Equal Compositions of Rational Functions

Kenz Kallal, Matthew Lipman, Felix Wang
Mentors: Thao Do and Professor Michael Zieve

Fifth Annual MIT-PRIMES Conference
May 17, 2015
The Problems

A rational function is a ratio of two polynomials.

<table>
<thead>
<tr>
<th>Problem 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find all rational functions $a, c \in \mathbb{Q}(X)$ such that $a(Y) = c(Z)$ has infinitely many solutions for $Y, Z \in \mathbb{Q}$.</td>
</tr>
</tbody>
</table>

One source of solutions to Problem 1 comes from the following problem when the functions have rational coefficients:

<table>
<thead>
<tr>
<th>Problem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find all rational functions $a, b, c, d \in \mathbb{C}(X)$ such that $a(b(X)) = c(d(X))$.</td>
</tr>
</tbody>
</table>
SOME EXAMPLES:

\[
X^m \circ X^n = X^n \circ X^m = X^{mn}
\]
SOME EXAMPLES:

- $X^m \circ X^n = X^n \circ X^m = X^{mn}$

- For an arbitrary rational function $h(X)$,
 $X^2 \circ Xh(X^2) = Xh(X)^2 \circ X^2 = X^2h(X^2)^2$.
RESULT

Theorem

If the numerator of $a(X) - c(Y)$ is irreducible, then one of the following must hold:

- $\deg a, \deg c \leq 250$
Result

Theorem

If the numerator of $a(X) - c(Y)$ is irreducible, then one of the following must hold:

- $\deg a, \deg c \leq 250$
- at least one of a and c are "nice" functions (e.g. X^m, Chebyshev, functions coming from elliptic curves)
RESULT

Theorem

If the numerator of $a(X) - c(Y)$ is irreducible, then one of the following must hold:

- $\deg a, \deg c \leq 250$
- at least one of a and c are “nice” functions (e.g. X^m, Chebyshev, functions coming from elliptic curves)
- Up to change in variables,

$$a = X^i(X - 1)^j, c = rX^i(X - 1)^j.$$
OUTLINE OF OUR STRATEGY

Rational function problems

Ramification multisets of a and c

Rational function problems

Faltings’, Riemann-Hurwitz Formula

Ramification Multiset Conditions

Hurwitz’s Theorem, reducibility checking

Combinatorics, computer programs
RAMIFICATION

Definition (Ramification)

- The ramification index $e_f(P)$ of f at a point P is the multiplicity of P as a root of $f(X) - f(P)$.
Ramification

Definition (Ramification)

- The ramification index $e_f(P)$ of f at a point P is the multiplicity of P as a root of $f(X) - f(P)$.

- The ramification multiset $E_f(Q)$ is defined as the collection of all ramification indices $e_f(P)$ for points P such that $f(P) = Q$.

Ramification

Definition (Ramification)

- The ramification index \(e_f(P) \) of \(f \) at a point \(P \) is the multiplicity of \(P \) as a root of \(f(X) - f(P) \).

- The ramification multiset \(E_f(Q) \) is defined as the collection of all ramification indices \(e_f(P) \) for points \(P \) such that \(f(P) = Q \).

- Example: \(f(X) = X^3 + X^4 = X^3(X + 1) \) has \(E_f(0) = [3, 1] \).
MULTISET PROBLEM

The multiset problem

If the numerator of $a(X) - c(Y)$ is irreducible,

N.1. $\sum_{i \in A_k} i = m$ and $\sum_{i \in C_k} i = n$ for each k (m and n are the degrees of a and c and A_k and C_k are ramification multisets of a and c).

N.2. $\sum_{k=1}^{r} (m - |A_k|) = 2m - 2$ and $\sum_{k=1}^{r} (n - |C_k|) = 2n - 2$.

N.3. $\sum_{k=1}^{r} \sum_{i \in A_k} \sum_{j \in C_k} (i - \gcd(i,j)) \in \{2m - 2, 2m\}$.
SOLVING THE MULTISET PROBLEM

Let m, n denote the degrees of a and c. We will assume that $n \geq m$. We split into 3 cases:

1. $n \geq m \geq 250$.
SOLVING THE MULTISET PROBLEM

Let m, n denote the degrees of a and c. We will assume that $n \geq m$. We split into 3 cases:

1. $n \geq m \geq 250$.

2. $m < 250$ and $n \geq 10 \cdot m$.
SOLVING THE MULTISET PROBLEM

Let m, n denote the degrees of a and c. We will assume that $n \geq m$. We split into 3 cases:

1. $n \geq m \geq 250$.
2. $m < 250$ and $n \geq 10 \cdot m$.
3. $m < 250$ and $n < 10 \cdot m$.
SOLVING THE MULTISET PROBLEM

- Locally: Any multiset A_i must be almost all copies of the same “dominant number,” k_i.
SOLVING THE MULTISET PROBLEM

- Locally: Any multiset A_i must be almost all copies of the same “dominant number,” k_i.
- Globally: We find all the possibilities for $\{k_i\}$.
SOLVING THE MULTISET PROBLEM

- Locally: Any multiset A_i must be almost all copies of the same “dominant number,” k_i.
- Globally: We find all the possibilities for $\{k_i\}$.
- For each possibility of $\{k_i\}$, we solve for $\{A_i\}$.
Results

Proposition

If rational functions a and c are solutions to the multiset problem, then at least one of a and c satisfies

$$\sum_{k=1}^r \left(1 - \frac{1}{\text{lcm}(F_k)}\right) \leq 2$$

where $\{F_k\}$ is the list of all ramification multisets of that function.
\[\sum_{i=1}^{r} \left(1 - \frac{1}{a_i} \right) \leq 2 \]

where \(a_i \geq 2 \).
\[\sum_{i=1}^{r} \left(1 - \frac{1}{a_i} \right) \leq 2 \]

where \(a_i \geq 2 \).

1. \((2, 2, 2, 2)\)
\[\sum_{i=1}^{r} \left(1 - \frac{1}{a_i} \right) \leq 2 \]

where \(a_i \geq 2 \).

1. \((2, 2, 2, 2)\)
2. \((2, 3, 6)\)
3. \((2, 3, 5)\)
4. \((2, 3, 4)\)
5. \((2, 4, 4)\)
6. \((3, 3, 3)\)
7. \((2, 2, u)\) where \(u \) is any integer
\[\sum_{i=1}^{r} \left(1 - \frac{1}{a_i} \right) \leq 2 \]

where \(a_i \geq 2 \).

1. \((2, 2, 2, 2)\)
2. \((2, 3, 6)\)
3. \((2, 3, 5)\)
4. \((2, 3, 4)\)
5. \((2, 4, 4)\)
6. \((3, 3, 3)\)
7. \((2, 2, u)\) where \(u \) is any integer
8. \((u, v)\) where \(u \) and \(v \) are any integers
\[
\sum_{i=1}^{r} \left(1 - \frac{1}{a_i}\right) \leq 2
\]

where \(a_i \geq 2\).

1. \((2, 2, 2, 2)\)
2. \((2, 3, 6)\)
3. \((2, 3, 5)\)
4. \((2, 3, 4)\)
5. \((2, 4, 4)\)
6. \((3, 3, 3)\)
7. \((2, 2, u)\) where \(u\) is any integer
8. \((u,v)\) where \(u\) and \(v\) are any integers
9. \((u)\) where \(u\) is any integer
SOLVING FOR THE A_i

1. $A_1 \cup A_2 \cup A_3 \cup A_4 = [1^4, 2^{2m-2}]$.

8. $A_1 = A_2 = [m]$.
Solving for the C_i

For example, suppose that $A_1 = A_2 = [m]$. This corresponds to $a(X) = X^m$.

1. $c(X) = h(X)^m X^k$ for k relatively prime to m,
2. $m = 6$ and $c(X) = h(X)^6 X^3 (X - 1)^{\pm 2}$,
3. $m = 4$ and $c(X) = h(X)^4 X^2 (X - 1)^{\pm 1}$,
4. $m = 3$ and $c(X) = h(X)^3 X^{\pm 1} (X - 1)^{\pm 1}$ (with the \pm independent),
5. $m = 2$ and $c(X)) = h(X)^2 X (X - 1) (X - X_0)$ (with $0 \neq x_0 \neq 1$),

where $h(X)$ is any rational function.
BACK TO THE ORIGINAL PROBLEMS

- checking that functions a and c exist.
Back to the original problems

- checking that functions a and c exist.
- determining whether $a(X) - c(Y)$ is irreducible
EXISTENCE OF RATIONAL FUNCTIONS

Hurwitz’s Theorem

A finite collection of k multisets A_i of sum n with corresponds to a rational function if and only if both of the following are true:

\[\sum_{i} \leq k \left(n - |A_i| \right) = 2n - 2. \]

There exist permutations $g_1, \ldots, g_k \in S_n$ such that g_i has cycle structure A_i and the product of the permutations is the identity. Furthermore, the group generated by g_1, \ldots, g_k must be transitive.
EXISTENCE OF RATIONAL FUNCTIONS

Hurwitz’s Theorem

A finite collection of k multisets A_i of sum n with corresponds to a rational function if and only if both of the following are true:

- $\sum_{i \leq k} (n - |A_i|) = 2n - 2$.
- There exist permutations $g_1, \ldots, g_k \in S_n$ such that g_i has cycle structure A_i and the product of the permutations is the identity. Furthermore, the group generated by g_1, \ldots, g_k must be transitive.
Testing for irreducibility

Extra Condition

For all $i, j \leq r$, $A_i \cup A_j \cup C_i \cup C_j$ has greatest common divisor equal to one.
Testing for Irreducibility

Extra Condition

For all $i, j \leq r$, $A_i \cup A_j \cup C_i \cup C_j$ has greatest common divisor equal to one.

Theorem (Reducibility test)

If $\sum_{k=1}^{r} \sum_{i \in A_k} \sum_{j \in C_k} (i - \gcd(i, j)) < 2m - 2$, any rationals $a(X)$ with multisets A_k and $c(Y)$ with multisets C_k will have $a(X) - c(Y)$ reducible.

This is similar to one of our previous conditions, so we usually keep c the same and vary a to show that c is decomposable so that $a(X) - c(Y)$ is reducible.
Future research

- Finish finding a and c for the case in which a’s multisets have small lcm.
Future research

- Finish finding a and c for the case in which a’s multisets have small lcm.
- Continue to lower the bounds for 250 and 10 above.
FUTURE RESEARCH

- Finish finding \(a\) and \(c\) for the case in which \(a\)'s multisets have small lcm.

- Continue to lower the bounds for 250 and 10 above.

- The case in which \(a(X) - c(Y)\) is not irreducible.
ACKNOWLEDGEMENTS

▶ Professor Michael Zieve (UMichigan)
▶ Our mentor Thao Do
▶ MIT PRIMES and Dr. Tanya Khovanova
▶ Our parents