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Abstract. Recently, several papers proving lower bounds for the performance of the Sum Of

Squares Hierarchy on the planted clique problem have been published. A crucial part of all four

papers is probabilistically bounding the norms of certain “locally random” matrices. In these

matrices, the entries are not completely independent of each other, but rather depend upon a few

edges of the input graph. In this paper, we study the norms of these locally random matrices.

We start by bounding the norms of simple locally random matrices, whose entries depend on a

bipartite graph H and a random graph G; we then generalize this result by bounding the norms

of complex locally random matrices, matrices based off of a much more general graph H and a

random graph G. For both cases, we prove almost-tight probabilistic bounds on the asymptotic

behavior of the norms of these matrices.



1. Introduction

Recently, several papers proving lower bounds for the performance of the Sum Of Squares

Hierarchy on the planted clique problem have been published [12,17,22,27]. These papers utilize

many different techniques in order to prove these results; however, a crucial part of all four papers

is probabilistically bounding the norms of certain “locally random” matrices. In these matrices,

the entries are not completely independent of each other, but rather depend upon a few edges

of the input graph. In this paper, we study the norms of these locally random matrices. To the

best of our knowledge, these matrices have not previously been studied in random matrix theory.

1.1. Background and Motivation.

An important problem in the field of algorithm design is the planted clique problem, introduced

by Jerrum [18] and Kucera [20]. Let G(n, p) denote the Erdös-Rényi model for random graphs

on n labeled vertices, where each edge between any two vertices of the graph is included with

probability p. Then, in the planted clique problem, we are given a graph G = G(n, 1/2, k),

created by first choosing a random graph from G(n, 1/2) and then placing a clique of size k

randomly in the graph for k � log(n). The goal of the problem is then to recover the clique for

as small a k as possible given G. Though the problem was proposed over 20 years ago, the current

best polynomial time algorithms can only solve the planted clique problem for k = Θ(
√
n) [2].

Though a near-linear algorithm was developed for this value of k in [11], the issue of solving the

problem for smaller values of k has received significant attention.

The planted clique problem has also received attention due to its applications in several other

fields of mathematics. It has been used to explain the difficulty of sparse principal component

detection in [10], and its level of difficulty has led to proposals to base cyrpto systems on variants

of it in [3]. In addition, the planted clique problem has been utilized to show that evaluation of

certain financial derivatives is hard in [4], and it has also been used to show that testing k-wise

independence is hard near the information theoretic limit in [1]. The planted clique problem

also has applications outside of just mathematics; it is closely related to the problem of finding

large communities of people in social networks, and is studied in molecular biology with respect

to signal finding, a process dedicated to finding patterns in DNA sequences, in [26]. Due to the

versatility and the significance of the planted clique problem, understanding its difficulty with

respect to algorithmic design is an important open problem.

A potential technique for solving the planted clique problem is the Sum Of Squares Hierar-

chy. The Sum Of Squares Hierarchy, or the SOS Hierarchy, is a generalization of semi-definite
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programming, a common and powerful tool for obtaining approximate solutions to combinato-

rial optimization problems. As with other hierarchies, the SOS hierarchy works by presenting

progressively stronger convex relaxations for combinatorial optimization problems parametrized

by the number of rounds r. The SOS hierarchy is known to be very powerful. In particular,

it is known that the Hierarchy captures the Goemmans-Williamson algorithm for max-cut [13]

and the Arora, Rao, Vazirani algorithm for sparsest cut [6], and [9] and [16] have shown that

the SOS hierarchy captures the sub-exponential algorithm for unique games of [5]. Despite this

knowledge, we do not have a good understanding of the performance of the SOS Hierarchy for

most problems. Most known lower bounds have their origins in [14, 15], though some of these

bounds were later independently rediscovered in [28]. Bettering the understanding the power

and the limitations of the SOS hierarchy is a major area of study in complexity theory, as doing

so would give great insight into the powers and limitations of general computation.

1.2. Outline.

Given a bipartite graph H with partite sets of size u and v and a random graph G, one can

create an n!
(n−u)! ×

n!
(n−v)! locally random matrix R whose entries are solely dependent upon the

presence of particular edges in G (see Definition 2 for an exact definition). We first bound the

norm of this matrix when our bipartite graph H is just K2, or the complete graph on two vertices;

while this case has been extensively studied, such as in [7], we investigate it in order to gain

intuition for the following sections. We then move on to the general case of any bipartite graph

H. We bound the norm of R in terms of u, v, q, and n, where q is the size of a minimum vertex

cover of H. Finally, we study an even broader case, in which the matrix whose norm we attempt

to bound is based on a much more general input graph H. We utilize the same techniques as

before–namely, the trace method and certain theorems from graph theory–to calculate an upper

bound for this norm. We conclude by analyzing some of the ways in which the work in this paper

can be applied to prove specific cases in already-existing literature, such as in [17,22,27], as well

as suggesting future directions.

2. Definitions and Preliminaries

This paper utilizes several terms specific to matrix theory and graph theory, most of which

follow their standard definitions. We recall the following standard linear algebra definitions.

Given a matrix M , we refer to the element in the ith row and the jth column of M by the term

M(i, j). In addition, given an m×n matrix M , the spectral norm of M induced by the Euclidean

2 norm is defined to be ||M || = max
||v||=1

||Mv||, where v is an n-dimensional vector. We also define
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the trace of an n × n matrix M to be equal to tr(M) =
n∑
i=1

M(i, i). Finally, we define the

eigenvalues of an n× n matrix M to be the n values λi such that there exists an n-dimensional

vector v with Mv = λiv.

Because we are studying the norm of certain matrices, it is logical to develop a method to

analyze these norms. Throughout this paper, we utilize what is known as the trace method to

bound these norms.

Proposition 2.1. Given a matrix A, 2k
√

tr((AAT )k) ≥ ||A||.

Proof. Note that if λ1, λ2, . . . , λn are the n eigenvalues of a matrix M , then tr(Mk) = λk1 + λk2 +

· · ·+λkn. However, if λmax(M) is the largest eigenvalue of a matrix M , then ||A|| =
√
λmax(AAT ).

Therefore,

2k
√

tr((AAT )k) ≥ 2k
√
λmax(AAT )k ≥ ||A||.

�

3. Bounding the Norm of a Singular Locally Random Matrix

Consider a random graph G = G(n, 1
2
) with vertices labeled from 1 to n. We then define a

singular locally random matrix as follows:

Definition 1. Given a labeled random graph (V (G), E(G)) = G = G(n, 1
2
) with |V | = n, create

an n× n matrix R, known as the singular locally random matrix, with the following entries:

R(i, j) =


0 i = j

1 (i, j) ∈ E(G)

−1 (i, j) /∈ E(G).

Note that the singular locally random matrix is closely related to the adjacency matrix of a

graph; in fact, it is the additive inverse of the Seidel adjacency matrix.

Note that for all 1 ≤ i, j ≤ n, E[R(i, j)] = 0, as any edge (i, j) has probability 1
2

of being

included in G. In addition, note that R is symmetric, so R = RT .

This type of matrix and its norm have been studied extensively already. In particular, Wigner

showed in 1958 in [30] that the norm of such a matrix was O(
√
n); in fact, this norm was shown

to be very close to 2
√
n with high probability. Nonetheless, we still consider this example in our

report as it helps us gain intuition and better approach the following problems.
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In order to find a probabilistic bound for ||R||, we bound E[ 2k
√

tr((RRT )k)]. Notice that

tr((RRT )k) = tr(R2k) =
∑

i1,i2,...,i2k∈[1,n]

( 2k∏
j=1

R(ij, ij+1)

)
where i2k+1 = i1 and [1, n] = {1, 2, . . . , n}. This result is a simple application of matrix multipli-

cation. Therefore,

E[tr((RRT )k)] = E[tr(R2k)] = E

[ ∑
i1,i2,...,i2k∈[1,n]

( 2k∏
j=1

R(ij, ij+1)

)]
=

∑
i1,i2,...,i2k∈[1,n]

E
[ 2k∏
j=1

R(ij, ij+1)

]
by linearity of expectation. Now, note that because E[R(i, j)] = 0, the vast majority of the

terms E
[ 2k∏
j=1

R(ij, ij+1)
]

are 0; in fact, the only time the expected value is non-zero is when each

consecutive pair of i’s is distinct and when each R(i, j) term appears an even number of times,

in which case the expected value will be 1. Therefore, we can calculate the number of choices

for i1, i2, . . . , i2k that yield a non-zero value for E
[ 2k∏
j=1

R(ij, ij+1)
]

and use that number to bound

E[tr((RRT )k)]. We can think of the sum E
[ 2k∏
j=1

R(ij, ij+1)
]

graphically as a sum over length 2k

cycles in the vertex set [1, n]. We use what is known as a constraint graph to represent this

cycle. In this case, the constraint graph consists of 2k vertices, each labeled from i1 to i2k; vertex

ij is connected to vertex ij+1 for all 1 ≤ j ≤ 2k to represent the term R(ij, ij+1), and a bold edge

is drawn between ir and is to signify that ir = is.

i1

i2

i3

i4

i5

i6

i7

i8

R(i1, i2)

R(i2, i3)

R(i3, i4)

R(i4, i5)R(i5, i6)

R(i6, i7)

R(i7, i8)

R(i8, i1)

Figure 1. An example of a constraint graph where k = 4, i1 = i3, i2 = i6, and i4 = i8.

Note that in a scenario where j of 2k variables are equal, we only draw j − 1 constraint

edges to represent that equality, rather than
(
j
2

)
. This is because each constraint edge essentially

represents a restriction; the extra constraint edges do not add to these restrictions, so they are

not included.
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Proposition 3.1. In order for E
[ 2k∏
j=1

R(ij, ij+1)
]
to have a non-zero value, there must be at least

k − 1 constraint edges in the respective constraint graph; in addition, this bound is sharp.

Proof. We prove the first statement by induction on k. When k = 1, the statement is vacuously

true; E
[ 2k∏
j=1

R(ij, ij+1)
]

= E[R(i1, i2)
2], which has a non-zero value regardless of constraint edges.

Now, assume that the statement is true for k = r, and consider k = r + 1. Assume

E
[ 2k∏
j=1

R(ij, ij+1)
]
6= 0, and consider the constraint graph. If each vertex is adjacent to at least

one constraint edge, then because each constraint edge is adjacent to two vertices, there are at

least 2r+2
2

= r + 1 constraint edges, and we are done. Therefore, we only need to consider the

case where there exists a vertex that is not adjacent to any constraint edges. Call this vertex ij.

Then, note that the statement ij−1 = ij+1 must be true; if it was not, then the values R(ij−1, ij)

and R(ij, ij+1) have no corresponding equal terms, which means E
[ 2k∏
j=1

R(ij, ij+1)
]

= 0. But if

ij−1 = ij+1, then R(ij−1, ij) = R(ij, ij+1), meaning that we no longer need to consider the vertex

ij and its adjacent edges. Therefore, we can treat the vertices ij−1 and ij+1 as the same vertex,

as they are equal, meaning that we have essentially reduced the constraint graph to one on 2r

vertices. Then, by our Induction Hypothesis, this constraint graph requires at least r − 1 con-

straint edges to create a nonzero expected value, which means that our total constraint graph

requires at least r constraint edges, completing the proof.

In order to prove the sharpness of the bound, simply consider the case where ij = i2k+2−j for

all 2 ≤ j ≤ k. Then, R(il, il+1) = R(i2k+1−l, i2k+2−l) for all 1 ≤ l ≤ k, which creates a non-zero

expected value. �

Now, we utilize Proposition 3.1 to bound the maximum number of times that E
[ 2k∏
j=1

R(ij, ij+1)
]

can take a non-zero value, and use that information to bound E[tr(R2k)].

Proposition 3.2. Given a constraint graph on b vertices such that at least c constraint edges

are required to create a non-zero expectation value, where each vertex has n possible values, let N

represent the number of choices for the b vertices such that the expectation value of the product

is non-zero. Then, N ≤
(
b
c

)
nb−c(b− c)c ≤ b2cnb−c.

Proof. Treat the set of vertices as an ordered set S = {d1, d2, . . . , db}.
Because there must be at least c constraint edges, there must be at least c elements of S that

are duplicates of other elements, so we can choose a set I ⊆ Sb of c indices such that for all

j ∈ I, there exists m /∈ I such that dj = dm. There are
(
b
c

)
choices for I. We can then choose
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the elements {dj | j /∈ I}. Each element has at most n possible values so there are at most nb−c

choices for these elements. Finally, we choose the elements {dj | j ∈ I}. To determine each dj it

is enough to specify the m /∈ I such that dj = dm. Each such dj has b − c choices, so there are

at most (b− c)c choices for these elements. Therefore, N ≤
(
b
c

)
nb−c(b− c)c.

Now, note that
(
b
c

)
≤ bc, as

(
b
c

)
= b!

(b−c)!c! ≤
b!

(b−c)! ≤ bc. As (b − c)c ≤ bc, this completes the

proof. �

Corollary 3.3. Let N represent the number of choices for the variables (i1, i2, . . . , i2k) such that

E
[ 2k∏
j=1

R(ij, ij+1)
]
6= 0. Then, N ≤ (2k)2k−2nk+1.

Proof. Apply Proposition 3.2. Note that b = 2k and c = k − 1 by Proposition 3.1. This implies

the desired result.

�

Corollary 3.4. E[tr(R2k)] ≤ (2k)2k−2nk+1.

Proof. Recall E[tr(R2k)] =
∑

i1,i2,...,i2k∈[1,n]

E
[ 2k∏
j=1

R(ij, ij+1)
]
. By Corollary 3.3, the number of

choices for (i1, i2, . . . , i2k) that yield a non-zero value for E
[ 2k∏
j=1

R(ij, ij+1)
]

is at most (2k)2k−2nk+1;

in addition, E
[ 2k∏
j=1

R(ij, ij+1)
]
≤ 1 for all choices of (i1, i2, . . . , i2k). These two observations com-

plete the proof. �

Now, note that for any matrix R, tr(R2k) must take on a nonnegative value. Then, by Markov’s

inequality and Proposition 3.4,

P[tr(R2k) ≥ E[tr(R2k)]

ε
] ≤ ε =⇒ P[tr(R2k) ≥ (2k)2k−2nk+1/ε] ≤ ε.

This leads us to our main theorem for singular locally random matrices:

Theorem 3.5. Given a random graph G = G(n, 1
2
) and R its singular locally random matrix,

for all ε ∈ (0, 1),

P[||R|| ≥ e
√
n(log(n/ε) + 2)] ≤ ε.

Proof. Note that ||R|| ≤ 2k
√

tr((RRT )k) = 2k
√

tr(R2k) for all positive integer k. In addition,

P[tr(R2k) ≥ (2k)2k−2nk+1/ε] ≤ ε =⇒ P[ 2k
√

tr(R2k) ≥ 2k
√

(2k)2k−2nk+1/ε] ≤ ε.
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But 2k
√

(2k)2k−2nk+1/ε ≤ 2k
√

(2k)2knk+1/ε = 2k
√
n(n/ε)1/2k. Setting k = dlog(n/ε)/2e, we see

that 2k
√

(2k)2k−2nk+1/ε ≤ e
√
n(log(n/ε) + 2).

Therefore, P[ 2k
√

tr(R2k) ≥ e
√
n(log(n/ε)+2)] ≤ ε. As ||R|| ≤ 2k

√
tr(R2k), the claim follows. �

The important part of Theorem 3.5 is noticing that ||R|| is O(
√
n log(n)). Though it is known

that ||R|| is O(
√
n), the methods utilized in this section can be modified to yield similar results

in the following sections.

4. Bounding the Norm of a Simple Locally Random Matrix

In this section, we generalize the technique utilized in the previous section to create a bound

for all matrices of a certain form.

Definition 2. Consider a bipartite graph H with partite sets X = {x1, x2, . . . , x|X|} and Y =

{y1, y2, . . . , y|Y |}. Then, given a graph (V (G), E(G)) = G = G(n, 1
2
) with |V | = n, create a

n!
(n−|X|)! ×

n!
(n−|Y |)! matrix R, known as a simple locally random matrix, with rows indexed by

ordered sets of |X| distinct numbers from 1 to n, and columns indexed by ordered sets of |Y |
distinct numbers from 1 to n. Then, if A = {a1, a2, . . . , a|X|} and B = {b1, b2, . . . , b|Y |}, the entry

of R indexed by A and B is defined as

R(A,B) =

0 A ∩B 6= ∅

(−1)E(A,B) A ∩B = ∅

where E(A,B) is the number of pairs (i, j) such that edge (xi, yj) exists in H but edge (ai, bj)

does not exist in G.

Note that the singular locally random matrix is obtained when H is just K2. In addition, note

that E[R(A,B)] = 0 for randomly chosen A,B. Say |X| = u and |Y | = v. Now, in order to find

a probabilistic bound for ||R||, we instead bound the norm of a closely related matrix.

Let m = u + v, and set V1, V2, . . . , Vm to be a partition of {1, 2, . . . , n} into m disjoint sets.

Note that the total number of choices for the sets V is mn, as each element of {1, 2, . . . , n} can

belong to one of m possible partition sets. We can then define a matrix closely related to R:

Definition 3. Given A = {a1, a2, . . . , au} and B = {b1, b2, . . . , bv} subsets of {1, 2, . . . , n}, let

RV1,...,Vm(A,B) be a n!
(n−u)! ×

n!
(n−v)! matrix in which RV1,...,Vm(A,B) = R(A,B) if ai ∈ Vi for all

i ≤ u and bj ∈ Vu+j for all j ≤ v; otherwise, RV1,...,Vm(A,B) = 0.

7



Denote RV1,...,Vm as R′. We bound ||R′|| by bounding E[ 2k
√

tr((R′R′T )k)] and then use this

information to bound ||R||. Consider the bipartite graph H. Define Sn,u to be the set of all sets

of u distinct numbers chosen from 1 to n and define Sn,v similarly. Then, notice

E[tr((R′R′T )k)] = E

[ ∑
A1,A3,...,A2k−1∈Sn,u

B2,B4,...,B2k∈Sn,v

( k∏
j=1

R′(A2j−1, B2j)R
′T (B2j, A2j+1)

)]

=
∑

A1,A3,...,A2k−1∈Sn,u

B2,B4,...,B2k∈Sn,v

E

[
k∏
j=1

R′(A2j−1, B2j)R
′T (B2j, A2j+1)

]

by linearity of expectation. Denote
k∏
j=1

R′(A2j−1, B2j)R
′T (B2j, A2j+1) as P (A1, . . . , B2k). Simi-

larly to the previous case, because E[R′(A,B)] = 0, the vast majority of the terms E[P (A1, . . . , B2k)]

are 0; the only time the expected value can be non-zero is when each consecutive pair of A’s and

B’s is disjoint and every edge of G involved in the product appears an even number of times. In

this case, the expected value will be at most 1. So, we can calculate the number of choices for

A1, B2, . . . , A2k−1, B2k that yield a non-zero value for E[P (A1, . . . , B2k)] and use that number to

bound E[tr((R′R′T )k)]. In order to represent E[P (A1, . . . , B2k)], we use another constraint graph.

This constraint graph is similar to the one in Proposition 3.1. In this constraint graph, there

are k(u+v) vertices sorted into 2k sets. These vertices are labeled A1 = {a1;1, a2;1, . . . , au;1}, B2 =

{b1;2, b2;2, . . . , bv;2}, A3 = {a1;3, a2;3, . . . , au;3}, . . . , B2k = {b1;2k, b2;2k . . . , bv;2k}. Two vertices ap;q

and br;s are adjacent in the constraint graph if and only if |q− s| = 1 and xp and yr are adjacent

in H, where ap;1 = ap;2k+1.

u1

u2

v1

v2

v3

Figure 2a: H.

a1;1

a2;1

b1;2b2;2b3;2

a1;3

a2;3

b1;4 b2;4 b3;4

Figure 2b: An example of the constraint graph for

the given example of H, where k = 2.
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Now, in order to bound the number of choices for A1, B2, . . . , A2k−1, B2k that yield a non-zero

expectation value, we can introduce the constraint edges again. However, note that due to the

definition of R′, constraint edges can only exist between vertices of the constraint graph that are

created by the same vertex of H, as it is impossible for two vertices that are not created by the

same vertex of H to be equal, as they correspond to different disjoint sets Vi, and the value of

the variable must be in its respective set.

Lemma 4.1. In order for E[P (A1, . . . , B2k)] to have a non-zero value, there must be at least

q(k − 1) constraint edges in the respective constraint graph, where q is the size of a minimal

vertex cover of H; in addition, this bound is sharp.

Proof. In order to prove this proposition, we first show that the given bound is an upper bound

then show that it is sharp by König’s Theorem [19].

First, note that in order for E[P (A1, . . . , B2k)] to have a non-zero value, every edge in the

constraint graph must have an equal counterpart by virtue of the constraint edges; this ensures

that any edge that appears in the product appears an even number of times, creating a non-zero

expected value.

It is easy to see that at most q(k− 1) constraint edges are required; namely, if V is a minimal

vertex cover of H, then if xi ∈ V , set ai;1 = ai;3 = · · · = ai;2k−1, and if yj ∈ V , set bj;2 = bj;4 =

· · · = bj;2k. Each such set of equalities corresponds to k− 1 constraint edges, meaning that there

are q(k − 1) constraint edges total. In addition, every edge in the constraint graph will have an

equal counterpart by this method. If (xi, yj) ∈ H, at least one of xi and yj is in V by definition;

without loss of generality yj ∈ V . Then, this implies that for the edges in the constraint graph of

the form (ai;1, bj;2), (bj;2, ai;3), (ai;3, bj;4), . . . , (bj;2k, ai;1), each edge (ai;2m−1, bj,2m−2) has the equal

counterpart (ai;2m−1, bj,2m) for 1 ≤ m ≤ k, as bj,2m−2 = bj,2m. Therefore, because each edge in the

constraint graph is created by some edge in H, and all the edges in the constraint graph created

by a certain edge in H are matched with an equal edge, this implies that this set of constraint

edges is enough to create a non-zero expected value.

Now, we must show at least q(k − 1) constraint edges are required. Because H is a bipartite

graph, we can apply König’s Theorem, which states that there exists a matching of size q in H.

Consider the q disjoint cycles of length 2k in the constraint graph that are created by the q edges

in the matching of H. Because R′ is defined so that constraint edges can only exist between

vertices ap;q and ap;q′ or between br;s and br;s′ , as two vertices not of this form do not belong to

the same set Vi, any constraint edge created can affect at most 1 of the q cycles, due to the fact

that all the cycles are disjoint and thus are impossible to link with a constraint edge. Therefore,
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each cycle requires at least k− 1 constraint edges by Proposition 3.1, implying that the q cycles

require at least q(k − 1) constraint edges total, completing the proof.

�

Corollary 4.2. Let N represent the number of choices for the sets A1, B2, . . . , A2k−1, B2k such

that E[P (A1, . . . , B2k)] 6= 0. Then, N ≤ ((u+ v)k)2(k−1)qn(u+v−q)k+q.

Proof. Apply Proposition 3.2. In this situation, b = k(u+ v) and c = q(k − 1). This implies the

desired result.

�

Corollary 4.3. E[tr((R′R′T )k)] ≤ ((u+ v)k)2(k−1)qn(u+v−q)k+q.

Proof. Recall that E[tr((R′R′T )k)] =
∑

A1,A3,...A2k−1∈Sn,l

B2,B4,...B2k∈Sn,m

E

[
k∏
j=1

R′(A2j−1, B2j)R
′T (B2j, A2j+1)

]
. Then,

by Proposition 4.2, the number of choices for A1, B2, . . . A2k−1, B2k that yield a non-zero value

for E

[
k∏
j=1

R′(A2j−1, B2j)R
′T (B2j, A2j+1)

]
is at most ((u + v)k)2(k−1)qn(u+v−q)k+q; in addition,

E

[
k∏
j=1

R′(A2j−1, B2j)R
′T (B2j, A2j+1)

]
≤ 1. These two observations complete the proof. �

Now, note that for any graph G on n vertices, tr((R′R′T )k) must take on a nonnegative value.

Then, by Markov’s inequality and Corollary 4.3,

P[tr((R′R′T )k) ≥ E[tr((R′R′T )k)]

ε
] ≤ ε =⇒ P[tr((R′R′T )k) ≥ ((u+ v)k)2(k−1)qn(u+v−q)k+q/ε] ≤ ε.

This allows us to bound the norm of our special matrix.

Proposition 4.4. Given a random graph G = G(n, 1
2
), R its simple locally random matrix

created by a bipartite graph H with partite sets of size u and v and minimal vertex cover of size

q, and R′ the matrix created by partitioning the row and column elements of R, then if q ≥ 1

and n ≥ e2,

P[||R′|| ≥ eqn
u+v−q

2 ((u+ v) log(nq/ε))q] ≤ ε.

Proof. Note that ||R′|| ≤ 2k
√

tr((R′R′T )k) for all positive integer k. In addition,

P[tr((R′R′T )k) ≥ ((u+ v)k)2(k−1)qn(u+v−q)k+q/ε] ≤ ε =⇒
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P[ 2k
√

tr((R′R′T )k) ≥ 2k

√
((u+ v)k)2(k−1)qn(u+v−q)k+q/ε] ≤ ε.

But 2k
√

((u+ v)k)2(k−1)qn(u+v−q)k+q/ε ≤ ((u+ v)k)qn
u+v−q

2 (nq/ε)1/2k.

Setting k = d 1
2q

log(nq/ε)e we find that ((u+v)k)qn
u+v−q

2 (nq/ε)1/2k ≤ eqn
u+v−q

2 ((u+v) log(nq/ε))q.

Therefore, P[ 2k
√

tr((R′R′T )k) ≥ eqn
u+v−q

2 ((u + v) log(nq/ε))q] ≤ ε. As ||R′|| ≤ 2k
√

tr((R′R′T )k),

the claim follows. �

We can now use our bounds for ||R′|| to bound ||R|| through the following lemma.

Lemma 4.5. Let M be a matrix and B, p be positive numbers such that

(1) M = 1
N

∑
V1,··· ,Vm MV1,··· ,Vm for some matrices {MV1,··· ,Vm} where N is the number of

possible V1, · · · , Vm
(2) For each choice of V1, · · · , Vm, for all x ∈ [1

2
, N ], P(||MV1,··· ,Vm|| > Bx) ≤ p

64x3

then P(||M || ≥ B) < p.

Proof. The result follows from the following proposition.

Proposition 4.6. For all j ∈ [0, lgN ], the probability that there are more than N
22j+2 matrices

MV1,··· ,Vm such that ||MV1,··· ,Vm|| > 2j−1B is at most p
2j+1 .

Proof. We prove this by contradiction. If the probability that there are more than N
22j+2 ma-

trices MV1,··· ,Vm such that ||MV1,··· ,Vm|| > 2j−1B is greater than p
2j+1 then the probability that

||MV1,··· ,Vm|| > 2j−1B must be greater than p
23j+3 . Plugging in x = 2j−1, this gives a contradic-

tion. �

Using this proposition, with probability at least 1 −
∑blgnc

j=0
p

2j+1 , for all integers j such that

0 ≤ j ≤ lgN , there are at most N
22j+2 matrices MV1,··· ,Vm such that ||MV1,··· ,Vm || > 2j−1B. When

this occurs, for all integers j such that 0 ≤ j ≤ blgNc − 1, there are at most N
22j+2 matrices

MV1,··· ,Vm such that 2j−1B < ||MV1,··· ,Vm|| ≤ 2jB. Moreover, there are no matrices such that

||MV1,··· ,Vm|| > 2blgNc−1B. This implies that with probability at least 1 −
∑blgnc

j=0
p

2j+1 , ||M || ≤
B
2

+
∑blgNc

j=0
2jB
22j+2 < B, as needed. Since 1−

∑blgnc
j=0

p
2j+1 > 1− p, the result follows. �

Proposition 4.7. Set M = R and MV1,...,Vm = mmRV1,...,Vm, where q ≥ 1 and n ≥ e3. For all

p ∈ (0, 1), let B = (u + v)u+veqn
u+v−q

2 ((u + v) log(8nq/p))q. Then, conditions (1) and (2) of

Lemma 4.5 holds true for these values of M , B, and p.

Proof. We must show both (1) and (2).
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Note that M = 1
N

∑
V1,...,Vm

MV1,...,Vm because given a non-zero term M(A,B), R′(A,B) has

probability 1
(u+v)u+v of equalingM(A,B) among all possible V1, V2, . . . , Vm; therefore, asMV1,...,Vm =

mmRV1,...,Vm , part (1) of the Lemma holds.

Now, we must show (2); that P[||MV1,...,Vm|| > Bx] = P[||R′|| > Cx] ≤ p
64x3

for all x ∈ [1
2
, N ],

where C = B/(u + v)u+v. If we let f(x) = eqn
u+v−q

2 ((u + v) log(64nqx3/p))q, P [||R′|| ≥ f(x)] ≤
p

64x3
by Proposition 4.4. Define g(x) = f(x)

x
. Note that lim

x→0+
g(x) = −∞, and lim

x→∞
g(x) = 0.

However, in the domain x > 0, g′(x) has only one zero; at x = 3

√
e3qp
64nq . As n ≥ e3, x = 3

√
e3qp
64nq ≤

3
√

p
64
≤ 3

√
1
64

= 1
4
< 1

2
.

Therefore, for x ≥ 1
2
, g(x) is decreasing. But we know that P[||R′|| ≥ f(x)] = P[||R′|| ≥

xg(x)] ≤ p
64x3

. Therefore, as C = g(1/2), for all x ∈ [1
2
, N ], P[||R′|| ≥ Cx] ≤ P[||R′|| ≥ xg(x)] ≤

p
64x3

, as desired. �

Note that ((u + v) log(8nq/p))q = (u + v)q(log(8nq/p))q, and eq ≤ 3u+v+q. Therefore, B =

(u+ v)u+veqn
u+v−q

2 ((u+ v) log(8nq/p))q ≤ (3u+ 3v)u+v+qn
u+v−q

2 logq(8nq/p). We use this bound

to simplify the constants involved in the bound in our main theorem.

Now that we know our particular values of M , B, and p satisfy the conditions of Lemma

4.5, we apply the aforementioned lemma, leading us to our main theorem about simple locally

random matrices:

Theorem 4.8. Given a random graph G = G(n, 1
2
) and R its simple locally random matrix

created by a bipartite graph H with partite sets of size u and v and minimal vertex cover of size

q, if q ≥ 1 and n ≥ e3, for all ε ∈ (0, 1),

P[||R|| > (3u+ 3v)u+v+qn
u+v−q

2 (logq(8nq/p))] < ε.

In addition to an upper bound, our previous work allows us to calculate a simple lower bound

for E[||R||].

Theorem 4.9. Given a random graph G = G(n, 1
2
) and R its simple locally random matrix

created by a bipartite graph H with partite sets of size u and v and minimal vertex cover of size

q,

E[||R||] ≥
(
n

m
− 1

)u+v−q
2

.

Proof. The statement follows from the fact that ||R|| ≥ ||R′|| for all R′, as R′ is a matrix created

by filling certain rows and columns of R with 0’s. In addition, because we know Proposition 4.1
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is sharp, there exists a constraint graph with q(k − 1) constraint edges that yields a non-zero

expectation. Then we can pick V1, V2, . . . , Vm with Vi = {bn(i−1)
m
c + 1, bn(i−1)

m
c + 2, . . . bn(i)

m
c}

so that tr((R′R′T )k) is at least ( n
m
− 1)(u+v)k−q(k−1). As lim

k→∞
2k
√

tr((R′R′T )k) = ||R′||, and

lim
k→∞

2k
√

tr((R′R′T )k) ≥ lim
k→∞

2k

√(
n

m
− 1

)(u+v)k−q(k−1)

=

(
n

m
− 1

)u+v−q
2

, the claim follows.

�

Similarly to the singular locally random matrix case, the constant factors are not extremely

relevant; it is more important to consider the asymptotic behavior of ||R|| for large values of

n. Therefore, the important part of Theorem 4.8 is noticing that ||R|| is O(n
u+v−q

2 logq(n)). In

addition, Theorem 4.9 tells us that E[||R||] is Ω(n
u+v−q

2 ), giving us relatively close upper and

lower bounds for ||R||.

5. Bounding the Norm of a Complex Locally Random Matrix

In this section, we consider norms of matrices that are defined using a much more complex

graph for H. We utilize the same technique used in the past two sections to bound the norm of

all matrices of this form. We first begin with a definition that allows us to rigorously define the

type of matrices we are dealing with.

Definition 4. Given a graph (V (H), E(H)) = H and a random labeled graph (V (G), E(G)) =

G(n, 1/2), let S be the set of all injective functions φ from V (H) to V (G). In addition, given a

function φ ∈ S, we then extend φ to be a function from E(H) to possible edges of G by setting

φ(h1, h2) = (φ(h1), φ(h2)), where h1, h2 ∈ V (H). Finally, we then define φ(E(H)) to be the set

of all possible edges in E(G) that are mapped to from H by φ, and φ(E(H)) \ E(G) to be the

set of possible edges in G that are mapped to by φ but do not exist in G.

Now that we have defined such a function φ, we can define our complex locally random matrices.

Definition 5. Consider a graph (V (H), E(H)) = H with two disjoint subsets of V (H) X =

{x1, x2, . . . x|X|} and Y = {y1, y2, . . . y|Y |} such that no edges of H exist within X or within Y .

Then, given a random graph (V (G), E(G)) = G(n, 1/2), let M be the n!
(n−|X|)! ×

n!
(n−|Y |)! complex

locally random matrix created by G and H, where the rows of M are indexed by ordered subsets

of {1, 2, . . . , n} of size |X| and the columns of M are indexed by ordered subsets of {1, 2, . . . , n}
of size |Y |, with the entry of M indexed by the row A = {a1, a2, . . . , a|X|} and the column

B = {b1, b2, . . . , b|Y |} being
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∑
φ

(−1)|φ(E(H))\E(G)|

where the sum ranges over all injective functions φ from V (H) to V (G) such that φ(xi) = ai for

all 1 ≤ i ≤ |X| and φ(yj) = bj for all 1 ≤ j ≤ |Y |.

This type of matrix is much more complicated than simple locally random matrices; for simple

locally random matrices, X ∪ Y = V (H). However, we can still apply the previous techniques

with some modification in order to bound the norms of these matrices.

Denote Z = V (H) \ X \ Y = {z1, z2, . . . , z|Z|}, and say |X| = u, |Y | = v, and |Z| = w

for convenience. Now, in order to find a bound for ||M ||, we instead consider a closely related

matrix.

Let m = |V (H)| = u + v + w, and set V1, V2, . . . , Vm to be a partition of {1, 2, . . . , n} into

m disjoint sets. In addition, let θ to be a bijective function from V (H) to [1,m]. Now, define

MV1,...,Vm in the following manner:

Definition 6. Given our matrix M and V1, V2, . . . , Vm a partition of {1, 2, . . . , n} into m disjoint

sets, then MV1,...,Vm is a n!
(n−u)! ×

n!
(n−v)! matrix with the rows indexed by ordered subsets of

{1, 2, . . . , n} of size u and the columns indexed by ordered subsets of {1, 2, . . . , n} of size v, with

the entry of MV1,...,Vm indexed by the row {a1, a2, . . . , au} and the column {b1, b2, . . . , bv} being

∑
φ′

(−1)|φ
′(E(H))\E(G)|

where this time the sum only ranges over injective functions φ′ from V (H) to V (G) such that

φ′(xi) = ai for all 1 ≤ i ≤ u, φ′(yj) = bj for all 1 ≤ j ≤ v, and φ′(h1) ∈ Vθ(h1) for all h1 ∈ H.

Note that in particular, this means that if there exists some i for which ai /∈ Vθ(xi) or there

exists some j for which bj /∈ Vθ(yj), then the entry is 0.

Denote MV1,...,Vm as M ′ for convenience’s sake. We can then define the entries of M ′ in a

different method using the following definition and proposition.

Definition 7. Given three setsA = {a1, a2, . . . , au}, B = {b1, b2, . . . , bv}, and C = {c1, c2, . . . , cw},
with each element of the sets in [1, n], then define Q(A,C,B) = (−1)|φ

′(E(H))\E(G)| where the func-

tion φ′ is the unique injective function, if it exists, from V (H) to V (G) satisfying φ′(xi) = ai for

all 1 ≤ i ≤ u, φ′(yj) = bj for all 1 ≤ j ≤ v, φ′(zk) = ck for all 1 ≤ k ≤ w, and φ′(h1) ∈ Vθ(h1)
for all h1 ∈ H. Note that if no such function φ exists, then Q(A,C,B) = 0. Finally, define

QT (B,C,A) = Q(A,C,B).

14



Utilizing this definition, we can find another way of calculating M ′(A,B). Substituting the φ′

in Definition 6 with Q(A,C,B), we can derive the following proposition.

Proposition 5.1. Given an altered complex locally random matrix M ′, then the entry of M ′

indexed by the row A = {a1, a2, . . . , au} and the column B = {b1, b2, . . . , bv} is

∑
1≤c1≤n
1≤c2≤n

...
1≤cw≤n

Q(A,C,B).

We now bound ||M ′|| and then use this information to bound ||M ||.
In order to find a probabilistic bound for ||M ′||, we bound we bound E[ 2k

√
tr((M ′M ′T )k)].

Define Sn,u to be the set of all ordered sets of u distinct numbers chosen from 1 to n, and define

Sn,v similarly. Finally, let S ′n,w be the set of all ordered sets of w numbers chosen from 1 to n,

allowing repetition. Then, notice that

E[tr((M ′M ′T )k)] =
∑

A1,A5,...,A4k−3∈Sn,u

B3,B7,...,B4k−1∈Sn,v

E

[
k∏
j=1

M ′(A4j−3, B4j−1)M
′T (B4j−1, A4j+1)

]

=
∑

A1,A5,...,A4k−3∈Sn,u

B3,B7,...,B4k−1∈Sn,v

C2,C4,...C4k∈S′n,w

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)Q
T (B4j−1, C4j, A4j+1)

]

by linearity of expectation, where A4k+1 = A1.

Denote
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)Q
T (B4j−1, C4j, A4j+1) as P (A1, C2, . . . , B4k−1, C4k). Similarly

to the singular matrix case, because E[Q(A,C,B)] = 0 for randomly chosen A, B, and C, the

vast majority of the terms E[P (A1, C2, . . . , B4k−1, C4k)] are 0; in fact, the only time the expected

value can be non-zero is when each consecutive pair of sets of variables is disjoint and every edge

of G involved in the product appears an even number of times, in which case the expected value is

at most 1. So, we can calculate the number of choices for A1, C2, . . . , B4k−1, C4k that yield a non-

zero value for E[P (A1, C2, . . . , B4k−1, C4k)] and use that number to bound E[tr((M ′M ′T )k)]. In

order to represent E[P (A1, C2, . . . , B4k−1, C4k)], we use another constraint graph. This constraint

graph is similar to the earlier one; however, it is slightly more complicated, as there is an extra

set of vertices involved.
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In this constraint graph, there are k(u + 2w + v) vertices sorted into 4k sets. These vertices

are labeled A1 = {a1;1, a2;1, . . . , au;1}, C2 = {c1;2, c2;2, . . . , cw;2}, B3 = {b1;3, b2;3, . . . , bv;3}, C4 =

{c1;4, c2;4, . . . , cw;4}, A5 = {a1;5, a2;5, . . . , au;5}, . . . , C4k = {c1;4k, c2;4k . . . , cw;4k}. Note that, in par-

ticular, the sets describing the sets of vertices are labeled A1, C2, B3, C4,. . ., and repeat this

pattern exactly k times. Two vertices ap;q and br;s are adjacent if and only if |q − s| = 2 and xp

and yr are adjacent in H, where ap;1 = ap;4k+1. Similarly, ap;q and ct;o are adjacent if and only if

|q−o| = 1 and xp and zt are adjacent in H, and br;s and ct;o are adjacent if and only if |s−o| = 1

and br and ct are adjacent in H. Finally, ct;o and ct′;o′ are adjacent if and only if o = o′ and zt

and zt′ are adjacent in H.

x1

x2

y1

y2

y3

z1

z2

z3

Figure 3a: H.

a1;1

a2;1

b1;3b2;3b3;3

a1;5

a2;5

b1;7 b2;7 b3;7

c1;2

c2;2

c3;2

c1;4

c2;4

c3;4

c1;6

c2;6

c3;6

c1;8

c2;8

c3;8

Figure 3b: An example of the constraint graph for

the given example of H, where k = 2.

Now, in order to bound E[tr((M ′M ′T )k)], we must calculate the minimum number of constraint

edges required in our constraint graph to bring about a non-zero expectation value, as that will

help bound the number of choices for A1, C2, B3, C4, A5, . . . , B4k−1, C4k that yield a non-zero

expectation value for the product E[P (A1, C2, . . . , B4k−1, C4k)].

Lemma 5.2. In order for E[P (A1, C2, . . . , B4k−1, C4k)] to have a non-zero value, there must be

at least q(k− 1) + dk constraint edges in the respective constraint graph, where q is the maximal

number of vertex-independent paths from X to Y in H and d is the number of vertices of C with

positive degree; in addition, this bound is sharp.

Proof. Consider q vertex-independent paths from X to Y . Create a multiset S = {s1, s2, . . . sq}
of size q including the sizes of all the vertex-independent paths from X to Y , where the size of

a path is defined to be the number of edges in the path.
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Note that any path of size si in H corresponds to a cycle of size 2ksi in our constraint graph;

this cycle requires ksi−1 dependencies by Proposition 3.1. Therefore, as the dependencies caused

by two different cycles are entirely disjoint due to the cycles being disjoint, the total number of

dependencies required by just the q vertex-independent paths is

q∑
i=1

(ksi − 1) = k(

q∑
i=1

si)− q.

Consider the vertices in Z of positive degree but not in the q paths. Of the d vertices with

positive degree in Z, because each pair of paths is disjoint and a path of length si corresponds to

exactly si−1 vertices in C, exactly

q∑
i=1

(si−1) = (

q∑
i=1

si)−q vertices of C are included in paths, so

there are d−((

q∑
i=1

si)−q) vertices of Z with positive degree not included in the paths. Each of the

vertices in Z of positive degree is adjacent to some edge in H, and that edge is repeated 2k times

in the constraint graph; therefore, as each edge of G that appears in the constraint graph must

appear an even number of times in the constraint graph, any particular vertex of positive degree

can, in all of its appearances in the constraint graph, only take on at most k values. However,

the particular vertex appears 2k times in the constraint graph, once in each set of vertices of

the form Ci, so it must have at least k dependencies among those 2k appearances. Therefore,

there are required to be a minimum of (d − ((

q∑
i=1

si) − q))k + (k(

q∑
i=1

si) − q) = q(k − 1) + dk

dependencies in the constraint graph.

In order to prove the sharpness, we utilize Menger’s Theorem [23]. First, note that the existence

of q vertex-independent paths from X to Y implies that there exists q vertex-independent paths

from X to Y , with first vertex in X, last vertex in Y , and all internal vertices in Z. This

statement is true becausee given these q vertex-independent paths, if any of them have internal

vertices in X or Y , we can simply shorten these paths until they have only first and last vertices

in X and Y .

Now, Menger’s Theorem states that because there are a maximum of q vertex-indepedent

paths from X to Y in H with all internal vertices in Z, there is a set S ∈ V (H) with |S| = q

such that all paths from X to Y pass through at least one vertex of S. Consider such a set S.

Using S, we will create q(k − 1) + dk constraint edges that yield a non-zero expectation value

for E[P (A1, C2, . . . , B4k−1, C4k)] as follows.

For all vertices xi ∈ X such that xi ∈ S, set ai;1 = ai;5 = · · · = ai;4k−3. Note that this requires

k − 1 dependencies per vertex in S. Similarly, for all vertices yi ∈ Y such that yi ∈ S, set

bi;3 = bi;7 = · · · = bi;4k−1. In addition, for all vertices zi ∈ Z such that zi ∈ S, set ci;2 = ci;4 =

· · · = ci;4k. This requires 2k − 1 dependencies per vertex in S.
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Now, consider all vertices zi ∈ Z such that zi /∈ S and zi has positive degree. Note that if

there existed a path from zi to X that passed through no vertices in S, there cannot exist a

path from zi to Y that passes through no vertices in S, as that would imply that there was a

path from X to Y not passing through any vertices on S. So, if there exists a path from zi

to X passing through no vertices of S, set ci;4 = ci;6, ci;8 = ci;10, . . . , ci;4k = ci;2. Otherwise, set

ci;2 = ci;4, ci;6 = ci;8, . . . , ci;4k−2 = ci;4k. This requires k dependencies per vertex.

Now given an edge in the constraint graph (ap;q, br;s) with |q−s| = 2, then either xp or yr is in S

or else there would exist a path from X to Y not in S; therefore, either (ap;q, br;q+2) = (ap;q, br;q−2)

or (ap;s−2, br;s) = (ap;s+2, br;s) by the constraint edges. Similarly, given (ap;q, ct;o) with |p− o| = 1,

either ct;q−1 = ct;q+1, which implies (ap;q, ct;q−1) = (ap;q, ct;q+1), or zt /∈ S and xp ∈ S, which implies

(ap;2o−q−2, ct;2o−q−1) = (ap;2o−q+2, ct;2o−q+1). A similar argument applies to edges of the form

(ct;o, br;s). For edges of the form (ct;o, ct′;o), it can be shown that either (ct;o, ct′,o) = (ct;o−2, ct′;o−2)

or (ct;o, ct′,o) = (ct;o+2, ct′,o+2).

Finally, note that for if S contains exactly j vertices in Z, then the total number of constraint

edges used in this method is (k − 1)(|S| − j) + (2k − 1)j + (k)(d− j) = q(k − 1) + dk, meaning

that the bound given is sharp.

�

Corollary 5.3. Let N represent the number of choices for A1, C2, . . . , B4k−1, B4k such that

E[P (A1, C2, . . . , B4k−1, C4k)] 6= 0. Then, N ≤ ((u+ v + 2w)k)2k(d+q)−2qn(u+v+2w−d−q)k+q.

Proof. Apply Proposition 3.2. In this situation, b = k(u + v + 2w) and c = q(k − 1) + dk. This

implies the desired result. �

Corollary 5.4. E[tr((M ′M ′T )k)] ≤ ((u+ v + 2w)k)2k(d+q)−2qn(u+v+2w−d−q)k+q.

Proof.

Recall that E[tr((M ′M ′T )k)] =
∑

A1,A5,...,A4k−3∈Sn,u

B3,B7,...,B4k−1∈Sn,v

C2,C4,...C4k∈S′n,w

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)Q
T (B4j−1, C4j, A4j+1)

]
.

Then, by Proposition 5.3, there are at most ((u+ v+ 2w)k)2k(d+q)−2qn(u+v+2w−d−q)k+q choices for

A1, C2, . . . B4k−1, C4k that yield a non-zero value for E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)Q
T (B4j−1, C4j, A4j+1)

]
;

in addition, E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)Q
T (B4j−1, C4j, A4j+1)

]
≤ 1. These two observations

complete the proof. �
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Now, note that for any graph G on n vertices, tr((M ′M ′T )k) must take on a nonnegative value.

Then, by Markov’s Inequality and Corollary 5.4,

P[tr((M ′M ′T )k) ≥ ((u+ v + 2w)k)2k(d+q)−2qn(u+v+2w−d−q)k+q/ε] ≤ ε.

This allows us to bound the norm of our special matrix.

Proposition 5.5. Given a random graph G = G(n, 1
2
), M its complex locally random matrix

created by H, and M ′ the matrix created by partitioning the row and column elements of M , then

if q ≥ 1 and n ≥ e2(d+q),

P[||M ′|| ≥ e2(d+q)n
u+v+2w−d−q

2 ((u+ v + 2w) log(nq/ε))d+q] ≤ ε.

Proof. Note that ||M ′|| ≤ 2k
√

tr((M ′M ′T )k) for all positive integer k. In addition,

P[tr((M ′M ′T )k) ≥ ((u+ v + 2w)k)2k(d+q)−2qn(u+v+2w−d−q)k+q/ε] ≤ ε =⇒

P[ 2k
√

tr((M ′M ′T )k) ≥ 2k

√
((u+ v + 2w)k)2k(d+q)−2qn(u+v+2w−d−q)k+q/ε] ≤ ε.

But 2k
√

((u+ v + 2w)k)2k(d+q)−2qn(u+v+2w−d−q)k+q/ε ≤ ((u+v+2w)k)d+qn
u+v+2w−d−q

2 (nq/ε)1/2k.

Setting k = d 1
2(d+q)

log(nq/ε)e we find that ((u+ v + 2w)k)d+qn
u+v+2w−d−q

2 (nq/ε)1/2k is at most

e2(d+q)n
u+v+2w−d−q

2 ((u+ v + 2w) log(nq/ε))d+q.

Therefore, P[ 2k
√

tr((M ′M ′T )k) ≥ e2(d+q)n
u+v+2w−d−q

2 ((u+v+2w) log(nq/ε))d+q] ≤ ε. As ||M ′|| ≤
2k
√

tr((M ′M ′T )k), the claim follows.

�

Proposition 5.6. Consider when q ≥ 1 and n ≥ e3(d+q). Set Q = M and QV1,...,Vm =

mmMV1,...,Vm. For all p ∈ (0, 1), let B = (u+v+z)u+v+ze2(d+q)n
u+v+2w−d−q

2 ((u+v+2w) log(8nq/p))d+q.

Then Conditions (1) and (2) of Lemma 4.5 holds true for these values of Q, B, and p.

Proof. We must show both (1) and (2).

Note that Q = 1
N

∑
V1,...,Vm

QV1,...,Vm because given a non-zero term Q(A,B), M ′(A,B) has

probability 1
(u+v+w)u+v+w of equaling Q(A,B) among all possible V1, V2, . . . , Vm; therefore, as

QV1,...,Vm = mmMV1,...,Vm , part (1) of the Lemma holds.

Now, we must show (2); that P[||QV1,...,Vm || > Bx] = P[||M ′|| > Cx] ≤ p
64x3

for all x ∈ [1
2
, N ],

where C = B/(u+v+w)u+v+w. If we let f(x) = e2(d+q)n
u+v+2w−d−q

2 ((u+v+2w) log(64x3nq/p))d+q,

P [||M ′|| ≥ f(x)] ≤ p
64x3

by Proposition 5.5. Define g(x) = f(x)
x

. Note that lim
x→0+

g(x) = −∞, and
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lim
x→∞

g(x) = 0. However, in the domain x > 0, g′(x) has only one zero; at x = 3

√
e3(d+q)p
64nq . As

n ≥ e3(d+q), x = 3

√
e3(d+q)p
64nq ≤ 3

√
p
64
≤ 3

√
1
64

= 1
4
< 1

2
.

Therefore, for x ≥ 1
2
, g(x) is decreasing. But we know that P[||M ′|| ≥ f(x)] = P[||M ′|| ≥

xg(x)] ≤ p
64x3

. Therefore, as C = g(1/2), for all x ∈ [1
2
, N ], P[||M ′|| ≥ Cx] ≤ P[||M ′|| ≥ xg(x)] ≤

p
64x3

, as desired.

�

Note that ((u + v + 2w) log(8nq/p))d+q ≤ (u + v + 2w)u+v+w(log(8nq/p))d+q, and ed+q ≤
32u+2v+2w. Therefore, B ≤ (3u+3v+6w)2u+2v+2wn

u+v+2w−d−q
2 (log(8nq/p))d+q. We use this bound

to simplify the constants involved in the bound in our main theorem.

Theorem 5.7. for all ε ∈ (0, 1),

P[||M || > (3u+ 3v + 6w)2u+2v+2wn
u+v+2w−d−q

2 (log(8nq/ε))d+q] < ε.

In addition, our previous work allows us to calculate a simple lower bound for E[||M ||].

Theorem 5.8. Given a random graph G = G(n, 1
2
) and M its complex locally random matrix

created by a graph H with partite sets of size u and v and middle set of size w, with a maximum

of q vertex-independent paths from set X to set Y and with d middle vertices of non-zero degree,

then if m = u+ v + w,

E[||M ||] ≥
(
n

m
− 1

)u+v+2w−d−q
2

.

Proof. The statement follows from the fact that ||M || ≥ ||M ′|| for all R′, as R′ is a matrix created

by filling certain rows and columns of M with 0’s. In addition, because we know Proposition 5.2

is sharp, there exists a constraint graph with q(k−1)+dk constraint edges that yields a non-zero

expectation. Then we can pick V1, V2, . . . , Vm with Vi = {bn(i−1)
m
c + 1, bn(i−1)

m
c + 2, . . . bn(i)

m
c} so

that tr((M ′M ′T )k) is at least ( n
m
− 1)(u+v+2w)k−q(k−1)−dk. As lim

k→∞
2k
√

tr((M ′M ′T )k) = ||M ′||, and

lim
k→∞

2k
√

tr((M ′M ′T )k) ≥ lim
k→∞

2k

√(
n

m
− 1

)(u+v+2w)k−q(k−1)−dk

=

(
n

m
− 1

)u+v+2w−d−q
2

, the claim

follows.

�

Therefore, Theorem 5.7 tells us that ||M || is O(n
u+v+2w−d−q

2 (log(n))d+q), and Theorem 5.8 tells

us that E[||M ||] is Ω(n
u+v+2w−d−q

2 ). Together, these two statements allow us to find a relatively

strong upper and lower bound for ||M ||.

20



6. Applications

Norm bounds on locally random matrices have been needed in proving lower bounds for the

Sum of Squares Hierarchy for the planted clique problem several times. These bounds have

previously been handled case by case. Theorems 4.8 and 5.7 are unified theorems that give norm

bounds on all such matrices.

One example of the applications of this work is in [22]. Section 9 of this paper focuses on

bounding the norm of an

(
n

a

)
×
(
n

a

)
locally random matrix Ra with entries defined as

Ra(V,W ) =


2a

2 − 1 V ∩W = ∅, {(v, w) : v ∈ V,w ∈ W} ⊆ E(G)

−1 V ∩W = ∅, {(v, w) : v ∈ V,w ∈ W} * E(G)

0 V ∩W 6= ∅

where V and W are subsets of [1, n] of size a. Define RH to be the simple locally random matrix

created by a random graph G = G(n, 1/2) and the bipartite graph H; then, create the matrix

R′a =
∑
H

RH , where the sum ranges over all bipartite graphs H with both partite sets of size a

and |E(H)| > 0. Because |E(H)| > 0, it can be shown that ||RH || is O(na−
1
2 log(n)) for all H by

Theorem 4.8. Because the norm is subadditive, this would imply that ||R′a|| is O(na−
1
2 log(n)) as

well. However, it can be shown that R′a is just an extended version of Ra, in which every row and

column is repeated a! times; therefore, because Ra is a submatrix of R′a, ||Ra|| is O(na−
1
2 log(n)),

which is what a major part of [22] focuses on proving.

Similarly, Theorems 4.8 and 5.7 give a direct proof of probabilistic norm bounds shown in [17]

and [27], though the details are omitted for sake of space.

7. Conclusion and Further Studies

In this paper, we analyzed the norms of certain matrices that were associated with random

graphs G = G(n, 1/2). We proved that the simple locally random matrix R created by such a

graph G and a bipartite graph H with partite sets of size u and v and minimal vertex cover of

size q had a norm that was O(n
u+v−q

2 logq(n)) with high probability and had an expected value

that was Ω(n
u+v−w

2 ). More generally, we also showed that the complex locally random matrix

M associated with G and a graph H with two sets A and B of size u and v had a norm of size

O(n
u+v+2w−d−q

2 (log(n))d+q) with high probability and had expected value that was Ω(n
u+v+2w−d−q

2 ),

where w = |H| − u − v, q is the maximum number of vertex-independent paths from A to B,

and d is the number of vertices in V (H) \ A \B of positive degree.
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As described in the previous section, special cases of these bounds have appeared in analyzing

the performance of the Sum of Squares Hierarchy on the planted clique problem. The general

bounds presented in this paper will very likely be useful for further analysis of the Sum of

Squares’s performance on the planted clique problem, which would allow one to more accurately

calculate the power of the SOS Hierarchy and possibly determine a better algorithm for finding

planted cliques. In addition, the bounds in this paper may be useful for analyzing the performance

of the Sum of Squares Hierarchy on other problems as well.

A further research question is whether the norm bounds on these matrices can be tightened

by removing the polylog factor from the upper bounds, which would result in a much stronger

approximation for the norms of these matrices. In particular, better approximations in the trace

method and Proposition 3.2 may help lower or possibly remove this polylog factor. In addition, it

might be fruitful to consider locally random matrices with a different distribution for the entries.
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