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Abstract

Describing the behavior of traffic via mathematical modeling and computer simula-

tion has been a challenge confronted by mathematicians in various ways throughout

the last century. In this project, we introduce various existing traffic flow models

and present a new, probability-based model that is a hybrid of the microscopic and

macroscopic views, drawing upon current ideas in traffic flow theory. We examine

the correlations found in the data of our computer simulation. We hope that our re-

sults could help civil engineers implement efficient road systems that fit their needs,

as well as contribute toward the design of safely operating unmanned vehicles.
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1 Introduction

Traffic flow is the study of how vehicles interact with each other on the road. By un-

derstanding traffic flow, we could not only increase the efficiency of road systems, allowing

cars to drive closer to their desired speeds, but also make safely-operating unmanned ve-

hicles by predicting human drivers’ reactions. Furthermore, there is an intrinsic beauty

in studying how tools in mathematics could be related to real-world scenarios.

Mathematicians have observed traffic flow equilibrium since the 1930s by applying a

variety of methods and models. Pioneers such as Greenshields used a velocity function

linearly related to density, and mathematicians have subsequently refined his model [4].

It was the team of Lighthill, Whitham, and Richards who brought to light their landmark

LWR model in the 1950s, using a differential equation to describe the flow [1]. With the

development of technology came increased computing power, allowing mathematicians to

statistically verify their predictions with computer simulations.

This project draws upon the ideas of various existing models to form a new, simplified

model. We were primarily concerned with modeling vehicles’ behavior while changing

lanes. This objective is often challenging because vehicles and their drivers have many

distinct attributes which are not well understood. We use a computer simulation and

analyze its results.

2 Current Models

There have been numerous methods proposed for analyzing traffic behavior. The

models can generally be categorized into either microscopic or macroscopic views, each

one having its own advantages and disadvantages. We will survey these models below.

2.1 Microscopic

Microscopic models examine the behavior of individual cars as they relate to their sur-

roundings. Unique qualities of a car, such as its length, the driver’s preferred speed, and

its capacity for acceleration, are all taken into consideration. The cellular automata model
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gives motivation for dividing up the road into discrete intervals: the road is considered as

a one-dimensional array of equally-spaced intervals, and vehicles are treated as particles

traveling across lattices. Velocities and distances are incremented or decremented per

unit in time.

In the car-following model, vehicles adjust their speeds according to the cars immedi-

ately behind and in front of them, and consider surrounding cars’ locations and speeds

before switching lanes. Gipps’ model gives a numerical representation of the velocity

of a car which decides the feasibility of lane-changing, given its attributes and those of

neighboring cars [5]:

vn(t+ r) = min
(
vn(t) + 2.5anr(1 − vn(t)/Vn)

√
(0.025 + vn(t)/Vn),

bnr +
√

(bnr)2 − bn(2(xn−1(t) − sn−1 − xn(t)) − vn(t)r − vn−1(t)2/bn−1)
)

(1)

In (1), the attributes of vehicle n are the maximal acceleration an, maximal braking bn,

length sn, expected velocity Vn, location xn(t) at time t, velocity vn(t), and driver reaction

time r.

While analyzing every vehicle gives a far more accurate representation of the traffic

flow, it is computationally infeasible to track all such attributes of individual vehicles.

2.2 Macroscopic

Instead of observing individual cars, the macroscopic model aims to describe the

traffic flow as a whole. We note characteristics of intervals, such as density and average

velocity. There is no specific size for these intervals, as long as they account relatively

well for deviation: if they are too small, it would resemble the microscopic model, and

if they are too large, it would not be accurate enough. Macroscopic models can also be

particularly useful in predicting flow behavior and even anticipating shock waves [5].

The Lighthill-Whitham-Richards (LWR) model is the fundamental macroscopic

model, relating density and velocity at any distance x and time t [2]. It could be derived

through noting the conservation of vehicles: the number of cars in a given interval ∆x
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at time t is the integral of car density throughout the interval, and also equal to the

difference of the fluxes at the endpoints of the interval, where flux J(x, t) = ρ(x, t)v(x, t).

Thus at any point x0 at time t0 we have [3]:

2∆x(ρ(x0, t0 + ∆t) − ρ(x0, t0 − ∆t)) = 2∆t(J(x0 − ∆x, t0) − J(x0 + ∆x, t0). (2)

Using a first-order Taylor expansion and manipulating the terms in this equality simplifies

it to the form

∂ρ(x, t)

∂t
+
∂J(x, t)

∂x
= 0. (3)

The Greenshields model of velocity, v(x, t) = vm(1 − ρ(x,t)
ρm

), serves a fairly accurate

model based on data samples from roads across the world [3]. For distance x and time

t, we could use the LWR equation to express the Greenshields model in a form similar

to the viscous Burgers’ equation. Taking derivatives with respect to x and t, we get

∂v
∂t

= − vm
ρm

∂ρ
∂t

, ∂v
∂x

= − vm
ρm

∂ρ
∂x

. Since ∂J
∂x

= ∂(ρv)
∂x

= v ∂ρ
∂x

+ ρ ∂v
∂x

, we have ∂ρ
∂x

= − 1
v
(∂ρ
∂t

+ ρ ∂v
∂x

).

After simplifying, we arrive at 1
v
∂v
∂t

+ (1 − vm
ρm

ρ
v
) ∂v
∂x

= 0. Thus, it appears feasible to

represent car behavior as a fluid in the macroscopic model.

3 Probability-Based Model

The aim of this model is to provide a simple yet accurate representation of lane-

changing. We focus on individual cars, but do not discretize the road and vehicles as

in the cellular automata model, and do not need the numerous variables used in Gipps’

model. Instead, we observe the probability a specific car will switch at a given time, which

is accurate from the macroscopic point of view. This approach is reasonable because there

is no definite rule to account for drivers’ decisions to switch lanes: even if switching lanes

is objectively correct in a given situation, the driver may not make the best decisions.
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3.1 Background

We define a car (or vehicle) to have the following attributes at any time t on the road:

• Position x, lane i, numbered consecutively from the rightmost lane

• Preferred velocity V , and actual velocity vi(x, t) = ∆x
∆t

on lane i

• Density: ρi(x, t) = Number of cars
∆x

on lane i

We will not take into consideration any specific drivers’ preferences besides their

preferred velocity, and assume the length of the cars are all negligible. These factors are

either irrelevant to the car’s attributes we are interested in, or insignificant enough to be

eliminated to minimize the computational power needed.

Our model follows the Keep Right Except to Pass (KREP) rule, widely used in traffic

systems around the world. Cars stay in the rightmost lane unless the car in front of them

is driving below their preferred speed. In that case, they could switch to the next lane

on the left until they are able to drive at their preferred speed, and continue driving on

that lane until they overtake the slower car and have enough empty distance to return

to the right lane [1]. Our model will attempt to quantify the instinctive decisions that

drivers make in these situations.

3.2 New model

The idea in this proposed model is to express lane-changing in terms of a probability.

If a car in any lane (except the leftmost) is traveling at a lower speed than its desired

speed because it is impeded by the car in front, then there is a chance the driver will

decide to switch to the left lane. First, however, the driver must take into account safety

concerns — it must be separated enough from neighboring cars to be able to switch lanes

safely. The “two-second rule”, a common practice among drivers for car-following, forbids

changing lanes if a car is less than two seconds behind the car in front of it or behind it.

That is, for adjacent cars on locations xn and xn+1, we have xn+1 − xn > vn · (2s).

5



Let di(x, t) be the distance on lane i from the car at position x and time t from the

car in front of it. We model the probability that a car at position x and time t would

switch from lane i to lane i+ 1 as pi(x, t) = αdi+1(x,t)−di(x,t)
di(x,t)

. In this project, α is taken to

be a constant which factors in drivers’ tendency not to switch lanes — if di+1(x,t)−di(x,t)
di(x,t)

is small enough, the driver may prefer to stay in his lane. The probability of switching

from lane i+ 1 back to lane i is taken to be kpi for constant k. Since this system follows

the KREP rule, it is clear that k > 1. The probabilities are also bounded between 0

and 1 (values of pi below 0 are taken to be 0; values above 1 are taken to be 1). This

is justifiable because if di+1(x, t) < di(x, t), the driver would know not to change lanes,

and if di+1(x, t)/di(x, t) � 1, no driver would resist switching lanes in the interest of

efficiency.

4 Computer Simulation

Our program used the freeglut library in C++ to draw the graphics, an example of

which is shown in Figure 1. Cars are represented by small rectangles, and the different

colors represent what lane the cars originated from. All values we studied were displayed

on the simulation as well.

Figure 1: Screenshot of the freeglut simulation on three lanes.

In order to run our simulation, we used reasonable values for unknown variables. The

constant α was taken to be 0.2 and k to be 2. Since drivers tend to prefer driving as
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quickly as possible, the preferred velocity V of every car was set at 65 mph half the time,

and a random value between 55 and 65 mph for the other half.

Each trial was run for twenty minutes (fast-forwarded), to ensure that the road system

was stable. In Table 1, the car input rate was the number of cars per minute that

entered the road on each lane, the lane distribution was a percentage, and the density

was expressed in cars per mile. The ratio expressed how close the average speeds of all

the cars came to their average expected speed.

(i) Percentage distribution versus input rate on a three-lane highway.

(ii) Velocity ratio versus input rate for 2-5 lanes.
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(iii) The effect of car input rate on frequency of lane changes.

(iv) Velocity ratio versus number of lanes for different input rates.

(v) The effect of the number of lanes on frequency of lane changes.

Figure 2: Graphs depicting the effect of various lane settings on car distribution,

velocity ratio, and frequency of lane changes.
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(i) 2 Lanes

(ii) 3 Lanes

(iii) 4 Lanes

(iv) 5 Lanes

Table 1: Increasing the car input rate would decrease the cars’ average speed, increase

density, and make the lane distribution more uniform.
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5 Discussion of Results

The data in Table 1 listed the results of the set of simulations. It is evident from

the three-lane data that car input rate tips the car distribution in favor of the rightmost

lane; nevertheless, the density increases linearly for each lane. The distribution seems to

have a common difference between consecutive lanes — as seen in the cases with an odd

number of lanes n, the middle terms of the distribution values converge rapidly to 100
n

.

According to Figure 2(ii), it is evident that increasing the input rate decreases the

average velocity of the cars, allowing fewer to reach their desired speeds. With more

lanes, this difference becomes more significant: 30 cars entering per lane for multiple-lane

roads results in all cars being able to drive at only about 75% of their desired speeds.

Though having more cars increases the density and lowers average velocity, it also

does reduce the frequency of lane changes, which is another criterion for efficiency. As

the proportion di+1−di
di

decreases, cars are less likely to switch lanes. We could see why

this is true: consider a large interval D on the road, and taking the cars to be uniformly

distributed, we have D = diρi for all i. Thus, di+1−di
di

= ρi−ρi+1

ρi+1
. Since the difference

in densities of adjacent lanes has been noted to be approximately constant, and ρi+1 is

increasing, the probability of lane-changing is decreasing. There is still a discrepancy as

shown in Figure 2(iii) for a very low input rate, as unobstructed cars have little need to

switch lanes. Nevertheless, such a low input rate would be considered an inefficient use

of road length.

Increasing the number of lanes while keeping the input rate fixed does not have a

large impact on drivers’ velocities, as seen in the stable ratio in Figure 2(iv). Unless the

density is very high, more lanes could have only a beneficial effect on cars’ velocities.

It is remarkable from Figure 2(v) that having more lanes also increases the frequency

of lane changes, regardless of input rate. Since each lane is used, adding another lane

would inevitably give cars who would be on the leftmost lane an extra option to switch.

This brings to question how to optimize the number of lanes on a road — more lanes

do bring cars closer to their desired speeds, but they also are costlier and prompt more
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lane-switching which reduces their efficiency.

The credibility of the results could be verified by noting that the correlation between

car input rate and average speed, distribution, and density follow reasonable patterns.

Moreover, the velocity ratio stays high for low densities and gradually decreases as the

density increases, as expected.

6 Further Research

Since this is a working model, it could be improved further to fit in with realistic data.

Foremost, the constants we used, such as setting α at 0.2 and k at 2, could be modified.

As we were not able to access relevant data on a genuine traffic system, we could use only

approximations we deemed acceptable.

There is also the problem of safety that needs to be addressed. Ideally, drivers would

be able to evaluate surrounding factors such as density and velocity of neighboring cars,

as in an automated vehicle. Without this precision, however, they would be bound to

make mistakes. Our model has already eliminated cases where drivers are unreasonably

close: the “two-second” rule. But humans do occasionally get into dangerous situations,

such as by unexpected braking — another study had approximated it to be around once

per 5000 kilometers driven [1].
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