Limitations in Approximating RIP

Alok Puranik
Mentor: Adrian Vladu

Fifth Annual PRIMES Conference, 2015
Outline

1. Background
 - The Problem
 - Motivation
 - Construction
 - Certification

2. Planted model
 - Planting eigenvalues
 - Analysis
 - Distinguishing random from planted model

3. Hardness of RIP
 - Proof of hardness
 - Reductions

4. Conjectures
RIP Definition

Definition
A vector x is k-sparse if it has at most k nonzero components

Definition
An matrix V satisfies the Restricted Isometry Property with order k and Restricted Isometry Constant δ if for every k-sparse vector x,

$$(1 - \delta)\|x\|^2 \leq \|Vx\|^2 \leq (1 + \delta)\|x\|^2$$
Alternate Definition

Definition

A matrix V is RIP-\(k, \delta\) if for every submatrix A created by selecting k columns from V and every k-dimensional vector x,\

\[(1 - \delta)\|x\|^2 \leq \|Ax\|^2 \leq (1 + \delta)\|x\|^2\]
Given a compressible (sparse) signal vector and a few measurements with noise, can we reconstruct the original signal accurately? (Candès and Tao)
Given a compressible (sparse) signal vector and a few measurements with noise, can we reconstruct the original signal accurately? (Candès and Tao)

If the sensing matrix satisfies RIP with $\delta = \sqrt{2} - 1$, we can recover the original
Random Construction

- Draw elements from certain sufficiently concentrated distributions e.g. $\mathcal{N}(0, \frac{1}{\sqrt{n}})$
- This (almost) always works in theory, but is non-deterministic (Baraniuk et al.)
- Deterministic algorithms currently don’t achieve the same bounds
Random construction succeeds with very high probability, but is not guaranteed

A certification algorithm to verify generated matrices would be useful
Naive Algorithm

- To verify RIP-k, δ for a matrix V, check every k-column submatrix A of V
- Inspect eigenvalues of $A^T A$
- Requires time exponential in k
Naive Algorithm

- To verify RIP-k, δ for a matrix V, check every k-column submatrix A of V
- Inspect eigenvalues of $A^T A$
- Requires time exponential in k
- Certification is actually NP-Hard
Adversarial Matrices

- We can alter the generation process to produce matrices that "look" random
- We try to fool a decision algorithm: try to plant a large eigenvalue and break RIP
Breaking RIP with Singular Values

- Large eigenvalues in $V^T V$ correspond to large singular values of V
- We leave most of V completely random, fix k columns to have a large singular value

$$V = \begin{bmatrix} Q & QM \end{bmatrix}$$

$$V^T V = \begin{bmatrix} Q^T Q & Q^T QM \\ M^T Q^T Q & M^T Q^T QM \end{bmatrix}$$
We plant a large eigenvalue in $M^T Q^T Q M$

- M must have a large singular value
- We can manipulate the singular value decomposition of M:
 1. Decompose random matrix as $U \Sigma V^T$ where U and V are unitary
 2. Construct Σ' by setting first diagonal entry of Σ to a planted singular value, setting the rest to something convenient
 3. Reconstruct M as $U \Sigma' V^T$
Statistical Analysis

- Elements of the matrix Q are independent, identically distributed Gaussian, $\mathcal{N}\left(0, \frac{1}{\sqrt{n}}\right)$
- Distribution of elements of Q^TQ is highly concentrated: within $O\left(\frac{\log n}{n}\right)$
- Elements of M^TQ^TQM follow the same bounds with high probability
Limitations in Approximating RIP
Planted model
Distinguishing random from planted model

Distinguishing Random from Planted

- Inspecting elements directly give no indication
- Inspecting eigenvalues of full matrix detects this implementation of planted model
An oracle that certifies RIP would be able to enable an efficient solution to Spark, and therefore subset sum.

Theorem (Bandeira et al.)

Certifying RIP for arbitrary k and δ is NP-Hard
Limitations of proof

- Weak result: shows hardness only for arbitrary matrix
- Says nothing about approximability
Reductions

- Small set expansion: if approximating SSE is hard, then approximating RIP is hard (Natrajan and Wu)

- Densest k-subgraph: if detecting an $n^{\frac{1}{2}-\epsilon}$ clique in a random graph $G(n, \frac{1}{2})$ is hard, approximating RIP is hard (Koiran and Zouzias)
Sum Of Squares

- SOS: a framework for proving statements using the trivial inequality and basic rules of algebra
- A degree-2n SOS proof proves a statement using only intermediate inequalities of polynomials of degree at most 2n
- Unbounded degree SOS is a complete proof system, bounded is not
- Max clique with an $n^{1/3}$ clique embedded in a random graph $G(n, \frac{1}{2})$ is unsolvable by degree-4 SOS
- For this particular implementation of the planted model, degree 2 SOS proof is sufficient
Theorem (Koiran and Souzias)

Assume a matrix Φ has unit column vectors and satisfies RIP of order k and parameter ϵ. For $m \geq k$, Φ also satisfies RIP of order m and parameter $\epsilon \left(\frac{m-1}{k-1} \right)$.

We can set $n = m$ and examine the matrix’s eigenvalues to get a very coarse approximation.

Theorem

Sum of squares of degree 2 can differentiate between a matrix that is RIP of order k with parameter δ and one that is not RIP of order k with parameter $\delta \left(\frac{n-1}{k-1} \right)$.
Limitations in Approximating RIP

Conjectures

Future Research

Conjecture

Planted model is complete - planted framework can be improved in order to prove any hardness results.

Conjecture

Degree-4 SOS is insufficient to approximate RIP to within any constant factor.
Acknowledgements

I would like to thank the following:

- MIT PRIMES
- Adrian Vladu
- My parents