove that no numbers have many nonwitnesses for both tests, we prove that if
a composite has three prime factors, then it cannot be a Carmichael number and a Lucas-
Carmichael number. Then, in Section 3, we begin to generalize this result to show that there
are no composites that are both Carmichael and Lucas-Carmichael numbers, developing
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lemmas and techniques before applying them to a particular form of numbers with five
prime factors to show that there are no numbers in that form that are both Carmichael and
Lucas-Carmichael numbers. We conclude in Section 4 by considering possible future work.

2 Finding Composites with Many Nonwitnesses

2.1 Prior Results

In the case of the Miller-Rabin test, we have the below classification for the numbers with
high amounts of nonwitnesses, where ϕ(n) denotes the Euler totient function, and v2(n) is
the greatest natural number so that 2v2(n)|n. v2(n) is also known as the 2-adic valuation.

Theorem 1. [Nar14] Suppose n is an odd composite number ≥ 81. Then N(n) =
ϕ(n)

4
iff

n is of the form (2k+1)(4k+1), for k odd and 2k+1, 4k+1 prime, or n is a Carmichael

number of the form pqr, where p,q, and r are distinct primes ≡ 3 (mod 4). Furthermore,
ϕ(n)

6
< N(n) <

ϕ(n)
4

iff n is of the form (2k+ 1)(6k+ 1), for k odd and 2k+ 1, 6k+ 1

prime, and N(n) =
ϕ(n)

6
iff n has the form (2k + 1)(4k + 1) where k is even. Finally,

ϕ(n)
7

< N(n) <
5ϕ(n)

32
iff n is a Carmichael number of the form pqr, where v2(p− 1) =

v2(q−1) = v2(r−1)> 1. Otherwise, N(n)≤ ϕ(n)
8

.

[Ami15] provides a similar theorem for the Lucas test.

Theorem 2. [Ami15] SL(D,n) ≤ n
6

unless n = 9 or 25, m = 2 and either n = (2k1q1−

1)(2k1q1 +1), where n is the product of twin primes, or n = (2k1q1 + ε1)(2k1+1q1 + ε2), or

m = 3, and n = (2k1q1 + ε1)(2k1q2 + ε2)(2k1q3 + ε3), where q1,q2,q3|q.

2.2 Carmichael and Lucas-Carmichael Numbers

In Theorem 1, several of the cases are Carmichael numbers. So, we state a well-known
theorem about Carmichael numbers that will allow us to talk about them more easily:

Theorem 3 (Korselt’s Criterion). A positive composite number n is a Carmichael number

if and only if it is square-free, and for all its prime factors pi, pi−1|n−1 [Con].

Now, just like how Carmichael numbers completely defeat the weaker form of the
Miller-Rabin test (the Fermat test), we consider the numbers that completely defeat the
weak Lucas test:
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Definition 1 (Lucas-Carmichael Number). A Lucas-Carmichael number for a given value

of D is a composite number n, relatively prime to 2D, such that for every Lucas sequence

(P,Q), n|Un−ε(n). Equivalently, for every τ that is a norm-1 element in O where τ−1 is a

unit in O/n, τ
n−ε(n) ≡ 1 (mod n). (A norm-1 element is the image of some x ∈ O under

the canonical map φ : O 7→ O/n, where Norm(x) ≡ 1. We will denote the multiplicative

group of such elements by (O/n)∧.)

We are then able to devise an analog of Korselt’s Criterion for these Lucas-Carmichael
numbers, proving our theorem by working with quadratic integers.

Theorem 4. A positive composite number n, relatively prime to 2D, is a Lucas-Carmichael

number (with respect to D) if and only if it is square-free, and for every prime pi|n, pi−
ε(pi)|n− ε(n).

Proof. We first prove that if n is a Lucas-Carmichael number, then it is square free, and for
every prime pi|n, pi− ε(pi)|n− ε(n).

Suppose n factors as pe1
1 pe2

2 · · · p
em
m . Consider the multiplicative group of norm-1 ele-

ments in (O/pei
i ). Arnault shows that this group is cyclic, with order pei−1

i (pi− ε(pi)).
[Arn97] So suppose some gi is a generator. Then, by the Chinese Remainder Theorem,
there is some norm-1 g ∈ O with g≡ gi (mod pei

i ) for all i. Now, we claim g−1 must be
invertible in O—for the sake of contradiction, suppose otherwise.

If D 6≡ 1 (mod 4), then O = Z[
√

D], so we can express g = a+b
√

D. Then, we know
N(g) = N(a+b

√
D) = a2−Db2 = 1. Note that N(g−1) = N(a−1+b

√
D) = (a−1)2−

Db2 = a2−Db2−2a+1 = N(g)−2a+1 = 2−2a. If this is relatively prime to n in Z, then
N(g− 1) is invertible, which would imply that g− 1 is invertible in O . So there is some
pi|n with pi|N(g−1). Then 2 ≡ 2a (mod pi). We assumed that n was relatively prime to
2D, so pi 6= 2. So a≡ 1 (mod pi). Now, N(g) = a2−Db2 = 1, so a2 ≡ 1+Db2 (mod pi),
taking the canonical mapping from Z to Z/pi. Then, as a≡ 1 (mod pi), a2 ≡ 1 (mod pi),
so Db2 ≡ 0 (mod pi). So pi|D or pi|b. But pi|n, and we assumed that n was relatively
prime to 2D. So pi|b. Therefore in O/pi, g≡ 1 (mod pi).

Alternatively, if D≡ 1 (mod 4), then O = Z[1+
√

D
2 ], and we can write g = a+b1+

√
D

2 .
Substitute A = 2a+b,B = b, so that g = A+B

√
D

2 . Then, 1 = N(g) = N(A+B
√

D
2 ) = A2−DB2

4 .

Also, N(g−1) = N(A−2+B
√

D
2 ) = (A−2)2−DB2

4 = N(g)−A+1 = 2−A. If this is relatively
prime to n, then it is invertible, which would make g− 1 invertible. So as before, there
is some pi|n with N(g− 1) = 2−A ≡ 0 (mod pi). Then as pi 6= 2, A

2 ≡ 1 (mod pi). So
A2

4 ≡ 1 (mod pi). Then, as 1 = N(g) = A2−DB2

4 , DB2 ≡ 0 (mod pi). Thus, as before, we
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get that pi|B, as D and n are relatively prime. So, in O/pi, g ≡ 1 (mod p), regardless of
the choice of D.

Now, g is a generator of (O/pi
ei). But there are only pei−1

i < pei−1
i (pi−ε(pi)) elements

in O/pi
ei which are congruent to 1 (mod pi), so g cannot generate the whole group. Thus,

g−1 is invertible in O .
But then g is a norm-1 element in O where g− 1 is invertible. So by our initial as-

sumption, gn−ε(n) ≡ 1 (mod n). So certainly, for any pi, gn−ε(n) ≡ 1 (mod pei
i ). So,

as the order of g is pei−1
i (pi− ε(pi)), as it is congruent to some gi that is a generator,

pei−1
i (pi− ε(pi))|n− ε(n). But as pei

i |n, pei
i is relatively prime to n− ε(n). So, we must

have that ei = 1. So n is square-free. Then, plugging in ei = 1, we have that for any pi|n,
pi− ε(pi)|n− ε(n), as desired.

Conversely, suppose that we can factor n into distinct primes n = p1 p2 · · · pm where, for
all pi, pi− ε(pi)|n− ε(n). Then, for any τ ∈ O with norm 1, τ ∈ O/pi

∧. So, as the order
of O/pi

∧ is pi− ε(pi), τ
pi−ε(pi) ≡ 1 (mod pi). So, as pi− ε(pi)|n− ε(n), τ

n−ε(n) ≡ 1
(mod pi). So, by the Chinese Remainder Theorem, τ

n−ε(n) ≡ 1 (mod n), as desired.

The following two lemmas will allow us to restate Theorem 2.

Lemma. For n with two prime factors, n is a Lucas-Carmichael number if and only if it is

the product of twin primes, p, p+2, where ε(p) =−1,ε(p+2) = 1.

Proof. Suppose n is a Lucas-Carmichael number with two prime factors. Using the pre-
viously defined notation, n = 2kq + ε(n) = (2k1q1 + ε1)(2k2q2 + ε2). Multiplying out,
n = (2k1+k2q1q2 + 2k2q2ε1 + 2k1q1ε2)+ ε1ε2. Note that ε(n) = ε1ε2. Now, suppose with-
out loss of generality that k1 ≤ k2. n is a Lucas-Carmichael number, so 2k2q2|n− ε =

(2k1+k2q1q2 +2k2q2ε1 +2k1q1ε2). So, 2k2|2k1q1ε2). But q1 is odd, so it is relatively prime
to 2k2 . So 2k2|2k1 . Thus, k2 ≤ k1. But we assumed k1 ≤ k2. So k1 = k2. Furthermore, from
2k2q2|n− ε = (2k1+k2q1q2 + 2k2q2ε1 + 2k1q1ε2), we get that q2|2k1q1ε2. So as q2 is odd,
q2|q1. One can similarly show that q1|q2. So, q1 = q2. Then, n = (2k1q1 + ε1)(2k1q1 + ε2).
ε1 6= ε2, or the two factors would be the same, contradicting that n is square-free. So,
assume without loss of generality that ε1 = −1, ε2 = 1. Now, setting p = 2k1q1 + ε1 =

2k1q1−1, we see that we have factored n into the product of twin primes, p · (p+2), where
ε(p) = ε1 =−1 and ε(p+2) = ε2 = 1, as desired.

Conversely, suppose n = p(p+2) where ε(p) =−1,ε(p+2) = 1. Then ε(n) =−1, so
n− ε(n) = n+1 = p(p+2)+1 = p2 +2p+1 = (p+1)2. Note that p− ε(p) = p+2−
ε(p+ 2) = p+ 1. So, p− ε(p), p+ 2− ε(p+ 2) both divide n− ε(n). So, as n is clearly
square-free, it is a Lucas-Carmichael number.
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Lemma. For n with three prime factors, if and only if n factors as (2k1q1 + ε1)(2k1q2 +

ε2)(2k1q3+ε3), where q1,q2,q3|q, then n is a Lucas-Carmichael number with v2(p1−ε1)=

v2(p2− ε2) = v2(p3− ε3).

Proof. Clearly, if n factors in that way, then as the qi are odd, v2(p1− ε1) = v2(p2− ε2) =

v2(p3 − ε3). Now, we can multiply out the expression for n to get n = 23·k1q1q2q3 +

22·k1q2q3ε1 + 22·k1q1q3ε2 + 22·k1q1q2ε3 + 2k1q1ε2ε3 + 2k1q2ε1ε3 + 2k1q3ε1ε2 + ε1ε2ε3. So
then, 2k1|n−ε , as ε = ε1ε2ε3. So, as n−ε = 2kq, 2k1|n−ε , and q is odd, 2k1|2

k. So as qi|q,
2k1|2

k, and 2k1 and qi are relatively prime, since the qi are odd, pi− εi = 2k1qi|2kq = n− ε .
So n is a Lucas-Carmichael number with v2(p1− ε1) = v2(p2− ε2) = v2(p3− ε3).

Conversely, suppose n is a Lucas-Carmichael number with v2(p1−ε1) = v2(p2−ε2) =

v2(p3− ε3). Certainly, without loss of generality, we can factor n = (2k1q1 + ε1)(2k2q2 +

ε2)(2k3q3 + ε3). Then, the 2-adic valuations are equal, so we must have k1 = k2 = k3.
Finally, pi− εi|n− ε , so 2kiqi|2kq. But qi is relatively prime to 2k, so qi|q. So n = (2k1q1 +

ε1)(2k1q2 + ε2)(2k1q3 + ε3), where q1,q2,q3|q.

We then restate Theorem 2:

Theorem 5 (Restatemenet of Result by [Ami15]). SL(D,n)≤ n
6

unless n = 9 or 25, m = 2

and either n is a Lucas-Carmichael number or n = (2k1q1 + ε1)(2k1+1q1 + ε2), or m = 3,

and n is a Lucas-Carmichael number where v2(p1− ε1) = v2(p2− ε2) = v2(p3− ε3).

2.3 Properties of Problematic Composites

We now want to examine numbers that have N(n) >
ϕ(n)

8
and SL(D,n) >

n
6

; call such n

problematic. Assume that n > 81, since when testing for primality, we would check that no
small primes divide into the number, taking care of these smaller cases. Now, according to
Theorem 1 and Theorem 2, problematic numbers can only have two or three prime factors.
The case for two prime factors can be easily dealt with, so we will do that now.

Lemma 1. Suppose we choose a D such that
(

D
n

)
=−1. Then there are no problematic

numbers n that have two prime factors.

Proof. By Theorem 1, we know that if N(n) >
ϕ(n)

8
, and n > 81 has two prime factors,

then n = (2k + 1)(4k + 1) for some integer k, or n = (2k + 1)(6k + 1) for some odd k.
By Theorem 2, we also know that either n is the product of twin primes, or n = (2k1q1 +

ε1)(2k1+1q1 + ε2). Now, clearly, if n = (2k + 1)(4k + 1) or (2k + 1)(6k + 1), the prime
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factors of n differ by more than 2. So n = (2k1q1 + ε1)(2k1+1q1 + ε2). Now,
(

D
n

)
= −1,

so either ε1 =−1,ε2 = 1 or ε1 = 1,ε2 =−1.
In the former case, n = (2k1q1−1)(2k1+1q1 +1). Clearly the latter factor is larger. So

if n = (2k+1)(6k+1) for some odd k, then 6k+1 = 2k1+1q1 +1. If 6k+1 = 2k1+1q1 +1
though, then as k is odd, v2(2k1+1q1) = v2(6k) = 1. Then k1 = 0. But then the smaller
prime factor of n is 2k1q1− 1 = q1− 1. But q1 is odd, so 2k1q1− 1 = q1− 1 is even. But
it also has form 2k+1 for some k. Alternatively, if n = (2k+1)(4k+1) for some k, then
4k = 2k1+1q1, 2k+1 = 2k1q1−1. So, as q1 is odd, v2(k) = k1−1. Then, v2(2k) = k1. But
note that 2k+ 2 = 2k1q1, so v2(2k+ 2) = k1. However, 2k,2k+ 2 are both odd, so one of
them is 2 (mod 4) and one of them is 0 (mod 4)— they certainly cannot have equal 2-adic
valuations.

In the latter case, n = (2k1q1 +1)(2k1+1q1−1). Suppose that n = (2k+1)(6k+1), for
k odd. We still have that the first factors are both the smaller ones, so 6k+1 = 2k1+1q1−1,
2k+1 = 2k1q1 +1. Then 2k = 2k1q1, so as k is odd, k1 = 1,k = q1. So 6q1 +1 = 6k+1 =

2k1+1q1− 1 = 4q1− 1. So q1 = 1. Then n = 3 · 7, and we certainly have n < 81, so n is
not problematic. Finally, suppose that n = (2k+ 1)(4k+ 1). Then, 4k+ 1 = 2k1+1q1− 1,
2k + 1 = 2k1q1 + 1. So v2(2k) = k1. Then v2(4k) = k1 + 1. But 4k + 2 = 2k1+1q1, so
v2(4k+2) = k1 +1.

So, we look only at the case where n has three prime factors. In this case, it has a large
number of Miller-Rabin nonwitnesses, so it must be a Carmichael number with v2(p1−
1) = v2(p2− 1) = v2(p3− 1). Furthermore, since it has a large number of Lucas non-
witnesses it is a Lucas-Carmichael number, with v2(p1− ε1) = v2(p2− ε2) = v2(p3− ε3).
Using some of these characteristics, we prove the following lemma.

Lemma. If n has three distinct prime factors, where pi = 2k1qi + εi (so v2(p1− ε1) =

v2(p2−ε2) = v2(p3−ε3)), and v2(p1−1) = v2(p2−1) = v2(p3−1), then
(

D
n

)
=

(
D
pi

)
for 1≤ i≤ 3, where

(a
b

)
denotes the Jacobi symbol.

Proof. Suppose without loss of generality that for two of our prime factors, p1 and p2,(
D
p1

)
6=
(

D
p2

)
, where

(
D
p1

)
= 1,

(
D
p2

)
= −1. Then, p1− 1 = 2k1q1, so v2(p1) = k1.

Meanwhile, p2 = 2k1q2−1, so p2−1 = 2k1q2−2. But as v2(p1−1) = v2(p2−1), we thus
get that v2(2k1q2−2) = k1. So, in particular, 2k1 |2k1q2−2. So 2k1|2. So k1 = 1. But then,
p2− 1 = 2q2− 2 = 2(q2− 1). But since q2 is odd, 2|(q2− 1), so v2(p2) 6= k. So, for any

two prime factors,
(

D
pi

)
=

(
D
p j

)
. But we know that

(
D
n

)
=

(
D
p1

)(
D
p2

)(
D
p3

)
, by
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the properties of the Jacobi symbol. So,
(

D
n

)
=

(
D
p1

)3

=

(
D
p1

)
, as desired.

The following corollary is immediate.

Corollary 1. All problematic numbers with three prime factors satisfy
(

D
n

)
=

(
D
pi

)
.

So, we only have two different cases to consider— when
(

D
n

)
= 1 and when

(
D
n

)
=

−1. However, note that in general, we are able to chose the value of
(

D
n

)
based on our

choice of D. In fact, we want to choose
(

D
n

)
= −1; if

(
D
n

)
= 1, then we have more

problematic numbers, since the constraints on n are not all independent.

Lemma. If n is a Carmichael number with three prime factors, and v2(p1−1) = v2(p2−

1) = v2(p3−1), v2(p1−ε1) = v2(p2−ε2) = v2(p3−ε3), and
(

D
n

)
= 1, then n is a Lucas-

Carmichael number.

Proof. By Corollary 1, we have that
(

D
pi

)
=

(
D
n

)
= 1 for all pi. Now, we earlier set

n− ε = 2kq, where ε =

(
D
n

)
= 1. So, as εi is just

(
D
pi

)
, and pi− 1|n− 1, by Korselt’s

Criterion (since n is a Carmichael number), we have 2k1qi|2kq. So qi|2kq. But as qi is odd,
it is relatively prime to 2k. So qi|q for all i. Then as v2(p1−ε1) = v2(p2−ε2) = v2(p3−ε3),
by our earlier lemma, n is a Lucas-Carmichael number.

Indeed, [BW00] also notes that want
(

D
n

)
=−1, or the Miller-Rabin and Lucas tests

are not as independent, though their justification is different. They show how if
(

D
n

)
=

1, and n is a strong pseudoprime to some as for the Miller-Rabin test, then n must be a
pseudoprime to certain pairs (P,Q) as well. So, we now assume all are Lucas tests are

performed where
(

D
n

)
= −1, and when searching for problematic numbers with three

prime factors, we only look at n where
(

D
n

)
=

(
D
pi

)
=−1.

2.4 Results of Searching

We began by testing the Carmichael numbers less than 230 which have three prime factors
such that v2(p1− 1) = v2(p2− 1) = v2(p3− 1). In this search, no problematic numbers
were found. Indeed, we present the following result:

11



Theorem. There are no problematic numbers.

To prove this, we first show the following lemmas

Lemma. If
(

D
n

)
= −1, and n is both a Carmichael number and a Lucas-Carmichael

number, then
(

D
pi

)
=−1 for every prime pi|n.

Proof. Suppose otherwise— that for some pi,
(

D
pi

)
= 1. Then, pi− εi|n− ε , where ε =

−1, εi = 1, so pi− 1|n+ 1. But n is also a Carmichael number, so pi− 1|n− 1. Then,
pi−1|2. So as pi is a prime, pi = 3.

Then,
(

D
n

)
= −1, so there is some prime p j|n where ε j = −1. Then p j− 1|n− 1,

p j +1|n+1 But p j 6≡ 1 (mod 3), or 3|p j−1, implying that 3|n−1, and similarly, p j 6≡ 2
(mod 3), or 3|p j + 1, so 3|n+ 1— these two are impossible, since 3|n. But also, p j 6≡ 3,
unless p j = 3, contradicting its distinctness. So, there is no pi with εi = 1. Thus, for every

pi|n, εi =

(
D
pi

)
=−1, as desired.

Corollary. If
(

D
n

)
=−1, then there are no numbers with an even number of prime factors

that are both Carmichael numbers and Lucas-Carmichael numbers.

Proof. Suppose n has k prime factors. Then, −1 =

(
D
n

)
= (−1)k by Lemma 2.4. So k

must be odd.

Lemma. If n is both a Carmichael and a Lucas-Carmichael number, then for every prime

p|n, n≡ p (mod
p2−1

2
).

Proof. As p|n, we can write n = ap for some integer a. Then, p− 1|n− 1 by Korselt’s
Criterion, so p−1|ap−1 = ap−a+a−1 = a(p−1)+a−1. So p−1|a−1. Meanwhile,

from our last lemma,
(

D
p

)
= −1, so from the analog of Korselt’s Criterion for Lucas-

Carmichael numbers, we get p+1|n+1. Then, n+1 = ap+1 = ap+a−a+1 = a(p+

1)− a+ 1, so p+ 1|− a+ 1, or p+ 1|a− 1. Now, consider gcd(p− 1, p+ 1). Certainly,
this is either 2 or 1— as p is an odd prime though, 2|p− 1, 2|p+ 1. So gcd(p− 1, p+

1) = 2. Now, we know p2− 1 = (p+ 1)(p− 1) = lcm(p+ 1, p− 1) · gcd(p+ 1, p− 1) =

2 · lcm(p+ 1, p− 1). So lcm(p+ 1, p− 1) =
p2−1

2
. Then, as p− 1|a− 1, p+ 1|a− 1,

we have lcm(p+ 1, p− 1)|a− 1. So
p2−1

2
|a− 1, or equivalently, a ≡ 1 (mod

p2−1
2

).

12



Then, p is certainly relatively prime to
p2−1

2
, so we can multiply by p to get n = ap≡ p

(mod
p2−1

2
), as desired.

Theorem 6. There are no composites with three prime factors that are both Carmichael

Numbers and Lucas-Carmichael numbers.

Proof. Let n = pqr be a Lucas-Carmichael number, and a Carmichael number. Then, with-
out loss of generality, suppose p < q < r. From our previous lemma, we get that pq ≡ 1

(mod
r2−1

2
). So, pq = 1+ x · r

2−1
2

, for some integer x. Now, if x ≥ 2, then we get

pq ≥ r2, contradicting that p < q < r. Furthermore, we clearly know that x 6≤ 0. So,

x = 1, and pq = 1+
r2−1

2
. Note that 1+

r2−1
2

=
r2 +1

2
. So r2 +1 = 2pq. In particular,

r <
√

2pq.
Note that 3 < q. So, 9(3−2

√
2) < q2(3−2

√
2). In particular, 1 < 9(3−2

√
2). Then

1 < q2(3− 2
√

2) = 3q2− 2
√

2q2. So, 2
√

2q2− 2 < 3q2− 3. As the right hand side is

positive,
2(
√

2q2−1)
q2−1

< 3, and as p< q, p
√

2pq<
√

2q2. Since r <
√

2pq,
2(pr−1)

q2−1
< 3.

Then
pr−1

(q2−1
2 )

< 3.

By lemma 7, pqr ≡ q (mod
q2−1

2
). So

q2−1
2
|pr−1. Then,

pr−1

(q2−1
2 )

is an integer, so

it must be 1 or 2. But if
pr−1

(q2−1
2 )

= 2, then pr = q2, a contradiction. So
pr−1

(q2−1
2 )

= 1. Note

that 1 =
pq−1

( r2−1
2 )

<
pr−1

(q2−1
2 )

= 1.

After showing the above, we became aware of an equivalent result by [Wil77], using an
alternative proof.

Theorem 7. There are no problematic numbers.

Proof. Follows immediately from Lemma 1 and Theorem 6, since problematic numbers
with three prime factors must be both Carmichael numbers and Lucas-Carmichael numbers.

3 Numbers that are Carmichael and Lucas-Carmichael

In general, Carmichael and Lucas-Carmichael numbers tend to have many nonwitnesses
for the Miller-Rabin and Lucas Probable Prime tests. Indeed, this fact is evident from the
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formulas for the number of nonwitnesses stated in [Arn97]. Thus, numbers that are both
Carmichael and Lucas-Carmichael become of interest.

3.1 Searching for Carmichael and Lucas-Carmichael Numbers

In showing there were no problematic numbers, we were able to prove that there were no
numbers with either an even number of prime factors, or three prime factors, that were
both Carmichael and Lucas-Carmichael. So, one might expect that there are, in general,
no numbers that are both Carmichael and Lucas-Carmichael numbers. Indeed, after ex-
amining all Carmichael numbers less than 1016, we found no Lucas-Carmichael numbers
([Pin]). However, despite having already shown several lemmas about numbers that are
both Carmichael and Lucas-Carmichael numbers, trying to generalize the result to other
odd numbers of factors proves much more difficult.

The following lemma provides a useful starting point:

Lemma. If n is both a Carmichael number and a Lucas-Carmichael number, then all

primes dividing n are equivalent mod 12.

Proof. Clearly, n must have multiple prime factors. If 2|n, there is another odd prime p|n,
so n−1 is odd, but divisible by an even number. Similarly, if 3|n, but there is either another
odd prime p|n, p ≡ 1 (mod 3), in which case p−1|n−1 =⇒ 3|n−1, or there is an odd
prime p|n, p≡ 2 (mod 3), so as p+1|n+1 since n is a Lucas-Carmichael number, 3|n+1.
Either way, we reach a contradiction. So, gcd(n,6) = 1.

Furthermore, we cannot have p,q|n, p ≡ 1 (mod 4),q ≡ 3 (mod 4)— p−1|n−1, so
4|n−1, but q+1|n+1, so 4|n+1, a contradiction. Similarly, we cannot have p,q|n, p≡ 1
(mod 3),q≡ 2 (mod 3) as p−1|n−1 =⇒ 3|n−1, and q+1|n+1 =⇒ 3|n+1. So, as
any prime dividing n must be ≡ 1,3 (mod 4), and ≡ 1,2 (mod 3), we get that all primes
dividing n are equivalent mod 12 from the Chinese Remainder Theorem.

Now, if n is both a Carmichael and a Lucas-Carmichael number, when
(

D
n

)
=−1,

then we have that lcm(p1−1, . . . , pm−1)|n−1 and lcm(p1+1, . . . , pm+1)|n+1. Further-
more, by definition

lcm(p1−1, . . . , pm−1)|(p1−1) · · ·(pm−1)

and
lcm(p1 +1, . . . , pm +1)|(p1 +1) · · ·(pm +1).

14



So both
(p1−1) · · ·(pm−1)

lcm(p1−1, . . . , pm−1)
and

(p1 +1) · · ·(pm +1)
lcm(p1 +1, . . . , pm +1)

are integers—these numbers measure of much “overlap” there is between the different pi−
1s and pi + 1s respectively. The smaller these numbers are, the “stronger” the conditions
lcm(p1− 1, . . . , pm− 1)|n− 1 and lcm(p1 + 1, . . . , pm + 1)|n+ 1 are, as more primes are
required to divide n−1 or n+1.

3.2 Beginning to Generalize

We start developing techniques to generalize the results of Theorem 6 by examining the
case where n has five prime factors, n ≡ 11 mod 12 (by lemma 8, these two conditions

imply that for every prime p|n, p ≡ 11 mod 12), and
(p1−1) · · ·(p5−1)

lcm(p1−1, . . . , p5−1)
= 16. The

last condition comes from the fact that 24 is the minimum possible value for the ratio—
as pi ≡ 11 mod 12, 2 divides pi− 1 exactly once for all pi, so 2 divides the numerator
five times and the denominator once. So, the ratio must be a (positive integer) multiple of
24 = 16.

In the special case we are looking at, we thus have that
(p1−1) · · ·(p5−1)

16
|n−1. So

without loss of generality, there is some integer r such that
(p1−1) · · ·(p5−1)

16
(16+ r) =

n−1. As (p1−1) · · ·(p5−1)< n−1, r must even be positive. Now let sa,b denote the ath
elementary symmetric polynomial in b variables. (For example, s1,b(x1, . . . ,xb) = ∑

1≤i≤b
xi,

s2,b(x1, . . . ,xb)= ∑
1≤i< j≤b

xix j, and sb,b = x1 · · ·xb.) Then we can express (p1−1) · · ·(p5−1)

as s5,5−s4,5+s3,5−s2,5+s1,5−1, and n−1 as s5,5−1, where the argument for each of the

symmetric functions is (p1, p2, p3, p4, p5). So, substituting into
(p1−1) · · ·(p5−1)

16
(16+

r) = n−1 and rearranging, we have have that r(s5,5−s4,5+s3,5−s2,5+s1,5−1)−16(s4,5−
s3,5 + s2,5− s1,5) = 0. This motivates defining the function fr(x1,x2,x3,x4,x5) = r(s5,5−
s4,5+ s3,5− s2,5+ s1,5−1)−16(s4,5− s3,5+ s2,5− s1,5) where here, each of the elementary
symmetric polynomials has (x1,x2,x3,x4,x5) as its argument. We can now employ calculus
to show that fr has no positive integer roots where for all i, pi ≡ 11 mod 12, thus showing
that there are no numbers that are both Carmichael and Lucas-Carmichael with the specific
properties mentioned earlier.

Lemma. Consider a point in R5 given by q = (q1,q2,q3,q4,q5), where q1 < q2 < q3 <

q4 < q5. Then if f ,
∂ fr

∂x5
,

∂ 2 fr

∂x4∂x5
,

∂ 3 fr

∂x3∂x4∂x5
,

∂ 4 fr

∂x2∂x3∂x4∂x5
are all positive at q, then at
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any point (q′1,q
′
2,q
′
3,q
′
4,q
′
5) where for all i, qi < q′i, f is also positive.

Proof. It is a well known fact that, for a,b > 0,
∂ sa,b

∂xb
= sa−1,b−1, where s0,b = 1 for

any b. Repeatably applying this rule with the linearity of the derivative, we get that
∂ 5 fr

∂x1∂x2∂x3∂x4∂x5
= r. In particular, this function is always positive. Now,

∂ 4 fr

∂x2∂x3∂x4∂x5
is only a function of x1, so if its positive at q1, then its positive at any y1 > q1 since its deriva-

tive is always positive. So
∂ 3 fr

∂x3∂x4∂x5
is positive at any pair (y1,y2) if there is a permutation

π with q1 < yπ(1),q2 < yπ(2), since permuting the order of the arguments does not change
the value of the function (as the function is a polynomial in terms of elementary symmetric
polynomials and is thus symmetric), and the derivative is positive for the relevant values.
Repeating this process, we find that when choosing any point (y1,y2,y3,y4,y5)∈R5, where
some permutation π of the yis has qi < yπ(i), f is positive at that point.

Using the lemma, we then verify the required conditions at (63,75,87,99,111) for any
positive integer r (one can easily show that increasing r only increases the function). So, as
the five prime factors in a Carmichael number that is also a Lucas-Carmichael number must
be unique, and differ by at least 12, we can rule out any numbers whose least prime factor
is greater than 63, since fr on the five prime factors cannot be 0. Now, since we are only
looking at the case that is 11 mod 12, note that the smallest prime factor must then either
be 11,23,47, or 59. Checking around (25,37,49,61,73), for r ≥ 2, we find that the lemma
is applicable. So for 47 and 59, if fr has a root, we must have r = 1. Now, for 59, check
that the lemma is applicable at (59,83,107,119,131), so for any possible set of five primes,
f1 is too large if the second smallest prime is not 71. Then use (59,71,107,119,131) to
force the third smallest prime to be 83. Then use (59,71,83,119,131) to force there to
be 107. Finally its easy to check that for any prime greater than 119, f1 has no zero.
But we can explicitly check f1(59,71,83,107,119) to see that it is not 0. So there is no
composite satisfying the required properties with least factor 59. One can use a similar
series of tests to show that there are no numbers with the desired properties with least
prime factor of 11,23, or 47, with the caveat that for 11 and 23, one first shows that fr is
negative if r≤ 2,1 respectively, and always positive if r≥ 4,3 respectively. Thus, there are

no n ≡ 11 mod 12, where
(p1−1) · · ·(p5−1)

lcm(p1−1, . . . , p5−1)
= 16, which are both Carmichael and

Lucas-Carmichael numbers.
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4 Future Plans

Now that we have begun to develop techniques for showing the nonexistence of composites
that are both Carmichael and Lucas-Carmichael numbers, these techniques could be gen-
eralized to show that there are no numbers that are both Carmichael and Lucas-Carmichael
numbers. In particular, we conjecture that there is an explicit bound for the two ratios
(p1−1) · · ·(pm−1)

lcm(p1−1, . . . , pm−1)
and

(p1 +1) · · ·(pm +1)
lcm(p1 +1, . . . , pm +1)

, and are currently working to find

such a bound. Then, this would enable us to use a more general form of the techniques
from Section 3 to show that there cannot be numbers that are both Carmichael and Lucas-
Carmichael numbers in general. Furthermore, the Baillie-PSW test is a well known prob-
abilistic primality test that derives its strength from the independence of the Miller-Rabin
and Lucas tests. However, as there are no known composites that pass the test, there is not
much insight into how to effectively turn it into a deterministic test (unfortunately, heuris-
tics suggest that some composites do pass the test). Our results could be used to develop
a modified form of the Baillie-PSW algorithm where the composites that pass the test are
easily characterized, opening the way for a faster provably deterministic primality testing
algorithm. After all, the Miller-Rabin and Lucas Probable Prime tests are far faster than the
current fastest deterministic tests.
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