
Spectral Inference of a Directed Acyclic Graph Using
Pairwise Similarities

Allison Paul

November 11, 2015

Abstract

A gene ontology graph is a directed acyclic graph (DAG) which represents rela-
tionships among biological processes. Inferring such a graph using a gene similarity
matrix is NP-hard in general. Here, we propose an approximate algorithm to solve this
problem efficiently by reducing the dimensionality of the problem using spectral clus-
tering. We show that the original problem can be simplified to the inference problem
of overlapping clusters in a network. We then solve the simplified problem in two steps:
first we infer clusters using a spectral clustering technique. Then, we identify possible
overlaps among the inferred clusters by identifying maximal cliques over the cluster
similarity graph. We illustrate the effectiveness of our method over various synthetic
networks in terms of both the performance and computational complexity compared
to existing methods.

1



1 Introduction

A gene ontology (GO) is a tool to categorize genes of different biological processes to facil-

itate their study and interpretation. Genes are classified under gene ontology terms, which

describe their biological components, molecular functions, and cellular components [1]. Ex-

amples of gene ontology terms include oxygen binding, response to x-ray, and sympathetic

nervous system development [2]. Each gene ontology term is defined as a subset of genes

involved in a specific biological process. Genes belonging to term A can be a subset of genes

that belong to term B. These relationships have been characterized using a directed acyclic

graph (DAG), which we refer to as a GO-graph. Nodes of this graph are different GO terms,

while an edge A → B means genes of term B are all in term A as well. We represent these

biological relationships using DAGs rather than trees, because, based on relationships among

genes, GO terms must be able to have more than one parent (i.e. A → C, and B → C can

exist at the same time [3].

Researchers use a worldwide GO database, the Gene Ontology Consortium [2] to obtain

information about previously studied genes, as well as to predict the function of previously

unstudied genes [3]. The GO Consortium has become the trusted source for researching the

functions of any experimental system in biology [4]. The inference of a GO-graph is essential

to maintaining and updating these GO databases. Traditional methods of forming a GO-

graph rely on experimental studies of genes and their involvement in different biological

processes. However, the generation of GO-graphs is limited by the time needed to create the

graphs manually and human bias against genes that are unstudied. Recently, researchers

have proposed a way of algorithmically inferring such graphs using similarities between genes

computed from other functional associations [4]. One can use these approximated GO-graphs

generated to populate and improve the accuracy of the original graphs generated by human

efforts. Furthermore, fast and efficient methods of GO-graph inference would make new

2



Figure 1: An illustration of DAG Inference methods. Notice the connections
between the actual DAG and the similarity matrix generated. The cluster that
has more than one parent corresponds to the overlap between the clusters in the
image. We show that the DAG inference problem is equivalent to the problem
of overlapping clusters in a network.

research techniques possible, such as to generating and contrasting GO-graphs from diseased

and healthy samples [4]. These GO-graphs would be a revolutionary way to study the effects

of disease on the relationships between complex biological processes.

We have two sources of uncertainty in the GO-graph inference problem using gene sim-

ilarity data. One is the experimental noise in real gene expression data used to compare

gene similarities. The second is the topological noise introduced in the model relating the

underlying GO-graph to gene similarities.

Recently, [3] has investigated the problem of inferring a GO-graph from gene similarity

data. Reference [3] shows that nodes at different layers of the GO-graph correspond to

maximal cliques of the thresholded similarity matrix of the genes. In addition, [3] proposes

an algorithm to solve the GO-graph inference problem iteratively by constructing nodes

at each layer based on such maximal cliques using a threshold greater than the threshold

of the layer below. A maximal clique of a graph corresponds to a maximal independent

3



set over the complement graph with edges between all non-neighbors in the original graph.

One disadvantage of the algorithm proposed in [3] is its high computational complexity,

partially due to multiple uses of maximal clique solvers, which have worst case computational

complexity O(3n/3).

Here, we propose a new spectral algorithm to approximately solve the GO-graph inference

problem that can be efficiently applied to large and noisy gene similarity data sets. We

show that the GO-graph inference problem can to simplified to the inference problem of

overlapping clusters in a network. We then solve this problem in two steps: first, we infer

clusters using a spectral clustering technique. Using these inferred clusters, we form a cluster-

similarity graph which has significantly smaller dimension (nodes) than the number of genes.

Then, we show that nodes at the next layer of the GO-graph with multiple parents correspond

to maximal cliques of the cluster-similarity graph. We merge these overlapping clusters, and

then proceed to infer the next (lower) layer in the GO-graph.

This dimensional reduction saves significant amounts of time. Our method infers for

instance, a 3,000 gene DAG in approximately 100 seconds. We account for noise and test

the accuracy of our model under different noise levels. Finally, we propose techniques to

learn model parameters from input pairwise similarity data.

2 Materials and Methods

2.1 Notation

Suppose G = (V,E,W ) is a DAG where V , E, and W represent nodes, edges, and edge

weights respectively. Suppose there exist n terminal nodes in the graph (i.e., nodes without

outgoing edges) denoted by VT ⊆ V . Non-terminal nodes are represented by VN = V −VT . Let

d(u, v) be the length of the shortest path between nodes v and u ignoring edge orientations.

Let children(u) denote terminal descendants of node u.

4



In [3], a layered directed acyclic graph (DAG) has been defined to model genome ontology

(GO) terms as follows:

Definition 1 (Layered DAG) Graph G = (V,E,W ) is called a layered DAG if it is a

DAG, and

• (i) A non-terminal node u has constant distance to all its terminal descendants. I.e.,

∀u ∈ VN , and ∀v1, v2 ∈ children(u), we have d(u, v1) = d(u, v2).

• (ii) For a non-terminal node u, and all terminal nodes v1 ∉ children(u), there exists

v2 ∈ children(u) such that d(v1, v2) > 2d(u, v1).

Let D ≜ {G ∣ G is a layered DAG}. A distance matrix D ∈ Rn×n of a graph G = (V,E,W )

is defined such that Di,j = d(i, j). Then similarity matrix S ∈ Rn×n is defined such that

Si,j = max(D) − Di,j, where max(D) is the maximum element of the matrix D (i.e. the

maximum distance between terminal nodes in the graph). One can scale these similarities

linearly to have all elements between 0 and 1. By abuse of notation, we use S for the scaled

similarity matrix as well. We define a function f ∶ D → Rn×n such that f(G) = S, where S is

the scaled similarity matrix of G.

2.2 Problem Statement

Suppose Strue is a similarity matrix of a layered DAG, Gtrue = (Vtrue,Etrue,Wtrue), i.e. Strue =

f(Gtrue). We observe a noisy version of Strue, i.e. Sobs = Strue +Z, where Z represents noise.

Our goal is to find a layered DAG, G = (V,E,W ) ∈ D , whose similarity matrix approximates

the observed similarity matrix closely:

min
G∈D

∥ S − Sobs ∥l1 (2.1)

where S = f(G).

5



2.3 Reduction to Maximal Clique Problem

Recall that reference [3] has proposed a deterministic algorithm to infer a DAG by solving

for maximal cliques. Reference [3] suggests that maximal cliques of a thresholded similarity

matrix correspond to the terms of a layer in the DAG (Figure 1). Here, we prove that

maximal cliques of a smaller submatrix corresponding to a node in the above layer correspond

to the children of that node. We identify these cliques and then merge similar cliques to

account for overlaps, as terms with multiple parents create overlaps among cliques. We

show that the GO-graph inference problem can to simplified to the inference problem of

overlapping cliques in a network. In the following, we detail the process that solves this

inference problem deterministically. We rely on the fact that Sobs = Strue, i.e., that Z = 0. In

3.1, we extend this method to solve the more realistic, noisy method.

To simplify notation, we denote Su as the subgraph of the similarity matrix corresponding

to a non-terminal node u located at layer l. The size of Su is equal to the number of terminal

descendants of node u. Suppose we have constructed the underlying DAG until layer l (which

corresponds to threshold τl). Note that τl+1 ≥ τl so that the maximal cliques identified are

smaller and have higher densities than the cliques of the previous layer. Next, we wish

to infer nodes at layer l + 1 (which corresponds to threshold τl+1). To find children of u,

one needs to compute maximal cliques over subgraph Sτl+1u , the binary graph generated by

thresholding Su by τl+1. Note that subgraph sizes decrease at subsequent layers, reducing

the size of the problem at each layer. After finding children of all nodes at layer l separately,

we check for overlaps among those children and merge overlapping nodes. The algorithm

terminates upon reaching the terminal nodes (leaves).

Theorem 1 Suppose Strue is a similarity matrix of a layered DAG, Gtrue = (Vtrue,Etrue,Wtrue).

Let the output DAG of the above described algorithm be G = (V,E,W ). Then, V = Vtrue and

E = Etrue (up to permutations of labels).

6



Proof

Let D be the distance matrix of Gtrue. WLOG, let the length of each edge in Gtrue equal 1.

Let the maximum element of the distance matrix D be γ, and the minimum nonzero element

be δ. Then the number of layers in Gtrue, L, not including the layer of terminal nodes, equals

γ
δ , as the size of γ, the maximum distance between nodes in Gtrue, is proportional to the

length of the path from a node to the root node, with a scaling factor of size δ, the minimum

nonzero distance between nodes. WLOG, we ignore cases where the root has only one child

in the next layer because we can treat the first node with more than one child as the root.

There are exactly L + 1 distinct values in D, as there are exactly L + 1 layers in Gtrue if

we include the layer of terminal nodes. Then there are L+ 1 distinct values in S as well. Let

the threshold density at layer k, τk be the k + 1th smallest of the L + 1 values in S.

Then ∀ nodes u, d(u,u) = 0, so 0 ∈ S and the minimum element of S is 0. At layer 0, all

genes have similarity greater than or equal to τ0 = 0, so the maximal clique identified is the

complete graph on the genes. Our method correctly determines that all terminal nodes have

the same root node. Thus, as our DAG inference method evaluates G correctly for layer 0,

we assume that it evaluates G correctly up to and including layer k. If k = L, we are done.

Else, we consider layer k + 1.

Let Ck = {clusters c in layer k} in Gtrue. WLOG, consider any cluster c. Let the node

corresponding to this cluster be u. We determine the maximal cliques over subgraph Sτk+1u .

We know that ∀s ∈ Su, s ≥ τk, as u ∈ Ck. Let Ck+1 = {clusters c in layer k + 1} in Gtrue.

Then ∀c ∈ Ck+1, ∀s ∈ Sc, s ≥ τk+1. WLOG, choose any c ∈ Ck+1. Let the node corresponding

to this cluster be v. The maximum distance between genes in Sv is one interval less that

the maximum distance between genes in Su, as we have reduced the subgraph by one layer.

Thus, the minimum element in Su, which is τk, is one increment less than the minimum

element in Sv. Thus, the minimum element in Sv is τk+1 by construction of the thresholds,

and Sτk+1v is a clique. Similarly, ∀c ∈ Ck+1, we can find a corresponding clique in Sτk+1 . Note

7



that these cliques may overlap, so we combine cliques that belong to different parents if the

cliques form larger cliques under threshold τk+1.

All that is left to show is that these cliques are maximal. Assume ∃ terminal node t ∉ c

such that Sτk+1v∪t is a complete graph on n + 1 vertices, where n is the number of terminal

nodes corresponding to node v. This implies that t and the terminal nodes corresponding

to node v belong to one cluster in layer j ≥ k + 1. Let the node corresponding to this cluster

be w. Then Sv ⊂ Sw, so node v is in a layer below the layer containing w. But cv ∈ Ck+1,

cw ∈ Cj and k + 1 ≤ l. ⇒⇐

Thus, cliques corresponding to the nodes in layer k + 1 in Gtrue are maximal, and the

determining the maximal cliques of Sτk+1u ∀ such u such that cu ∈ Ck correctly determines

the structure of layer k + 1.

3 Results and Discussion

3.1 Spectral DAG Inference (SDI) Algorithm

In 2.3, we showed that in the noiseless case, the DAG inference problem is equivalent to

identifying overlapping clusters among terminal nodes. However, this is a NP-hard problem

and this process is limited by the computational complexity of the maximal clique problem.

There are some algorithms to identify maximal cliques efficiently by finding maximal inde-

pendent sets of the complement graph instead of maximal cliques of the original graph. The

complement graph will be sparse, and fast approximate algorithms based on graph colorings

can be used to discover maximal independent sets. There exist efficient approximate and

randomized algorithms to solve the maximal independent set problem using Monto Carlo

sampling [5] and graph colorings [6, 7]. However, references [8, 9] show that a graph with n

8



nodes can have up to O(3n/3) maximal cliques, implying that algorithms to find all maximal

cliques of a graph have worst case computational complexity O(3n/3). The maximal clique

problem can be solved in polynomial time only in some special cases such as claw-free or

quasi-line [10,11], or growth-bounded [12] graphs.

Here, we propose a spectral method which approximately solves the DAG inference prob-

lem and can be used efficiently for large and noisy gene similarity data. Our key idea is

reducing the dimension of the DAG inference problem using spectral clustering and then

using a maximal clique inference technique over smaller subspaces.

Recall that a layered DAG has a root node in the first layer and some terminal nodes in

the last layer. Throughout this section, we assume that we know the number of layers and

the threshold densities at each layer of the underlying GO-graph. In section 3.2, we discuss

learning these parameters using the gene similarity data.

Suppose Strue is a similarity matrix of a layered DAG, Gtrue = (Vtrue,Etrue,Wtrue). The

problem is to infer a layered DAG, G = (V,E,W ), using Sobs where Sobs = Strue +Z. Our key

idea is to use spectral clustering to reduce the dimension of the maximal clique inference

step of the algorithm present in 2.3. A cluster C is a quasi-clique, or a subset of terminal

nodes with high density, where density, ρ, is defined as

ρ(C) ≜ ∑i,j∈C Si,j

∑i,j∈C 1
(3.1)

In the SDI Algorithm, we infer these clusters at each step before determining the maximal

cliques over the clusters themselves. By performing the maximal clique algorithm on the

clusters rather than the terminal nodes, we significantly reduce the dimension of the problem,

while still accurately inferring the structure of the DAG.

Recall that Su denotes the subgraph of the similarity matrix corresponding to a non-

terminal node u. Suppose we have constructed the underlying DAG until layer l. Next, we

9



wish to construct nodes at layer l + 1. Suppose u is a node at layer l whose corresponding

terminal nodes are Iu. Then, we partition Su to k groups by clustering top k − 1 elements of

the eigenvectors vi of the modularity matrix M ∀i ∈ Iu. To capture overlapping clusters, one

can use a k-means algorithm to perform clustering over these real vectors. We choose the

minimum number of clusters k so that cluster densities are above a threshold τl+1. These

clusters correspond to quasi-cliques of the matrix Su, or children of node u. After finding

children of all nodes at layer l separately, we check for overlaps among those children and

merge overlapping nodes. The algorithm terminates upon reaching the terminal nodes.

Our algorithm iteratively infers nodes in a lower layer using nodes in the previous layer.

WLOG, we explain the algorithm only to infer the next layer. The first layer has just one

node, the root node. Our algorithm has two steps:

1. Spectral Clustering using Modularity Transformation

2. Maximal Clique Inference over Cluster-Similarity Graph

Below, we explain these steps with more details:

Spectral Clustering using Modularity Transformation: In this step, we use a

standard spectral clustering algorithm based on a modularity transformation [13]. We briefly

explain this method as follows. Suppose we wish to infer k clusters (non-overlapping) in the

similarity matrix S. First, we form its modularity matrix as follows:

M = S − d
Td

m
(3.2)

where d represents the vector of node degree in the weighted similarity graph S and m is

the total sum of similarity pairs.

Then, we compute the spectral decomposition of M to its eigenvectors and eigenvalues,

M = V ΣV T , where columns of the matrix V represent eigenvectors and diagonal elements of

10



Figure 2: An example of Spectral Clustering. To the right is a depiction of the a
network with three distinct clusters. Each blue dot represents an edge between
the node of the x-axis and the node of the y-axis. To the right, the values of the
eigenvectors of a similarity matrix corresponding to each node of the network.
It is apparent that the top two eigenvectors partition the network into three
clusters, as desired.

the matrix Σ represent eigenvalues (denote by λi). Eigenvalues are ordered from the largest

to the smallest. Then, to infer k clusters, we perform a standard k-means algorithm [14]

over the k − 1 eigenvectors corresponding to the k − 1 largest eigenvalues of the modularity

matrix M . We set k = 1, and increase k until the mean density of the k clusters is greater

than τl. We shall discuss the methods of selecting a maximum value for k to improve the

computational complexity of the spectral decomposition step in Section 3.2.

If a node in Gtrue has multiple parents, it corresponds to an overlap between these clusters

(Figure 1). Spectral clustering methods are unable to identify overlapping clustering (Figure

3). We account for these overlaps below.

Maximal Clique Inference over Cluster-Similarity Graph: To find overlapping

clusters corresponding to nodes with multiple parents in the graph, we propose the following

algorithm:

First, we form a cluster similarity graph where nodes represent the inferred clusters and

are connected by weighted edges. If two clusters are more likely to overlap with each other,

11



Figure 3: An example of Spectral Clustering when applied to overlapping clus-
ters. Though three clusters are clearly visible, five clusters are detected when
the k-means algorithm is applied to the top two eigenvectors of the similarity
matrix. These five clusters correspond to the three groups of nodes that belong
to exactly one cluster, as well as the two overlaps.

Figure 4: An illustration of the maximal clique step. We map each cluster to a
node in a new network, and assign edges between nodes that are similar. Then,
we determine the maximal cliques of this clusters. We merge clusters that belong
to to the same clique.

their corresponding nodes in the cluster-similarity graph are connected with a higher edge

weight, W, where

W (C1,C2) ≜ ρ(C1 ∪C2) (3.3)

and C1∪C2 refers to the cluster in S formed by combining the terminal nodes of both clusters

1 and 2 into a single cluster.

We threshold this graph to get a binary graph. We set the threshold at ατl, where α is

12



a parameter slightly less than 1 to account for the fact that the merged cluster may have

slightly lower density than the smaller clusters. Then, we infer the maximal cliques of this

graph by solving the equivalent maximal independent set problem. These maximal cliques

correspond to the nodes of the layer we are inferring, as desired.

In the following, we summarize the described algorithm. Let V l
N be non-terminal nodes

at level l. V 0
N = {r} only includes the root node. Let τl be the threshold density for clusters

at level l.

Algorithm 1 Spectral DAG Inference

Input: S, M , α, nlayers, τi for 0 ≤ i ≤ nlayers
Initialization: , V 0

N = {r}, l = 0
while l ≤ nlayers do

for i ∈ V l
N do

Eigen Decomposition: Mi = UΣUT

Ci = SpectralClustering (Si, U, τl)
E = E⋃{i→ Ci}
V l+1
N = V l+1

N ⋃Ci
end for
MergeClusters (V l+1

N , ατl)
l = l + 1

end while
Output: G = (V,E)

Algorithm 2 Spectral Clustering

Input: S, U , τ
Initialization: τ ′ = density(S), k = 1
while τ ′ < τ do
k = k + 1.
ui = U[i,1 ∶ (k − 1)].
Ck = KMeans([ui], k)
τ ′ = density(S,Ck)

end while
Output: Ck

13



3.1.1 Complexity Analysis

In the spectral algorithm, we decompose the similarity matrix at each step of the algorithm.

The worst case complexity of this step is O(n3), where n is the number of genes. However, a

full eigen decomposition of the similarity matrix S is not necessary because only top eigen-

vectors and eigenvalues are required in the method, decreasing the computational complexity

of the eigen decomposition step substantially (up to a linear complexity in n). Moreover,

each iteration of the k-means clustering at node u has a computational complexity O(∣Iu∣k2)

where k is the number of clusters and Iu is the number of terminal descendants of node u

(i.e., its complexity is linear in terms of the size of subgraphs). Lastly, the maximal clique

solver has worst case computational complexity O(3k/3) where k is the number of clusters in

the layer, which is significantly less than the total number of genes. Thus, we see that our

SDI Algorithm greatly improves on the efficiency of existing methods.

3.2 Learning Model Parameters

Our algorithm as stated, requires an input number of layers and a set of threshold densities

for each layer. While it is feasible to input the desired number of layers and thresholds as

in [3], we propose a learning model for the program to infer the following parameters directly

from the similarity data given:

1. Determining Number of Layers

2. Determining Threshold Densities at each Layer

3. Selecting the Cut-off for the K-means Algorithm

Determining Number of Layers We use distance matrix D of Gtrue to infer the number

of layers in the inferred DAG G. Let the maximum element of the distance matrix D be γ,

and the minimum nonzero element be δ. Then the number of layers in Gtrue equals γ
δ + 1,

14



Figure 5: Values of δ(x) where δ(x) = #{(i, j) ∣ S(i, j) ≤ x + ∆x} − #{(i, j) ∣
S(i, j) ≤ x} and we set ∆x = .001. The DAG in this example had three layers,
not including the terminal nodes, so we select the three highest values of δ(x) as
the threshold densities for the three layers (0, 0.1420, 0.482). Using these three
values, we will partition the genes into c clusters such that c is the minimum
value such that the mean density of the clusters is greater than or equal to the
threshold.

as the size of γ is proportional to the length of the path from a node to the root node, with

a scaling factor of size δ. The length of this path equals the number of layers - 1. Note

that with significant experimental noise, this learning model is unreliable, as this method

is sensitive to noise. Thus, the method must be run multiple times and optimized over the

number of layers. This does not have a large effect on the efficiency of the program. With

only topological noise, this model gives a good approximation of the number of layers in the

inferred DAG.

Determining Threshold Densities at each Layer: We choose the threshold densities

in order to accurately determine the number of clusters at each layer. We can infer the

ideal thresholds based on the similarity matrix S. We examine the values of the elements

in S and choose values based on the most frequently occurring values. We define ϕ(x) =

#{(i, j) ∣ S(i, j) ≤ x}. Then we examine the distances between the values of ϕ(x), using

δ(x) = ϕ(x+∆x)−ϕ(x) for 0 ≤ x,x+∆x ≥ 1. We set ∆x = .001 or an arbitrary small number,

15



as this step has minimal computational complexity. We observe that the greatest values for

δ(x) occur near the average clusters densities of each layer (See Figure 5).

We choose a threshold equal to the cluster densities of the layers in order to ensure that

the correct number of clusters is determined for use in the k-means algorithm. Thus, we

choose the thresholds of the layers as the x coordinates of the greatest n values of δ(x),

where n = number of layers.

In the noisy case, the greatest values of δ(x) do not necessarily correspond to the correct

threshold densities. We instead determine the maximally distributed numbers. We identify

the maximal value (x, δ(x)) and then ignore all values within a r-neighborhood of x, and

repeat until we have determined a threshold for each layer of the DAG. The value of the

radius r is dependent on the number of layers in G.

When inferring a layer of a DAG, we apply Spectral Clustering, starting at k = 1 to the

submatrix of S, increasing the value of k until the mean density of the k clusters is greater

than or equal to the determined threshold density. For this reason, we only need to compute

the top m eigenvectors of the modularity matrix, where m is the size of the maximum number

of children for one node in the DAG. In the following, we discuss our model to predict the

number of eigenvectors to compute.

Selecting the Cut-off for the K-means Algorithm: We wish to compute only the top

c eigenvectors, where c is the cutoff for the k-means algorithm, to decrease the computational

complexity of the eigen decomposition step substantially (up to a linear complexity in n).

We aim to select a cut-off, c, for the value of k in the k-means algorithm, so that we only

compute the top c eigenvectors of the similarity matrix at each step. In a DAG with no

overlapping clusters, we see that the least possible cutoff, cmin = l
√
n, where l is the number

of layers in the DAG (excluding the layer of terminal nodes) and n is the number of genes

in the DAG. To account for the case where a DAG has overlapping clusters, the cutoff must

be increased because two clusters may overlap, increasing the possible size of an individual

16



3000250020001500

Number of Genes

100050003

4

Number of Layers

5

6

70

0

10

80

20

60

30

40

50

100

90

7

E
la

ps
ed

 T
im

e 
(S

ec
on

ds
)

Figure 6: Seconds required to apply the SDI algorithm to DAGs of varying sizes.
We tested DAGs with 3-7 layers and DAGs with up to 3000 genes. We see that
the SDI algorithm is significantly faster than the previous algorithm in [3].

cluster.

3.3 Performance Evaluation Over Synthetic Networks

We evaluate the performance of the proposed algorithm in Section 3.1. First, we generate

synthetic DAGs as follows: We input the mean number of children, the number of layers,

and the percent of overlapping, and we generate a random DAG using those parameters. We

avoid highly irregular and complex graphs by restricting overlapping structure to structures

found in actual GO-graph formations. For instance, we do not generate graphs where CA

overlaps with CB, CB overlaps with CC , and CC overlaps with CA.

17



Figure 7: Performance of SDI Algorithm with increasing noise levels. We ran
the SDI algorithm 50 times for each value for β ∈ [0,0.2].

Then, we add noise to the calculated similarity matrix, Strue, so that Sobs = Strue + Z,

where Z is Gaussian noise and Zi,j ∼ N(0, βd(i, j)), a gaussian random number with mean

0 and variance βd(i, j). Let β be the noise parameter, and recall that d(i, j) is the distance

between nodes i and j in the graph. We use this noise model because we consider the fact

that similar nodes will have less noise, but nodes that are far apart have more room for

error. It is reasonable that the noise level would be proportional to the distance between the

nodes.

We constructed simulated networks with various levels of overlapping. We then tested the

SDI algorithm for efficiency and accuracy. The algorithm proved to be remarkably efficient,

even with large DAGs (See Figure 6), which can be attributed to the low computational

complexity of our methods.

We use the following error metric to test the accuracy of the algorithm. We compute the

distance matrix Dinf of the inferred DAG G and compare it to the distance matrix Dtrue

of the original DAG Gtrue. We add the differences between corresponding elements of the

two matrices, and then scale this number by the number of elements in both of the matrices

18



Figure 8: Time in seconds needed to infer directed acyclic graphs with varying
numbers of terminal nodes.

Dinf and Dtrue, as well as the maximum distance in Dtrue, to account for the different sizes

of graphs evaluated.

For smaller noise levels, the inferred DAG matches closely with the original DAG (See

Figure 7). However, for noise parameter β greater than or equal to approximately 0.15, noise

levels create more significant error.

3.3.1 Comparison to Current Methods

We compared the performance of the SDI algorithm and the performance of the Clixo algo-

rithm presented in [3]. We see that the algorithms perform comparably over small networks.

The Clixo algorithm performs faster with networks under around 1500 genes. However, the

SDI algorithm takes significantly less time when inferring larger networks. We can see from

Figure 8 that the SDI algorithm has a greatly improved computational complexity over the

Clixo algorithm, as estimated previously. In regards to accuracy, both algorithms performed

well when applied to small networks. We used the following error metric to compare the two

19



Figure 9: Performance of SDI and Clixo algorithms when tested against the same
set of directed acyclic graphs. As the size of the graphs increase, the amount of
error in both algorithms increase. Also observe that the SDI algorithm shows a
significant reduction in error of the Clixo algorithm.

algorithms: we compared the ranks of the similarity matrices of the inferred DAGs with the

ranks of similarity matrices of the actual DAG. In other words, we sorted the values in each

column of the similarity matrices and used the rank of the values to compare the accuracy of

the algorithms. We check to see if genes that are very similar in Strue are also similar in the

similarity matrices of the inferred DAGs. One can see in Figure 9 that the SDI algorithm

improves on the accuracy of the Clixo algorithm with large networks.

4 Conclusions and Future Work

We introduced methods to infer a layered DAG using pairwise similarity data of the termi-

nal nodes. Our Spectral DAG Inference algorithm significantly reduces the computational

complexities of existing DAG-inference algorithms by using a spectral clustering method

to identify clusters among the terminal nodes instead of the expensive maximal clique algo-

rithm. Moreover, our algorithm is a top-down algorithm, rather than a bottom-up algorithm,

like the one presented in [3]. By moving down the DAG, we restrict quasi-clique inference

to smaller and smaller subgraphs, and thus, we only require a partial eigen decomposition

20



of the similarity matrix of the terminal nodes.

Some techniques can be used to approximate the top eigenvectors of submatrices of a

matrix using the eigenvectors of the full matrix. This is an interesting future direction, and

would further improve the computational complexity of DAG-inference. Since our algorithm

is fast (i.e. it can infer a 3,000 gene DAG in approximately 100 seconds), we can apply the

SDI algorithm to large gene datasets. Our SDI method currently infers DAGs well under

moderate noise levels, and we plan to investigate ways to further improve the performance of

the SDI algorithm under higher levels of noise. We believe that our Spectral DAG Inference

algorithm can significantly accelerate current gene ontology development, enhancing these

tools for gene classification and study.

Acknowledgements

I would like to thank the MIT PRIMES leaders who run this wonderful program and assigned

me a great mentor, Soheil Feizi. Thank you to Prof. Manolis Kellis for thinking of this

project, and thank you to Soheil for meeting with me weekly, giving advice, and guiding me

throughout this process.

References

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,

K. Dolinski, S. S. Dwight, J. T. Eppig et al., “Gene ontology: tool for the unification

of biology,” Nature genetics, vol. 25, no. 1, pp. 25–29, 2000.

[2] G. O. Consortium et al., “The gene ontology (go) database and informatics resource,”

Nucleic acids research, vol. 32, no. suppl 1, pp. D258–D261, 2004.

21



[3] M. Kramer, J. Dutkowski, M. Yu, V. Bafna, and T. Ideker, “Inferring gene ontologies

from pairwise similarity data,” Bioinformatics, vol. 30, no. 12, pp. i34–i42, 2014.

[4] K. Dolinski and D. Botstein, “Automating the construction of gene ontologies,” Nature

biotechnology, vol. 31, no. 1, pp. 34–35, 2013.

[5] M. Luby, “A simple parallel algorithm for the maximal independent set problem,” SIAM

journal on computing, vol. 15, no. 4, pp. 1036–1053, 1986.

[6] D. Karger, R. Motwani, and M. Sudan, “Approximate graph coloring by semidefinite

programming,” Journal of the ACM (JACM), vol. 45, no. 2, pp. 246–265, 1998.

[7] J. M. Byskov, “Enumerating maximal independent sets with applications to graph

colouring,” Operations Research Letters, vol. 32, no. 6, pp. 547–556, 2004.

[8] R. E. Miller and D. E. Muller, “A problem of maximum consistent subsets,” IBM

Research Report RC-240, JT Watson Research Center, Tech. Rep., 1960.

[9] J. W. Moon and L. Moser, “On cliques in graphs,” Israel journal of Mathematics, vol. 3,

no. 1, pp. 23–28, 1965.

[10] F. Eisenbrand, G. Oriolo, G. Stauffer, and P. Ventura, “The stable set polytope of

quasi-line graphs,” Combinatorica, vol. 28, no. 1, pp. 45–67, 2008.

[11] M. Chudnovsky and A. Ovetsky, “Coloring quasi-line graphs,” Journal of Graph Theory,

vol. 54, no. 1, pp. 41–50, 2007.

[12] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer, “Fast deterministic dis-

tributed maximal independent set computation on growth-bounded graphs,” in Dis-

tributed Computing. Springer, 2005, pp. 273–287.

22



[13] M. E. Newman, “Modularity and community structure in networks,” Proceedings of the

National Academy of Sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[14] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,”

Applied statistics, pp. 100–108, 1979.

23


	Introduction
	Materials and Methods
	Notation
	Problem Statement
	Reduction to Maximal Clique Problem

	Results and Discussion
	Spectral DAG Inference (SDI) Algorithm
	Complexity Analysis

	Learning Model Parameters
	Performance Evaluation Over Synthetic Networks
	Comparison to Current Methods


	Conclusions and Future Work

