Better bounds on the rate of non-witnesses of Lucas pseudoprimes

David Amirault
Mentor David Corwin
PRIMES conference

May 16, 2015
Theorem (Fermat’s Little Theorem)

Let a be an integer and n prime with $n \nmid a$. Then

$$a^{n-1} \equiv 1 \pmod{n}.$$
Theorem (Fermat’s Little Theorem)

Let \(a \) be an integer and \(n \) prime with \(n \nmid a \). Then

\[
a^{n-1} \equiv 1 \pmod{n}.
\]

Theorem (Miller-Rabin)

Write \(n - 1 = 2^k q \) with \(q \) odd. One of the following is true:

\[
a^q \equiv 1 \pmod{n},
\]

or for some \(m \) with \(0 \leq m < k \),

\[
a^{2^m q} \equiv -1 \pmod{n}.
\]
Starting Small

Running a Test

Put $1517 - 1 = 2^2 \cdot 379$. Try $a = 2$:
Running a Test

Put $1517 - 1 = 2^2 \cdot 379$. Try $a = 2$:

- $a^{2^0 \cdot 379} \equiv 2^{379} \equiv 923 \not\equiv \pm 1 \pmod{1517}$.
- $a^{2^1 \cdot 379} \equiv 2^{758} \equiv 892 \not\equiv -1 \pmod{1517}$.

Thus, 1517 is not prime ($1517 = 37 \cdot 41$).
Starting Small

Running a Test

Put $1517 - 1 = 2^2 \cdot 379$. Try $a = 2$:

- $a^{2^0 \cdot 379} \equiv 2^{379} \equiv 923 \not\equiv \pm 1 \pmod{1517}$.
- $a^{2^1 \cdot 379} \equiv 2^{758} \equiv 892 \not\equiv -1 \pmod{1517}$.

Thus, 1517 is not prime ($1517 = 37 \cdot 41$).
Generalizing Integers

Definition

A *quadratic integer* is a solution to an equation of the form

\[x^2 - Px + Q = 0 \]

with \(P, Q \) integers.

\[\text{Theorem} \]

Let \(D = P^2 - 4Q \).

The set of all quadratic integers in the field \(\mathbb{Q}[\sqrt{D}] \) form a ring, denoted by \(\mathcal{O}_{\mathbb{Q}[\sqrt{D}]} \).
Generalizing Integers

Definition

A *quadratic integer* is a solution to an equation of the form

$$x^2 - Px + Q = 0$$

with P, Q integers.

Theorem

Let $D = P^2 - 4Q$. The set of all quadratic integers in the field $\mathbb{Q}[\sqrt{D}]$ form a ring, denoted by $\mathcal{O}_{\mathbb{Q}}[\sqrt{D}]$.
Generalizing Integers

Quadratic Integer Rings

- $D = -4$. The ring of quadratic integers $\mathcal{O}_{\mathbb{Q}[\sqrt{-4}]}$ is the Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$. Notice $\pm i$ satisfy $x^2 + 1 = 0$, for which $P^2 - 4Q = -4$.
Quadratic Integer Rings

- \(D = -4 \). The ring of quadratic integers \(\mathcal{O}_\mathbb{Q}[\sqrt{-4}] \) is the Gaussian integers, \(\mathbb{Z}[\sqrt{-1}] \). Notice \(\pm i \) satisfy \(x^2 + 1 = 0 \), for which \(P^2 - 4Q = -4 \).

- \(D = -5 \). Here, \(\mathcal{O}_\mathbb{Q}[\sqrt{-5}] \cong \mathbb{Z}[\sqrt{-5}] \).
Generalizing Integers

Quadratic Integer Rings

- $D = -4$. The ring of quadratic integers $\mathcal{O}_{\mathbb{Q}[\sqrt{-4}]}$ is the Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$. Notice $\pm i$ satisfy $x^2 + 1 = 0$, for which $P^2 - 4Q = -4$.
- $D = -5$. Here, $\mathcal{O}_{\mathbb{Q}[\sqrt{-5}]} \cong \mathbb{Z}[\sqrt{-5}]$.
- $D = 5$. In this real case, $\mathcal{O}_{\mathbb{Q}[\sqrt{5}]} \cong \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.

David Amirault
Lucas pseudoprimes
May 16, 2015
Theorem

Let P, Q be integers such that $D = P^2 - 4Q \neq 0$. Let τ be the quotient of the two roots of $x^2 - Px + Q$. For n an odd prime not dividing QD, put $n - (D/n) = 2^k q$ with q odd. One of the following is true:

\[\tau^q \equiv 1 \pmod{n}, \]

or for some m with $0 \leq m < k$,

\[\tau^{2^m q} \equiv -1 \pmod{n}. \]
Lucas Primality Test

Definition

If \(n \) is a composite integer for which \(\tau^q \equiv 1 \pmod{n} \) or \(\tau^{2^m q} \equiv -1 \pmod{n} \) with \(0 \leq m < k \), then we call \(n \) a strong Lucas pseudoprime, or slpsp, with respect to \(P \) and \(Q \).
Definition

If \(n \) is a composite integer for which \(\tau^q \equiv 1 \pmod{n} \) or \(\tau^{2^m q} \equiv -1 \pmod{n} \) with \(0 \leq m < k \), then we call \(n \) a strong Lucas pseudoprime, or slp, with respect to \(P \) and \(Q \).

Theorem (Arnault)

Define

\[
SL(D, n) = \# \left\{ (P, Q) \mid 0 \leq P, Q < n, \quad P^2 - 4Q \equiv D \pmod{n}, \quad \gcd(QD, n) = 1, \quad n \text{ is slp}(P, Q) \right\}
\]

\[SL(D, n) \leq \frac{4}{15} n \text{ unless } n = 9 \text{ or } n \text{ is of the form } (2^{k_1}q_1 - 1)(2^{k_1}q_1 + 1), \text{ a product of twin primes with } q_1 \text{ odd.}\]
Theorem

\[SL(D, n) \leq \frac{1}{6} n \text{ unless one of the following is true:} \]

- \(n = 9 \) or \(n = 25 \),
- \(n = (2^k_1 q_1 - 1)(2^k_1 q_1 + 1) \),
- \(n = (2^k_1 q_1 + \varepsilon_1)(2^k_1 q_2 + \varepsilon_2)(2^k_1 q_3 + \varepsilon_3) \),

where \(\varepsilon_i \) is determined by the Jacobi symbol \(\left(\frac{D}{p_i} \right) \) such that \(p_i \) is a prime factor of \(n \).
Theorem

\(SL(D, n) \leq \frac{1}{6} n \) unless one of the following is true:

- \(n = 9 \) or \(n = 25 \),
- \(n = (2^{k_1} q_1 - 1)(2^{k_1} q_1 + 1) \),
- \(n = (2^{k_1} q_1 + \varepsilon_1)(2^{k_1+1} q_1 + \varepsilon_2) \),
- \(n = (2^{k_1} q_1 + \varepsilon_1)(2^{k_1} q_2 + \varepsilon_2)(2^{k_1} q_3 + \varepsilon_3) \), \(q_1, q_2, q_3 | q \),
Theorem

\(SL(D, n) \leq \frac{1}{6}n \) unless one of the following is true:

- \(n = 9 \) or \(n = 25 \),
- \(n = (2^{k_1} q_1 - 1)(2^{k_1} q_1 + 1) \),
- \(n = (2^{k_1} q_1 + \varepsilon_1)(2^{k_{1+1}} q_1 + \varepsilon_2) \),
- \(n = (2^{k_1} q_1 + \varepsilon_1)(2^{k_1} q_2 + \varepsilon_2)(2^{k_1} q_3 + \varepsilon_3) \), \(q_1, q_2, q_3 | q \),

where \(\varepsilon_i \) is determined by the Jacobi symbol \((D/p_i) \) such that \(p_i \) is a prime factor of \(n \).
Suppose we wish to determine that n is prime to a probability of $1 - 2^{-128}$.
Suppose we wish to determine that n is prime to a probability of $1 - 2^{-128}$.

- $\log_{4/15}(2^{-128}) \approx 67$.
- $\log_{1/6}(2^{-128}) \approx 50$.

17 fewer trials are required using the improved bound.
Suppose we wish to determine that \(n \) is prime to a probability of
\(1 - 2^{-128} \).

- \(\log_{4/15}(2^{-128}) \approx 67. \)
- \(\log_{1/6}(2^{-128}) \approx 50. \)

17 fewer trials are required using the improved bound.
Solving Exceptions

Quiz!
\[\sqrt{961} = \]
Quiz!

\[\sqrt{961} = 31. \]
Quiz!

\[\sqrt{961} = 31. \]

Let \(x_0 \) be a guess of a root of the function \(f \). A sequence of better approximations \(x_n \) is defined by

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}. \]
Newton’s Method

Consider the case \(n = (2^{k_1} q_1 - 1)(2^{k_1} q_1 + 1) \). Does 2627 factor in this form?

\[
\begin{align*}
\text{Let } x &= 2^{k_1} q_1, \\
2627 &= (x-1)(x+1) = x^2 - 1, \\
x^2 - 2628 &= 0. \\
\end{align*}
\]

\[
\begin{align*}
x_0 &= 40, \\
x_1 &= x_0 - \frac{x_0^2 - 2628}{2x_0} = 52.85, \\
x_2 &= x_1 - \frac{x_1^2 - 2628}{2x_1} = 51.26403, \\
\end{align*}
\]

\[\sqrt{2628} = 51.26402.\]
Newton’s Method

Consider the case \(n = (2^{k_1} q_1 - 1)(2^{k_1} q_1 + 1) \). Does 2627 factor in this form?
Write \(x = 2^{k_1} q_1 \), so \(2627 = (x - 1)(x + 1) = x^2 - 1 \) and \(x^2 - 2628 = 0 \).
Solving Exceptions

Newton’s Method

Consider the case \(n = (2^{k_1}q_1 - 1)(2^{k_1}q_1 + 1) \). Does 2627 factor in this form?

Write \(x = 2^{k_1}q_1 \), so 2627 = \((x - 1)(x + 1) = x^2 - 1 \) and \(x^2 - 2628 = 0 \).

- \(x_0 = 40 \).
- \(x_1 = 40 - \frac{40^2 - 2628}{2 \cdot 40} = 52.85 \).
- \(x_2 = x_1 - \frac{x_1^2 - 2628}{2x_1} = 51.28782 \).
- \(x_3 = x_2 - \frac{x_2^2 - 2628}{2x_2} = 51.26403 \).
Solving Exceptions

Newton’s Method

Consider the case \(n = (2^{k_1} q_1 - 1)(2^{k_1} q_1 + 1) \). Does 2627 factor in this form?

Write \(x = 2^{k_1} q_1 \), so \(2627 = (x - 1)(x + 1) = x^2 - 1 \) and \(x^2 - 2628 = 0 \).

- \(x_0 = 40 \).
- \(x_1 = 40 - \frac{40^2 - 2628}{2 \cdot 40} = 52.85 \).
- \(x_2 = x_1 - \frac{x_1^2 - 2628}{2x_1} = 51.28782 \).
- \(x_3 = x_2 - \frac{x_2^2 - 2628}{2x_2} = 51.26403 \).

\(\sqrt{2628} = 51.26402 \).
Importance

- Primality testing is highly applicable to cryptography.
Importance

- Primality testing is highly applicable to cryptography.
- Many popular cryptosystems, including RSA, require numerous pairs of large prime numbers for key generation.
Primality testing is highly applicable to cryptography.

Many popular cryptosystems, including RSA, require numerous pairs of large prime numbers for key generation.

Factoring a large semiprime takes more time than multiplying its two prime factors.
Future Research

- The Baillie-PSW primality test combines a Miller-Rabin test using \(a = 2 \) with a strong Lucas primality test.
The Baillie-PSW primality test combines a Miller-Rabin test using $a = 2$ with a strong Lucas primality test.

No known composite passes this test.
The Baillie-PSW primality test combines a Miller-Rabin test using $a = 2$ with a strong Lucas primality test.
No known composite passes this test.
What must be true of such n?
Huge Thanks To:

- David Corwin, my mentor
- Stefan Wehmeier, for suggesting the project
- Dr. Tanya Khovanova, head mentor
- MIT PRIMES
- And of course, my parents for providing transportation and support throughout the project!