Analysis of Boolean Functions

Kavish Gandhi and Noah Golowich

Mentor: Yufei Zhao

5th Annual MIT-PRIMES Conference

“Analysis of Boolean Functions”, Ryan O’Donnell

May 16, 2015
Boolean Functions

\[f : \{-1, 1\}^n \rightarrow \{-1, 1\}. \]
Boolean Functions

\[f : \{-1, 1\}^n \rightarrow \{-1, 1\}. \]

Applications of Boolean functions:
- Circuit design.
- Learning theory.
Boolean Functions

\[f : \{-1, 1\}^n \rightarrow \{-1, 1\}. \]

Applications of Boolean functions:

- Circuit design.
- Learning theory.
- Voting rule for election with \(n \) voters and 2 candidates \(\{-1, 1\} \); social choice theory.
Convention: $x \in \{-1, 1\}^n$; x_1, x_2, \ldots, x_n are coordinates of x.

Majority function: $\text{Maj}_n(x) = \text{sgn}(x_1 + x_2 + \cdots + x_n)$.

- $(1, 1, 1)$
- $(1, -1, -1)$
- $(-1, 1, -1)$
- $(-1, -1, 1)$

f is linear threshold function (weighted majority) if $f(x) = \text{sgn}(a_0 + a_1 x_1 + \cdots + a_n x_n)$.

Kavish Gandhi and Noah Golowich

Boolean functions
Majority, Linear Threshold Functions

- **Convention:** $x \in \{-1, 1\}^n$; x_1, x_2, \ldots, x_n are coordinates of x.
- **Majority function:** $\text{Maj}_n(x) = \text{sgn}(x_1 + x_2 + \cdots + x_n)$.

![Diagram of Majority Function](image)
Majority, Linear Threshold Functions

- Convention: $x \in \{-1, 1\}^n$; x_1, x_2, \ldots, x_n are coordinates of x.
- **Majority function**: $\text{Maj}_n(x) = \text{sgn}(x_1 + x_2 + \cdots + x_n)$.

- f is **linear threshold function** (weighted majority) if

$$
f(x) = \text{sgn}(a_0 + a_1 x_1 + \cdots + a_n x_n).
$$
AND, OR, Tribes

- $-1 \leftrightarrow \text{True}, 1 \leftrightarrow \text{False}$.
- $\text{AND}_n(x) = x_1 \land x_2 \land \cdots \land x_n$.
- $\text{OR}_n(x) = x_1 \lor x_2 \lor \cdots \lor x_n$.

$\text{Tribe}_{w,s}(x_1, \ldots, x_{sw}) = (x_1 \land \cdots \land x_w) \lor \cdots \lor (x_{(s-1)w} \land \cdots \land x_{sw})$.

$n = ws$ is the number of voters. s tribes, w people per tribe.
AND, OR, Tribes

- \(-1 \leftrightarrow \text{True}, 1 \leftrightarrow \text{False} \).
- \(\text{AND}_n(x) = x_1 \land x_2 \land \cdots \land x_n \).
- \(\text{OR}_n(x) = x_1 \lor x_2 \lor \cdots \lor x_n \).
- \(\text{Tribes}_{w,s}(x_1, \ldots, x_{sw}) = (x_1 \land \cdots \land x_w) \lor \cdots \lor (x_{(s-1)w} \land \cdots \land x_{sw}) \).
 - \(n = ws \) is number of voters.
 - \(s \) tribes, \(w \) people per tribe.
Influence

Definition

Impartial culture assumption: n votes independent, uniformly random:
$x \sim \{-1, 1\}^n$.

Influence at coordinate i, $\text{Inf}_i[f]$: prob. that voter i changes outcome.

Influence of f:
$I[f] = \sum_{i=1}^{n} \text{Inf}_i[f]$.

Example:
$I[\text{Maj}_3(x)] = \frac{3}{2}$.
Influence

Definition

Impartial culture assumption: n votes independent, uniformly random: $\mathbf{x} \sim \{-1, 1\}^n$.

- **Influence** at coordinate i, Inf_i: prob. that voter i changes outcome.
- **Influence of** f: $\mathbf{I}[f] = \sum_{i=1}^n \text{Inf}_i[f]$.
- **Example:** $\mathbf{I}[\text{Maj}_3(x)] = \frac{3}{2}$.

Example:

\[
\begin{pmatrix}
1, 1, 1 \\
-1, -1, 1 \\
-1, -1, -1
\end{pmatrix}
\]
Nassau County (NY) voting system:

\[f(x) = \text{sgn}(-58 + 31x_1 + 31x_2 + 28x_3 + 21x_4 + 2x_5 + 2x_6). \]
Nassau County (NY) voting system:

\[f(x) = \text{sgn}(-58 + 31x_1 + 31x_2 + 28x_3 + 21x_4 + 2x_5 + 2x_6). \]

Some towns have 0 influence!
Nassau County (NY) voting system:

\[f(x) = \text{sgn}(-58 + 31x_1 + 31x_2 + 28x_3 + 21x_4 + 2x_5 + 2x_6). \]

Some towns have 0 influence!

Lawyer Banzhaf sued Nassau County board (1965).
Influences of Tribes, Majority

\[f \text{ monotone: } x \leq y \text{ coordinate-wise } \Rightarrow f(x) \leq f(y). \]

Theorem

\[I[f] \leq I[M_{\text{maj}}] = \sqrt{2/\pi} \sqrt{n} + O(n^{-1/2}) \text{ for all monotone } f. \]
Influences of Tribes, Majority

\[f \text{ monotone: } x \leq y \text{ coordinate-wise } \Rightarrow f(x) \leq f(y). \]

Theorem

\[I[f] \leq I[Maj_n] = \frac{\sqrt{2}}{\pi} \sqrt{n} + O(n^{-1/2}) \text{ for all monotone } f. \]

- For \(n = ws \), define \(\text{Tribes}_n = \text{Tribes}_{w,s} \) with \(w, s \) such that \(\text{Tribes}_{w,s} \) is essentially unbiased.
- \(\text{Inf}_i[\text{Tribes}_n] = \frac{\ln n}{n} \cdot (1 + o(1)). \)
Influences of Tribes, Majority

\(f \) monotone: \(x \leq y \) coordinate-wise \(\Rightarrow f(x) \leq f(y) \).

Theorem

\[
I[f] \leq I[Maj_n] = \frac{\sqrt{2}}{\sqrt{\pi}} \sqrt{n} + O(n^{-1/2}) \text{ for all monotone } f.
\]

- For \(n = ws \), define \(\text{Tribes}_n = \text{Tribes}_{w,s} \) with \(w, s \) such that \(\text{Tribes}_{w,s} \) is essentially unbiased.
- \(\text{Inf}_i[\text{Tribes}_n] = \frac{\ln n}{n} \cdot (1 + o(1)) \).

Theorem (Kahn, Kalai, Linial)

\[
\text{MaxInf}[f] \geq \text{Var}[f] \cdot \Omega\left(\frac{\log n}{n}\right).
\]
Influences of Tribes, Majority

\(f \) monotone: \(x \leq y \) coordinate-wise \(\Rightarrow f(x) \leq f(y) \).

Theorem

\[
I[f] \leq I[\text{Maj}_n] = \sqrt{\frac{2}{\pi}} \sqrt{n} + O(n^{-1/2}) \text{ for all monotone } f.
\]

- For \(n = ws \), define \(\text{Tribes}_n = \text{Tribes}_{w,s} \) with \(w, s \) such that \(\text{Tribes}_{w,s} \) is essentially unbiased.
- \(\text{Inf}_i[\text{Tribes}_n] = \frac{\ln n}{n} \cdot (1 + o(1)) \).

Theorem (Kahn, Kalai, Linial)

\[
\text{MaxInf}[f] \geq \text{Var}[f] \cdot \Omega\left(\frac{\log n}{n}\right).
\]

- Application: bribing voters.
Another important property of Boolean functions: noise stability.

Definition

For a fixed $x \in \{-1, 1\}^n$ and $\rho \in [0, 1]$, y is ρ-correlated with x if, for each coordinate i, $y_i = x_i$ with probability ρ and randomly chosen with probability $1 - \rho$.

Definition

For a Boolean function f and $\rho \in [0, 1]$, the noise stability of f at ρ is $\text{Stab}_\rho[f] = E[f(x)f(y)]$ for x uniformly random and y ρ-correlated with x.
Another important property of Boolean functions: noise stability.

Definition

For a fixed $x \in \{-1, 1\}^n$ and $\rho \in [0, 1]$, y is ρ-correlated with x if, for each coordinate i,

$$y_i = \begin{cases} x_i & \text{with probability } \rho \\ \text{randomly chosen} & \text{with probability } 1 - \rho \end{cases}.$$
Noise Stability

Another important property of Boolean functions: noise stability.

Definition

For a fixed \(x \in \{-1, 1\}^n \) and \(\rho \in [0, 1] \), \(y \) is \(\rho \)-correlated with \(x \) if, for each coordinate \(i \),

\[
y_i = \begin{cases}
 x_i & \text{with probability } \rho \\
 \text{randomly chosen} & \text{with probability } 1 - \rho
\end{cases}
\]

Definition

For a Boolean function \(f \) and \(\rho \in [0, 1] \), the noise stability of \(f \) at \(\rho \) is

\[
\text{Stab}_\rho[f] = E[f(x)f(y)].
\]

for \(x \) uniformly random and \(y \) \(\rho \)-correlated with \(x \).
Imagine:

Noise Stability: Voting Example
Imagine:

- Voting system represented by f.

Noise Stability: Voting Example
Imagine:

- Voting system represented by f.
- Some chance $\frac{1-\rho}{2}$ that the vote is misrecorded.
Imagine:

- Voting system represented by f.
- Some chance $\frac{1-\rho}{2}$ that the vote is misrecorded.
- Noise stability: measure of how much f is resistant to misrecorded votes.
The Noise Stability of Majority

Natural question: what is the noise stability of Majority?

Theorem
For any $\rho \in [0, 1]$, \[\lim_{n \to \infty} \text{Stab}_\rho [\text{Maj}_n] = 2\pi \arcsin \rho. \]

General idea of proof: use the multidimensional central limit theorem.

Theorem (Majority is Stablest)
Among Boolean functions that are unbiased and have only small influences, the Majority function has approximately the largest noise stability.
The Noise Stability of Majority

Natural question: what is the noise stability of Majority?

Theorem

For any $\rho \in [0, 1]$, $\lim_{n \to \infty} \text{Stab}_\rho[Maj_n] = \frac{2}{\pi} \arcsin \rho$.

General idea of proof: use the multidimensional central limit theorem.

Theorem (Majority is Stablest)

Among Boolean functions that are unbiased and have only small influences, the Majority function has approximately the largest noise stability.
Natural question: what is the noise stability of Majority?

Theorem

For any $\rho \in [0, 1]$, \(\lim_{n \to \infty} \text{Stab}_\rho[Maj_n] = \frac{2}{\pi} \arcsin \rho\).

General idea of proof: use the multidimensional central limit theorem.
The Noise Stability of Majority

Natural question: what is the noise stability of Majority?

Theorem

For any \(\rho \in [0, 1] \), \(\lim_{n \to \infty} \text{Stab}_\rho[Maj_n] = \frac{2}{\pi} \arcsin \rho. *\]

General idea of proof: use the multidimensional central limit theorem.

Theorem (Majority is Stablest)

Among Boolean functions that are unbiased and have only small influences, the Majority function has approximately the largest noise stability.
Noise stability also key in proving Arrow’s Theorem. In particular, consider:

Two candidate elections: most fair voting rule is Majority.

Three candidate elections: not clear how to conduct the election.

One possibility: conduct pairwise Condorcet elections, each of which is evaluated by some voting rule f. The Condorcet winner is the candidate that wins all his/her elections. May not always occur: might be some situations in which each candidate loses a pairwise election.

Goal: find a function in which this contradiction never occurs.
Arrow’s Theorem: The Idea

Noise stability also key in proving Arrow’s Theorem. In particular, consider:

- Two candidate elections: most fair voting rule is Majority.
Arrow’s Theorem: The Idea

Noise stability also key in proving Arrow’s Theorem. In particular, consider:

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
Noise stability also key in proving Arrow’s Theorem. In particular, consider:

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
- One possibility: conduct pairwise Condorcet elections, each of which is evaluated by some voting rule f.

Noise stability also key in proving Arrow’s Theorem. In particular, consider:

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
- One possibility: conduct pairwise Condorcet elections, each of which is evaluated by some voting rule f.
- The Condorcet winner is the candidate that wins all his/her elections.
Noise stability also key in proving Arrow’s Theorem. In particular, consider:

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
- One possibility: conduct pairwise Condorcet elections, each of which is evaluated by some voting rule \(f \).
- The Condorcet winner is the candidate that wins all his/her elections.
- May not always occur: might be some situations in which each candidate loses a pairwise election.
Noise stability also key in proving Arrow’s Theorem. In particular, consider:

- Two candidate elections: most fair voting rule is Majority.
- Three candidate elections: not clear how to conduct the election.
- One possibility: conduct pairwise Condorcet elections, each of which is evaluated by some voting rule f.
- The Condorcet winner is the candidate that wins all his/her elections.
- May not always occur: might be some situations in which each candidate loses a pairwise election.
- Goal: find a function in which this contradiction never occurs.
Example of contradiction: candidates A, B, C; voters x_1, x_2, x_3; voting rule is Majority function.
Example of contradiction: candidates A, B, C; voters x_1, x_2, and x_3; voting rule is Majority function.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A vs. B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>A vs. C</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B vs. C</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

A wins the pairwise election with B.
C wins the pairwise election with A.
B wins the pairwise election with C.
There is no Condorcet winner!
Example: Contradiction with f Majority

Example of contradiction: candidates A, B, C; voters x_1, x_2, and x_3; voting rule is Majority function.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A vs. B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>A vs. C</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B vs. C</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

- A wins the pairwise election with B.
- C wins the pairwise election with A.
- B wins the pairwise election with C.

There is no Condorcet winner!
Example: Contradiction with f Majority

Example of contradiction: candidates A, B, C; voters x_1, x_2, and x_3; voting rule is Majority function.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A vs. B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>A vs. C</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B vs. C</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

- A wins the pairwise election with B.
- C wins the pairwise election with A.
- B wins the pairwise election with C.
- There is no Condorcet winner!
Arrow’s Theorem: The Statement

Theorem (Arrow’s Theorem)

In an n-candidate Condorcet election, if there is always a Condorcet winner, then \(f(x) = \pm x_i \) *for some* \(i \) *(dictatorship).*
Theorem (Arrow's Theorem)

In an n-candidate Condorcet election, if there is always a Condorcet winner, then $f(x) = \pm x_i$ for some i (dictatorship).

The case $n = 3$ follows from the below result: connects it to stability.
Arrow’s Theorem: The Statement

Theorem (Arrow’s Theorem)

In an \(n \)-candidate Condorcet election, if there is always a Condorcet winner, then \(f(x) = \pm x_i \) for some \(i \) (dictatorship).

The case \(n = 3 \) follows from the below result: connects it to stability.

Theorem

In a 3-candidate Condorcet election, the probability of a Condorcet winner is exactly \(\frac{3}{4}(1 - \text{Stab}_{-1/3}[f]) \).
Arrow’s Theorem: The Statement

Theorem (Arrow's Theorem)

In an n-candidate Condorcet election, if there is always a Condorcet winner, then $f(x) = \pm x_i$ for some i (dictatorship).

The case $n = 3$ follows from the below result: connects it to stability.

Theorem

In a 3-candidate Condorcet election, the probability of a Condorcet winner is exactly $\frac{3}{4}(1 - \text{Stab}_{-1/3}[f])$.

Dictator: only function for which $\text{Stab}_{-1/3}[f] = -1/3 \Rightarrow \frac{3}{4}(1 - \text{Stab}_{-1/3}[f]) = 1$.
Peres’s Theorem

- Noise sensitivity of f at δ is *probability* that misrecorded votes *change* outcome:

$$
\text{NS}_\delta[f] = \frac{1}{2} - \frac{1}{2} \text{Stab}_{1-2\delta}[f].
$$

Theorem (Peres, 1999)

*For any LTF f, $\text{NS}_\delta[f] \leq O(\sqrt{\delta})$.***
Peres’s Theorem

- Noise sensitivity of f at δ is *probability* that misrecorded votes *change* outcome:

$$\text{NS}_\delta[f] = \frac{1}{2} - \frac{1}{2} \text{Stab}_{1-2\delta}[f].$$

Theorem (Peres, 1999)

For any LTF f, $\text{NS}_\delta[f] \leq O(\sqrt{\delta}).$

- $\lim_{n \to \infty} \text{NS}_\delta[\text{Maj}_n] = \frac{2}{\pi} \sqrt{\delta} + O(\delta^{3/2}).$
Applications of Peres’s theorem

Application: learning theory.

Corollary
An AND of 2 LTFs is learnable with error ϵ in time $n^{O(1/\epsilon^2)}$.

Open problem: extend Peres’s theorem to polynomial threshold functions: $\text{sgn}(p(x))$.
Applications of Peres's theorem

Application: learning theory.

Corollary

An AND of 2 LTFs is learnable with error ϵ in time $n^{O(1/\epsilon^2)}$.

Open problem: extend Peres's theorem to polynomial threshold functions: $\text{sgn}(p(x))$.
How to prove many of theorems: Fourier expansions, a representation of the function as a real, multilinear polynomial.

For example, \(\max_2(x_1, x_2) \), outputs the maximum of \(x_1 \) and \(x_2 \):

\[
\max_2(x_1, x_2) = \frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1 x_2.
\]
How to prove many of theorems: **Fourier expansions**, a representation of the function as a real, multilinear polynomial.

For example, \(\text{max}_2(x_1, x_2) \), outputs the maximum of \(x_1 \) and \(x_2 \):

\[
\text{max}_2(x_1, x_2) = \frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1x_2.
\]
For a given f: always exists a Fourier expansion. In particular:

Theorem

*Every Boolean function can be uniquely expressed as a multilinear polynomial, called its *Fourier expansion*,

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S)x^S,$$

where $x^S = \prod_{i \in S} x_i$.

Uniqueness of the Fourier Expansion
Uniqueness of the Fourier Expansion

For a given f: always exists a Fourier expansion. In particular:

Theorem

Every Boolean function can be uniquely expressed as a multilinear polynomial, called its Fourier expansion,

\[
 f(x) = \sum_{S \subseteq [n]} \hat{f}(S)x^S,
\]

where $x^S = \prod_{i \in S} x_i$.

Coefficients $\hat{f}(S)$: Fourier spectrum of f.

Parseval’s and Plancherel’s Theorems

Theorem (Plancherel)

For any Boolean functions \(f \) and \(g \),

\[
E[f(x)g(x)] = \sum_{S \subseteq [n]} \hat{f}(S)\hat{g}(S).
\]

Applies equally well to real-valued functions. Also yields corollary:
Parseval’s and Plancherel’s Theorems

Theorem (Plancherel)

For any Boolean functions f and g,

$$E[f(x)g(x)] = \sum_{S \subseteq [n]} \hat{f}(S)\hat{g}(S).$$

Applies equally well to real-valued functions. Also yields corollary:

Theorem (Parseval)

For any Boolean function f,

$$\sum_{S \subseteq [n]} \hat{f}(S)^2 = E[f(x)^2] = 1.$$
Fourier Expansions for Stability, Influence

Theorem

For any Boolean function f and $i \in [n]$,

$$\text{Inf}_i[f] = \sum_{S \ni i} \hat{f}(S)^2.$$
Theorem

For any Boolean function \(f \) and \(i \in [n] \),

\[
\text{Inf}_i[f] = \sum_{S \ni i} \hat{f}(S)^2.
\]

Theorem

For any Boolean function \(f \),

\[
\text{Stab}_\rho[f] = \sum_{S \subseteq [n]} \rho^{|S|} \hat{f}(S)^2.
\]
In summary:

Looked at Boolean functions in the context of social choice theory and voting. Fourier expansions of these functions along with noise stability and influence: allowed us to prove Arrow's Theorem and Peres's Theorem. Not just limited to voting theory: Learning theory. Circuit design.
In summary:
- Looked at Boolean functions in the context of social choice theory and voting.
In summary:

- Looked at Boolean functions in the context of social choice theory and voting.

- Fourier expansions of these functions along with noise stability and influence: allowed us to prove Arrow’s Theorem and Peres’s Theorem.
Summary and Conclusion

In summary:

- Looked at Boolean functions in the context of social choice theory and voting.
- Fourier expansions of these functions along with noise stability and influence: allowed us to prove Arrow’s Theorem and Peres’s Theorem.

Not just limited to voting theory:
In summary:

- Looked at Boolean functions in the context of social choice theory and voting.
- Fourier expansions of these functions along with noise stability and influence: allowed us to prove Arrow’s Theorem and Peres’s Theorem.

Not just limited to voting theory:

- Learning theory.
- Circuit design.
Acknowledgements

We would like to thank:

- Yufei Zhao
- MIT-PRIMES
- Our parents