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Abstract

Consider a polygonal domain Ω drawn on a regular triangular lattice.
A rhombus tiling of Ω is defined as a complete covering of the domain
with 60o-rhombi, where each one is obtained by gluing two neighboring
triangles together.

We consider a uniform measure on the set of all tilings of Ω. As the
mesh size of the lattice approaches zero while the polygon remains fixed,
a random tiling approaches a deterministic limit shape. An important
phenomenon that occurs with the convergence towards a limit shape is the
formation of frozen facets; that is, areas where there are asymptotically
tiles of only one particular type. The sharp boundary between these
ordered facet formations and the disordered region is a curve inscribed in
Ω. This inscribed curve is defined as the frozen boundary.

The goal of this project was to understand the purely algebraic ap-
proach, elaborated on in a paper by Kenyon and Okounkov, to the problem
of explicitly computing the frozen boundary. We will present our results
for a number of special cases we considered.

1 Introduction

The notion of the tiling model provides the basis for this project. Let Ω be a
polygonal domain drawn on a regular triangular lattice T . A rhombus tiling is a
complete covering of a domain by pairs of neighboring triangles glued together,
where each glued pair is called a rhombus tile (also known as a lozenge). See
Figures 1 and 2 for examples. We will call a domain that can be completely
covered by tiles tilable.
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Figure 1: A Rhombus Tile from Two Adjacent Triangles of T

Figure 2: An Example of a Tiling1

If we examine random tilings of a given tilable domain as the lozenges get
smaller and smaller, we encounter an important phenomenon: the formation of
a deterministic limit shape [3, 12, 13].

One of the limit shape’s interesting features is the formation of frozen facets;
that is, zones inside the considered domain where there are asymptotically
rhombi of only one particular type. There also exists a connected, open liquid
region inside the domain, where there are asymptotically an arbitrary configu-
ration of tiles. The curve that separates the liquid region from the frozen zones
is called the frozen boundary, of which Theorem 3.1 from Section 3 gives a for-
mal definition. See Figure 3 for an example of the convergence towards a frozen
boundary. The main purpose of this project is to explicitly compute the frozen
boundary for various tilable domains, using a purely algebraic approach from
[12].

1This picture is borrowed from [6]
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(a) Tiling of a Hexagon with
Small Tile Size

(b) Tiling of a Hexagon with
Smaller Tile Size

Figure 3: An Example of the Convergence Towards a Frozen Boundary2

The first examples presented in this paper will be computational results and
algorithms with elliptical frozen boundaries in specific types of hexagons and
with cardioidal frozen boundaries in specific types of octagons.

The hexagons we will consider are those that are equiangular and with 3
sets of parallel, equal sides. They must also have sides such that the lengths of
any two yield a rational quotient. See Figures 2 and 3 above for examples of
such hexagons. Section 4.1 elaborates on the set of hexagons considered in our
computations.

The octagons we will consider in our computations are those that are derived
from removing a rhombus from a hexagon with two different side lengths, as
shown in Figure 4. Section 4.2 elaborates on the set of octagons considered in
our computations.

Figure 4: The Construction of a Considered Octagon

2These pictures are borrowed from [6]
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After examples with hexagons and octagons, this paper will elaborate on
results with 3-tangent and 4-tangent frozen boundaries as well as on a general-
ization to an n-tangent frozen boundary.

Figure 5 shows the process for constructing considered domains with such
frozen boundaries. A domain with a 3-tangent frozen boundary is outlined in
black, while the addition outlined in orange creates a domain with a 4-tangent
frozen boundary. Successful additions (outlined in different colors) create do-
mains with n-tangent frozen boundaries (where n ≥ 3 for the domains in Figure
5). We will consider all domains geometrically similar to these ones. Sections 5
and 6 elaborate on such domains, and the computation of the frozen boundary
for them was first obtained by L. Petrov in [18], using an approach different
from the one in this paper.

Figure 5: Construction of Domains with n-tangent Frozen Boundaries

We have developed algorithms for the computation of the frozen boundaries
of all of the aforementioned domains. We have also developed visual results of
the frozen boundaries contained in specific examples for each type of domain.
See Figure 6 below for some of these results.

Figure 6: Examples of Visual Results
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1.1 Road Map

Section 2
This section discuss various interpretations of the tiling model as well as
the motivation for and applications of this concept.

Section 3
This section explains the 4 properties of the frozen boundary that give it
uniqueness. It also elaborates on the concept of curve duality, which is
central to two of the properties.

Section 4
This section presents results with a set of considered tilable hexagons and
their elliptical frozen boundaries. It also presents results with a set of
considered tilable octagons with their cardioidal frozen boundaries.

Section 5
This section presents a result with a frozen boundary that is a 3-tangent
curve and elaborates on the algorithm used to obtain this result. The
algorithm is also used to compute the frozen boudaries that are 3-tangent
curves for a set of considered tilable domains.

Section 6
This section presents a result with a frozen boundary that is a 4-tangent
curve and elaborates on the algorithm used to obtain this result. The
algorithm is also used to compute the frozen boudaries that are 4-tangent
curves for a set of considered tilable domains. This section also elaborates
on the process for developing an algorithm for an n-tangent curve.

2 Background

2.1 Various Interpretations of the Tiling Model

One interpretation of the tiling model involves the notion of the perfect match-
ing. A perfect matching of a graph G is defined as a subset of edges that cover
each vertex exactly once (see Figure 7 for an example, where the bolded edges
are the ones in the perfect matching).

We will now explain how the tiling model relates to the concept of perfect
matchings. Let TD* be the dual graph to TD, where TD ⊂ T such that TD and Ω
completely cover each other. Each tiling of Ω corresponds to a perfect matching
of TD*. The vertex that corresponds to the outer face of TD is excluded in TD*,
along with all of the edges connected to that vertex. In this way, TD* is always
a subset of the infinite hexagonal (honeycomb) lattice. See Figure 8a for an
example of TD and TD* for a 10-gonal domain.

In this way, we have a bijection between the set of lozenges that make up a
tiling of Ω and the set of edges of the corresponding perfect matching of TD*
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(see Figure 8b). In this way, there is also a bijection between the tilings of Ω
and the perfect matchings of TD*.

Figure 7: An Example of a Perfect Matching

(a) Dual Graphs for a
10-gonal Domain

(b) A Tiling and its Corre-
sponding Perfect Matching

Figure 8: The Duality of Tilings and Perfect Matchings

The height function offers another interpretation of the tiling model. If we
color the inner faces of TD black and white so that no two adjacent faces are the
same color, we can then orient the edges of black faces in a clockwise manner and
the edges of white faces in a counterclockwise manner. We can then recursively
define the height function hTD [21], which assigns an integer to each vertex, as
follows:

• Choose a vertex v0 and set hTD (v0) = 0

• For every edge uv of a rhombus tile in a tiling, hTD (v) − halTD (u) = 1,
where the direction of edge orientation is from u to v.

See Figure 9 for an example of the implementation of the height function.
Notice how the tiles, when colored in with 3 different colors in conjunction
with the vertices numbered from the height function, create a 3-dimensional
interpretation of the tiling model. This interpretation is known as a stepped
surface.

6



Figure 9: An Example of the Implementation of the Height Function3

2.2 Motivation

In physics, perfect matchings are known as dimer configurations, and in chem-
istry, they are known as Kekule structures. The molecules and atoms of matter
are arranged on a crystal lattice. The arrangement of these particles on a lat-
tice is of great interest in physics, prompting exploration in the theory of graphs
and matchings. For example, the hexagonal structure of graphite may be rep-
resented by the honeycomb lattice, where each vertex corresponds to a carbon
atom and each edge corresponds to a bond [9, 15].

A dimer is a molecule consisting of two bonded atoms. Examples include
H2 and O2 gas. The dimer model is a statistical mechanics model introduced to
represent the adsorption of diatomic molecules on crystal surfaces [11]. Since its
success in modeling the behavior of partially dissolved crystals in equilibrium,
it has been used to describe many other physical systems.

Thus, because tiling models have a bijectional relationship with perfect
matchings (dimer configurations), they are a field of great interest in the con-
text of their physical applications. See [1, 4, 8, 14, 23, 24] for elaboration on
applications such as these as well as on many others.

3 Properties of the Frozen Boundary

The frozen boundary in our case is formally defined as follows:

Theorem 3.1. [3, 12] Let Ω be a tilable, connected polygon with 3d sides. Fix
ε > 0. Consider the tilings of Ω by rhombi of size 1

N . Then for sufficiently large
N all but an ε fraction of the tilings will have a temperate zone whose boundary

3This picture is borrowed from [19]. We have colored it in and numbered the vertices.
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stays uniformly within distance ε of an inscribed curve. This inscribed curve is
called the frozen boundary.

A paper by Kenyon and Okounkov [12] gives 4 properties of the frozen bound-
ary that make this definition unique (Theorems 3 and 4 from the paper). We can
use these properties to accomplish our goal of explicitly computing the frozen
boundary. They are as follows:

1. The frozen boundary is a curve inscribed in the related domain.

2. The frozen boundary is a rationally parameterizable (an algebraic curve
with genus zero).

3. For a domain with 3d edges, the dual curve of the frozen boundary has
degree d.

4. The dual curve of the frozen boundary is a winding curve.

The rest of this section will be devoted to elaboration on these properties.

3.1 Properties 1 and 2

Properties 1 and 2 are grouped together because unlike Properties 3 and 4,
they do not require an understanding of the notion of curve duality, which is
explained in the next subsection.

Theorem 3.1 above already articulates Property 1. In order to understand
Property 2, we need to define rational parametrization:

Definition 3.2. [20] We will say that a real algebraic curve C defined by the
square-free equation f(x, y) = 0 is rationally parametrizable if there exist ratio-

nal functions x(t) and y(t) (i.e. both can be represented in the form P (t)
Q(t) , where

P (t) and Q(t) are polynomials in t) such that

1. for almost all t0 ∈ R (i. e. for all but a finite number of exceptions), the
point (x(t0), y(t0)) ∈ C, and

2. for almost every point (x0, y0) ∈ C, there exists a t0 ∈ R such that
(x(t0), y(t0)) = (x0, y0)

The parametrization of C with x = x(t) and y = y(t) is known as the ra-
tional parametrization of C. We say that an algebraic curve with a rational
parameterization is rational or with genus zero (they are all equivalent desig-
nations).

We have now explained Properties 1 and 2. For Properties 3 and 4, however,
we need to first introduce the concept of curve duality.
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3.2 Curve Duality

For this section, we will be working with real algebraic curves on the plane.
There are several realizations of the dual to an algebraic curve. We will first
examine the geometric realization, starting with defining reciprocation about
the unit circle.

Definition 3.3. Let C be a unit circle centered at the origin O. Let P be any
point in the plane of C with distance d > 0 from O. Draw line l perpendicular
to line OP and on the opposite side of O so that d ∗ d′ = 1, where d′ is the
distance from l to O. l is defined as the reciprocal of P about the unit circle,
and P is also the reciprocal of l about the unit circle. The reciprocal of a point
P at O is a line at an infinite distance away from O, and the reciprocal of a
line l passing through O is a point infinitely far away from O and on the line
perpendicular to l.

In more specific terms, the reciprocal of a point is known as its polar, and
the reciprocal of a line is known as its pole. We will use the function rec(x) to
indicate the reciprocal of a point or line x. Now, we can use this definition of
reciprocation about the unit circle to define the notion of a dual curve.

Definition 3.4. Let C be an algebraic curve. Then the dual curve C* is defined
as the set of poles of all the tangent lines to C.

An algebraic definition of the dual curve will be cardinal in the computations
to come. In order to create this realization, parametric equations will be used.
The following proposition is from [5].

Proposition 3.5. Let C be an algebraic curve given by the parametric equations
(u(t), v(t)). Then C* has parametric equations(

v′(t)

u′(t)v(t)− v′(t)u(t)
,

−u′(t)
u′(t)v(t)− v′(t)u(t)

)
.

Proof. We will present the proof of this proposition for the reader’s convenience
(see [16] for the source of the proof).

Let us first determine the pole of the line l given by ax+by+1 = 0. The claim
is that it is P (a, b). In order to show this, we need to prove three statements:

1. P lies on the line l′ perpendicular to l and passing through O.

2. P and l are on opposite sides of the origin O.

3. d ∗ d′ = 1, where d = OP and d′ is the distance from l to O.

The first statement can be shown to be true by examining the slopes of l and
l′. From the equation of l, its slope is -ab . Since l′ passes through O(0, 0) and

P (a, b), its slope is b
a . Because the slopes of l and l′ are negative reciprocals,

the two lines are perpendicular.
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For the second statement, we can see that the axis intercepts of l are the
points (− 1

a , 0) and (0,− 1
b ). Since the nonzero x and y coordinates of the axis

intercepts have opposite signs than the corresponding coordinates of P (a, b), P
and l are on opposite sides of O.

All that remains is to prove the third statement. We know that d =√
a2 + b2. Since the distance from a point (xo, yo) to line l is |axo+bxo+c|√

a2+b2
,

d′ = 1√
a2+b2

. Hence, d ∗ d′ = 1.

We have proven the following:

rec(l) = P, (1)

where l is the line ax+ by + 1 = 0 and P = (a, b).
Note that we have also proven that rec(P ) = l, by the definition of recipro-

cation.
Now we will consider the algebraic curve C with parametric equations (u(t), v(t)).

Let us calculate a tangent line to C at a point (u(to), v(to)) on C. Using the

derivative yields y − v(to) = v′(to)
u′(to)

(x − u(to)). Expanding and rearranging, we

have:

v′(to)

v(to)u′(to)− u(to)v′(to)
x+

−u′(to)

v(to)u′(to)− u(to)v′(to)
y + 1 = 0.

From 1, the pole of this line is(
v′(to)

v(to)u′(to)− u(to)v′(to)
,

−u′(to)

v(to)u′(to)− u(to)v′(to)

)
.

The above holds true for every point (u(to), v(to)). Thus, we can generalize
and say that C* has parametric equations(

v′(t)

u′(t)v(t)− v′(t)u(t)
,

−u′(t)
u′(t)v(t)− v′(t)u(t)

)
.

We will now state another realization of duality, using tangents to the curve.
This will be a formulation of the concept of duality for projective plane curves.
The real projective plane, denoted by RP2, is defined as the plane R2 along
with additional points at infinity that represent intersections of parallel lines.
We can also define RP2 using sets of equivalence classes of nonzero points in
R3. Generally, a point in the real projective space is denoted as (x : y : z),
the equivalence class of all points (λx, λy, λz) in R3, where λ 6= 0 and a, b, and
c are not all 0. For each equivalence class (a : b : c) where c 6= 0, the point
(x, y, 1) ∈ R3 can be taken to create the plane R2 as the plane z = 1. Each
equivalence class (a : b : 0) will then correspond to the point where the line
ay = bx in R2 and all the lines parallel to it intersect. In the same way that
points in RP2 are lines in R3, lines in RP2 are planes in R3. These planes are
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sets of equivalence classes (x : y : z) that satisfy the equation ax + by + c = 0
for some a, b, and c that are not all 0. The planes themselves create a projective
space that is called the dual projective space, denoted by RP2∗. We can now
define duality for projective plane curves:

Definition 3.6. [5] Let C be the curve in RP2 given by the homogeneous
equation f(x, y, z) = 0. Then the dual curve C* is given by the set of points(

∂f
∂x (a, b, c) : ∂f

∂y (a, b, c) : ∂f
∂z (a, b, c)

)
in RP2∗ for every point (a : b : c) of C.

Remark. The notion of duality respects the fact that any real curve on a plane
defines a projective curve and vice versa.

We continue our discussion of duality by stating a fundamental theorem:

Theorem 3.7. The dual of a dual curve is the original curve. That is, for any
algebraic curve C, (C*)* = C.

This theorem can be proved using the definition of duality (Definition 3.4),
or in cases where C and thus C* are rational, the algebraic realization of duality
(Proposition 3.5). The proof in the former way can be found in [5] and [16].
The proof in the latter way can be seen by performing a computation using

(u1(t), v1(t)) =

(
v′(t)

u′(t)v(t)− v′(t)u(t)
,

−u′(t)
u′(t)v(t)− v′(t)u(t)

)
,

to show that(
v′1(t)

u′1(t)v1(t)− v′1(t)u1(t)
,

−u′1(t)

u′1(t)v1(t)− v′1(t)u1(t)

)
= (u(t), v(t)).

Now, we are ready to examine some key properties of an algebraic curve and
its dual. We will start by defining some potential singularities of an algebraic
curve. We are considering two specific ones, namely cusps and nodes. A cusp is
defined as a point at which two branches of a curve meet such that the tangents
of each branch converge to the same tangent (see Figure 10a for an example of
a curve with a cusp). An node (also known as an ordinary double point) of a
plane curve is defined as a point where a curve intersects itself such that two
branches of the curve have distinct tangent lines (see Figure 10b for an example
of a curve with a node). Ordinary double points can also be isolated. See [7]
for further elaboration on these singularities.
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(a) An Example of a Curve
With a Cusp

(b) An Example of a Curve With a
Node

Figure 10: Singularities of Algebraic Curves

Using these singularities, we are able to articulate a theorem concerning the
degree of a dual curve:

Theorem 3.8. (Plucker’s Formula) Let C be an algebraic curve with only ordi-
nary double points and simple cusps as singularities such that its dual C* also
only has these types of singularities. Then, if C has degree d, the degree d′ of
C* is given by

d′ = d(d− 1)− 2δ − 3κ,

where δ is the number of ordinary double points of C and κ is the number of
cusps of C.

Remark. If C has higher order singularities, they are considered as multiple
double points according to an analysis of the nature of the singularities. For
example, an ordinary triple point is considered to be 3 double points.

We are now equipped with enough knowledge of the concept of curve duality
to continue our discussion of the properties of the frozen boundary. Curve
duality will also play a role in the computations in this paper.

3.3 Properties 3 and 4

Let us first state a theorem, proven in the paper by Kenyon and Okounkov [12],
that articulates Properties 3 and 4:

Theorem 3.9. Let the boundary contour Ω be feasible (i.e. a limit of tilable con-
tours), connected, and polygonal with 3d sides in coordinate directions (cyclically
repeated). Then the frozen boundary R is a unique, inscribed, rational curve,
and its dual is a winding curve of degree d.
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Property 3 is explained by the idea of curve duality alone. Property 4,
however, requires an additional definition (as stated and further explained in
[12]):

Definition 3.10. A degree d real algebraic curve Q is called winding if

1. it intersects any line L ⊂ RP1 in at least d−2 points counting multiplicity,
and

2. there exists a point p0 ∈ RP1\Q called a center, such that any line through
p0 intersects Q in d points.

A useful proposition concerning winding curves is as follows:

Proposition 3.11. All singularities of a winding curve Q are real. Every
branch of Q through a singularity is real, smooth, and has contact of order
≤ 3 with its tangent. That is, it has at most ordinary flexes. The only double
tangents of a winding curve are ordinary tacnodes (i.e. double cusps) with two
branches on the opposite sides of the common tangent.

The proof of this proposition can be found in [7]. We will now proceed to
discussions of computations with hexagonal and octagonal domains.
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4 Computations of Frozen Boundaries with Hexag-
onal and Octagonal Domains

4.1 Hexagonal Domain: Elliptical Frozen Boundary

Figure 11: Simple Tiling of a Hexagon 4

Figure 11, repeated from Section 1, shows a simple rhombus tiling of a hexagon.
We will first define the set H of all hexagons that we will consider. Let H

consist of all hexagons that have

1. 3 pairs of equal, parallel sides,

2. all angle measures of 120o,

3. and edge lengths such that the quotient of any two is rational.

We will now prove the following:

Proposition 4.1. All hexagons of H are tilable.

Proof. Figure 12 shows how we can create a tilable hexagon satisfying the first
two conditions in the theorem and with edge lengths i, j, and k for any i, j, k ∈ N.

4This picture is borrowed from [6]
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Figure 12: Construction of a Hexagon with Edge Lengths i, j, k ∈ N

We will now deal with the third condition.
Let us consider any two edge lengths a, b ∈ R of a hexagon that satisfies

the first two conditions, where a, b > 0. Consider a rhombus tiling of the
hexagon. Because the tiling must completely cover the hexagonal domain, each
edge must be completely covered by equal edges of rhombi. Thus, since all
rhombi in a tiling are equal in size, a

m = b
n , where m and n are the number of

rhombus edges covering edges with lengths a and b, respectively. Furthermore,
m,n ∈ N⇒ m

n ∈ Q, resulting from the simple fact any number of rhombus tiles
must be countable. Hence, we have a

b = m
n , indicating that a

b ∈ Q.
We have thus proven in the last paragraph that any tilable hexagon must

have edge lengths such that the quotient of any two is rational (the proof applies
to any tilable domain, in fact!). As long as this is true, we can have any positive
real edge lengths, for we can scale the hexagon so that the edge lengths are all
natural numbers. Since we already proved that such a hexagon is tilable, we
can then scale the tile size back with the original domain to construct a tiling of
the original domain. In order to prove that the hexagon, along with any other
domain, is scalable in such a way, we will consider any x-gonal domain Ω with
edge lengths such that the quotient of any two is rational.

Choose any side of length s0 of Ω. For each i ∈ N and i < x, let mi, ni ∈ N,
and let si be the length of a distinct side of Ω so that si

s0
= mi

ni
. Let the scale

factor for Ω be r = 1
s0

∏x−1
j=1 nj . This way, s0r =

∏x−1
j=1 nj and sir =

(
s0

mi

ni

)
r =

mi

∏
j 6=i nj , so sir ∈ N for all sides of Ω.

We have thus proven that any hexagon that satisfies all 3 conditions of the
theorem is tilable.

We can now discuss the computation of the frozen boundary contained in
any hexagon of H. Let us first determine the nature of the inscribed curve C
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that is the frozen boundary and that of its dual. By Theorem 3.9, the degree
of C* is 2, which means that the dual curve is a conic. A conic does not have
any singularities. Thus, by Plucker’s Formula (Theorem 3.8), the degree of
(C*)*= C, is also 2. This means that C is also a conic. By using this fact and
looking at a computer simulation with very small rhombi below (Figure 13), we
can see that the frozen boundary is an ellipse.

Figure 13: Frozen Boundary in a Hexagon 5

Now we will proceed with the algorithm for the computation, assuming that
we already have the equations of each side of the hexagon. We will first outline
each step in the algorithm and then explain each step in detail.

Algorithm for the Computation

1. Determine the coordinates of the poles to each of the sides of the hexagon.

2. Solve for the equation of the conic C* that contains all of the poles. This
is the dual conic to the inscribed conic because of Definition 3.4.

3. Compute the equation of the dual of conic C*. This will be the inscribed
conic C by Theorem 3.7.

Using Equation 1 from Proposition 3.5, we can execute step 1 in the algo-
rithm. To avoid complications in this step, let us position the hexagon so none
of the edges pass through the origin.

In order to execute step 2, we use the general equation of a conic:

ax2 + by2 + cz2 + dxy + exz + fyz = 0.

To make this a conic in the xy plane, we will set z = 1 (the intersection of
the conic with the plane z = 1. Thus, we will have

ax2 + by2 + c+ dxy + ex+ fy = 0.

5This picture is borrowed from [6]
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If we divide this equation by a, we will only have 5 coefficients for which to
solve. Therefore, we only need poles of 5 sides of the hexagon in order to make
a system of linear equations that will solve for the 5 coefficients. Because the
frozen boundary is unique, there will be exactly one solution for the coefficients.

For step 3, we need a formula for the dual of a conic. Before we state this, let
us introduce the quadratic form of the conic ax2+by2+cz2+dxy+exz+fyz = 0:

(
x y z

) a d/2 e/2
d/2 b f/2
e/2 f/2 c

xy
z

 = 0.

As shown above, every conic can be represented in this way. Now, we can
make a proposition stating the quadratic form of a dual of a conic.

Proposition 4.2. Let C be the conic
(
x y z

)a d e
d b f
e f c


xy
z

 = 0 (or ax2 + by2 + cz2 + 2dxy+ 2exz+ 2fyz = 0). Then C* is the conic

(
x y z

)a d e
d b f
e f c

−1xy
z

 = 0.

Proof. To prove this, we will use the gradients realization of duality (Proposi-
tion 3.6), since the conic C can be represented by the homogeneous equation
f(x, y, z) = 0 in the real projective space. Let (p : q : r) be a point in RP2 on

this conic. We are looking for the corresponding point (x : y : z) =
(

∂f
∂x (p, q, r) :

∂f
∂y (p, q, r) : ∂f

∂z (p, q, r)
)

. Since the gradient vector is perpendicular to the sur-

face tangent to C at (p, q, r), and because (p : q : r) is part of this surface,〈
p, q, r

〉
·
〈
x, y, z

〉
= px + qy + rz = 0. Based on the quadratic form for C,(

p q r
)a d e

d b f
e f c

pq
r

 = 0. If we let

a d e
d b f
e f c

pq
r

 =

x′y′
z′

, we see

that
(
p q r

)x′y′
z′

 = px′ + qy′ + rz′ = 0.

Hence,
〈
p, q, r

〉
·
〈
x′, y′, z′

〉
= 0, so both

〈
x′, y′, z′

〉
and

〈
x, y, z

〉
are per-

pendicular to
〈
p, q, r

〉
, meaning that (x′ : y′ : z′) = (x : y : z). Hence,a d e

d b f
e f c

pq
r

 =

xy
z

 under the equivalence classes of RP2. We can also

see this if we calculate the gradient (x : y : z) =
(

∂f
∂x (p, q, r) : ∂f

∂y (p, q, r) :

∂f
∂z (p, q, r)

)
= (2ap+2dq+2er : 2bq+dp+fr : 2cr+ep+fq)⇒ 2

a d e
d b f
e f c

pq
r

 =
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xy
z

 under the equivalence classes of RP2. If we divide by 2, we are still in

the equivalence class represented by (x : y : z), reinforcing the previous result.
Now, we can manipulate this result to obtain the quadratic form for C*:a d e

d b f
e f c

pq
r

 =

xy
z

⇒
pq
r

 =

a d e
d b f
e f c

−1xy
z

⇒

(
x y z

)a d e
d b f
e f c

−1xy
z

 =
(
x y z

)pq
r

 = xp+ yq + zr = 0.

Hence, for every point (p : q : r) ∈ C, the point (x : y : z) ∈ C* will satisfy
the equation: (

x y z
)a d e

d b f
e f c

−1xy
z

 = 0.

We now have the algorithm for the explicit computation of the frozen bound-
ary with our special type of hexagonal domains. Figures 14, 15, and 16 show
some examples of the results obtained from the implementation of this algo-
rithm. Although these examples may not have rational quotients for any two
sides, they are very close (infinitely close) approximations of tilable domains
and their frozen boundaries. This is so because we can make infinitely close
rational approximations of irrational numbers, and slightly adjust the edges of
a domain to fit these rational approximations. (Side note: because we did not
use the fact that the hexagon has to be tilable in the algorithm, it will yield the
inscribed curve for any hexagon that has a conic for this inscribed curve.)

Figure 14: Hexagonal Example 1
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Figure 15: Hexagonal Example 2

Figure 16: Hexagonal Example 3

4.2 Octagonal Domain: Cardioidal Frozen Boundary

Recall from the previous subsection the definition of the setH of all the hexagons
considered in our computations. The set O of octagons that we will consider
will be derived from a special subset HS of H, defined so that HS consists of all
hexagons in H that have at most 2 distinct side lengths (i. e. at least 2 pairs
of equal, parallel sides will consist of the same side length). Let us consider a
hexagon Hm,n ∈ HS , with 2 sides of length m and 4 sides of length n (m = n
is a possibility). Choose l such that 0 < l < n and l

n ∈ Q. Now position a 60o
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rhombus with side length l inside Hm,n so that each of 2 adjacent edges of the
rhombus lies on each of two adjacent sides of length n. Remove the area covered
by the rhombus to obtain an octagon. See Figure 17 (repeated from Section 1)
for a visual representation of this construction.

Figure 17: A Construction of a Considered Octagon from a Considered Hexagon

O is defined as the set of all possible octagons constructed using allHi,j ∈ HS

and all k for each hexagon Hi,j such that 0 < k < j and k
j ∈ Q.

We will now show that all octagons in O are tilable.
The first step is to illustrate how we can tile a rhombus with smaller rhombi

so that one side of the original rhombus is covered with any number of smaller
tiles. Figure 18 shows how we can add tile extensions on to a rhombus until
we reach the desire number of tiles, constructing a larger rhombus (this is anal-
ogous to tiling a square with smaller squares. In fact, [2] discusses an affine
modification of lozenge that will transform one type of lozenge into a square).
We can then scale the whole tiling of the larger rhombus to any size.
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Figure 18: A Tiling of a Rhombus with Smaller Rhombus Tiles

We will now further consider the construction pictured in Figure 17. Let us
first scale the domain so that all edge lengths, including those of the octagon,
are natural numbers. Let us denote this new edge lengths as l′,m′, and n′. As
proven in the previous subsection, this can be done since any two lengths l,m,
and n have a rational quotient, which indicates that an edge with length n− l
and any other edge of the octagon also have a rational quotient.

Figure 19 shows how we can divide the domain into tilable parts (the part
boundaries are outlined in yellow) with tile edge length 1. The rhombus with
side lengths l′ will be completely tiled, as proven with Figure 18. This indicates
that we can remove this rhombus and leave the remaining tiles intact, demon-
strating how the constructed octagonal domain will be tilable. We can then
scale back to the original domain. Since this whole process can be done with
any octagon of O, we have shown that all octagons in O are tilable.
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Figure 19: Tilability of a Scaled Octagonal Domain

We will now discuss how to compute the frozen boundary contained in any
octagon of O. Figure 20 shows an image of a considered octagonal domain and
the frozen boundary it contains. The image illustrates how the frozen boundary
is a cardioid. In fact, this is not necessarily a perfect cardioid, but rather a
compressed or elongated one. By Theorem 3.9 (considering an extra degenerate
edge of the domain), the dual of this cardioid has degree 3. In order to create
symmetry to simplify the computations, we will translate the domain so that
the cusp of the cardioid is on the x-axis and so that the domain is symmetric
about the x-axis.

Figure 20: The Frozen Boundary in an Octagon
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Now, we will use the same algorithm as in the previous subsection to perform
the computation:

Algorithm for the Computation

1. Determine the coordinates of the poles to each of the sides of the octagon.

2. Solve for the equation of the cubic curve C* that contains all of the poles.
This is the dual cubic to the inscribed cardioid because of Definition 3.4.

3. Compute the equation of the dual of cubic C*. Again, this will be the
inscribed cardioid C by Theorem 3.7.

Using Equation 1 from Proposition 3.5, we can again execute step 1 in the
algorithm. To avoid complications in this step, let us again position the octagon
so that none of the edges pass through the origin.

Step 2 requires us to determine the general equation of the cubic we’re
interested in. Since we have made it so it is symmetric about the x-axis, we can
eliminate all terms with an odd degree of y. Hence, we have:

ax3 + bxy2 + cy2 + dx2 + ex+ f = 0.

If we divide by a, we will have 5 coefficients for which to solve. However, we
only have 4 linear equations, since each side of the octagon has a corresponding
side that is just its symmetric side about the x-axis, which will not give another
equation. However, if we use the fact the double tangent of the cardioid corre-
sponds to a node of the cubic on the x-axis, we will see that there is a double
root when y = 0. Hence, if r is the double root and s is the single root when
y = 0, we have:

(x− r)2(x− s) = x3 − sx2 − 2rx2 + 2rsx+ r2x− r2s = 0.

Thus, we can create the following equation:

x3 + bxy2 + cy2 − (s+ 2r)x2 + (r2 + 2rs)x− r2s = 0.

Now, we have 4 equations and 4 unknowns for which to solve. Although these
equations are not linear, Wolfram Mathematica will be able to solve them.

For step 3, we will use Proposition 3.5 to find the equation of the dual
curve that is the frozen boundary in parametric form. First, we will have to
convert the cubic into parametric form. We know this can be done because
of Property 2. Proposition 3.5 indicates that the dual curve is also rationally
parameterizable. An algorithm for this (using the double point of the cubic)
can be found on page 116 (Chapter 4) of [20]. If we wish to convert this dual to
cartesian coordinates, we can use an algorithm on page 109 (Chapter 4) of [20].

Thus, we can compute the frozen boundary of rhombus tilings of this octagon
using these steps. Figure 21 shows an example of a result with this domain. As
with hexagonal domains in the previous subsection, this example is a very close
approximation of a tilable domain and the frozen boundary associated with it.
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Figure 21: An Example of the Frozen Boundary in an Octagon

5 A Frozen Boundary that is a 3-tangent Curve

In the last section, we had an example of a frozen boundary that had a double
tangent. In this section, we will examine a set Ω3 of special, geometrically similar
domains that contain frozen boundaries that are 3-tangent curves. One example
of a domain Ω′3 ∈ Ω3 is pictured below (Figure 22). This superimposition of Ω′3
on a triangular lattice allows us to see that it is indeed tilable (one of its tilings
is outlined). Ω3 will consist of all domains that are geometrically similar to Ω′3.
All of these domains will also be tilable, since we can proportionally increase or
decrease tile size.

Figure 22: An Example of a Domain Ω′3 ∈ Ω3
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Now that we have our set of tilable domains, we can begin our discussion of
how to explicitly compute the frozen boundaries associated with them. Figure
23 shows a result with one example of a tilable domain.

Figure 23: A Result with a 3-tangent Frozen Boundary in a Domain of Ω3

We will consider any domain that is in our set of tilable ones. By Property 3,
the dual curve Q to the inscribed one has degree 4 since our domain has 12
sides. From this information alone we will have

∑5
n=1 n = 15 terms and thus

15 coefficients for which to solve. Now, we will try to eliminate as many more
unknown coefficients as possible.

First, we translate the domain so that it is symmetric with respect to the
y-axis, creating this same symmetry in the frozen boundary and thus the dual
of the frozen boundary as well (by Definitions 3.4 and 3.3). This eliminates all
terms with odd degrees in x, leaving us with 9 terms of Q. Let us now examine
what occurs in Q when x = 0 (when we have a polynomial in only one variable
y). The points of Q at x = 0 will correspond to tangents of the frozen boundary
perpendicular to the y-axis, by Definitions 3.4 and 3.3. From Figures 22 and
23, we can see that we have one triple tangent and one single tangent to the
frozen boundary perpendicular to the y-axis. Thus, we know that we have in Q
at x = 0 a triple point that corresponds to the triple tangent and a single point
that corresponds to the single tangent. We can now set up our equation for Q
as follows:

Q(x, y) = a(y − pt)3(y − ps) + by2x2 + cyx2 + dx2 + ex4 = 0,

where pt is the y-coordinate of the triple point at x=0, ps is the y-coordinate
of the single point at x=0, and a, b, c, d, and e are the unknown coefficients
that we will solve for. Notice how we eliminated 4 unknown coefficients by
representing coefficients of terms with degree 0 in x using 1 unknown (a) instead
of 5. We can in fact divide by this a, since Q(x, y) = 0, to eliminate one unknown
coefficient. We can then represent Q(x, y) as

Q(x, y) = (y − pt)3(y − ps) + ay2x2 + byx2 + cx2 + dx4 = 0.

Even though we have already used the edges perpendicular to the y-axis,
we still have 4 nonsymmetric edges of our domain to obtain 4 points of Q that
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will allow us to set up a system of linear equations to solve for a, b, c, and d
(see Figure Domain 22). However, we can also use the fact that we can ratio-
nally parametrize Q with lines of slope t passing through the triple point, since
there is at most one other point of intersection with Q (Fundamental Theorem
of Algebra). This algorithm (also used in previous cardioid computations) is
explained further on page 116 (Chapter 4) of [20].

Based on this algorithm, we can translate Q(x, y) so that the triple point
is at the origin and have lines of the form y = tx passing through the triple
point. Then, since the point (0, 0) is a triple point, we will be able to factor out
x3 from Q(x, y). Thus, the translated Q(x, y) will have terms of degree no less
than 3. Let us now work with these facts:

Q(x, y + pt) = y3(y + pt − ps) + a(y + pt)
2x2 + b(y + pt)x

2 + cx2 + dx4 = 0.

Q(x, tx+pt) = (tx)3(tx+pt−ps)+a(tx+pt)
2x2 + b(tx+pt)x

2 + cx2 +dx4 = 0.

From this, we will have three terms with degree in x less than 3: ap2tx
2,

bptx
2 and cx2. We thus have

ap2tx
2 + bptx

2 + cx2 = 0⇒ c = −(ap2t + bpt), (2)

eliminating yet another unknown coefficient and yielding a new form for our
equation of Q(x, y):

Q(x, y) = (y − pt)3(y − ps) + ay2x2 + byx2 − (ap2t + bpt)x
2 + cx4 = 0.

We can now safely choose any three of the four nonsymmetric edges of our
domain to obtain 3 points of Q that will allow us to set up a system of linear
equations to solve for a, b, and c, simplifying the final computation. We can
then use the fourth point of Q, obtained from the fourth nonsymmetric edge of
the domain, to verify that we do indeed have the correct equation of Q(x, y) = 0
after solving the system of linear equations in three variables.

We now have our equation of the dual curve to the frozen boundary in
cartesian coordinates. Using the aforementioned parametrization technique as
well as Proposition 3.5, we can compute the dual curve of Q to obtain the desired
equation of the frozen boundary in parametric form.

6 Generalization to an n-tangent Curve

This section will be devoted to generalizing the results in the previous section.
As an intermediate, however, we will first elaborate on the method for obtaining
results with a frozen boundary that is the 4-tangent curve. In many ways, the
discussions in this section are logical extensions of the discussions in the previous
one.
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6.1 A Frozen Boundary that is a 4-tangent Curve

Let us first begin this subsection by showcasing a visual result of the computa-
tions for this frozen boundary (Figure 24):

Figure 24: A Result with a 4-tangent Frozen Boundary in a Domain of Ω4

We will first examine the superimposition of one example of a considered
domain Ω′4 ∈ Ω4 (where Ω4 is the set of considered tilable domains) on a tri-
angular lattice to reinforce the fact that it is tilable (see Figure 25). Notice
that this is just a domain from the last section with one addition (see Figure
26). The domains in Ω4 will be all domains that are geometrically similar to
Ω′4. Now, we can begin our discussion of how to explicitly compute the frozen
boundary for any domain of Ω4.

Figure 25: Tilability of Ω′4
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Figure 26: Construction of Ω′4 from Ω′3

By Property 3, the dual curve Q to the inscribed one has degree 5 since our
domain has 15 sides. From this information alone we will have

∑6
n=1 n = 21

terms and thus 21 coefficients for which to solve. Again, we will try to eliminate
as many more unknown coefficients as possible.

We still translate the domain so that it is symmetric with respect to the
y-axis, creating this same symmetry in the frozen boundary and thus the dual
of the frozen boundary as well (by Definitions 3.4 and 3.3). This eliminates
all terms with odd degrees in x, leaving us with 12 terms of Q. When we
set x = 0, the points of Q will correspond to tangents of the frozen boundary
perpendicular to the y-axis, by Definitions 3.4 and 3.3. From Figures 24 and
25, we can see that we have one quadruple tangent and one single tangent to
the frozen boundary perpendicular to the y-axis. Thus, we know that we have
in Q at x = 0 a quadruple point that corresponds to the quadruple tangent and
a single point that corresponds to the single tangent. We can now set up our
equation for Q as follows:

Q(x, y) = (y − pq)4(y − ps) + ay3x2 + by2x2 + cyx2 + dx2 + eyx4 + fx4 = 0,

where pq is the y-coordinate of the quadruple point at x=0, ps is the y-coordinate
of the single point at x=0, and a, b, c, d, e and f are the unknown coefficients
that we will solve for. Notice how we eliminated 5 unknown coefficients by
representing coefficients of terms with degree 0 in x using 1 unknown instead of
6 (We have also already divided by this unknown).

With the 3-tangent curve, we had sufficient nonsymmetric edges to set up
a system of linear equations. With this case, however, we only have 5 non-
symmetric edges but 6 unknown coefficients (we have already used the edges
perpendicular to the y-axis). It thus becomes necessary rather than convenient
to use the fact that we can rationally parametrize Q with lines of slope t passing
through the quadruple point. This is still the same algorithm further explained
on page 116 (Chapter 4) of [20].
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As before, we translate Q(x, y) so that the quadruple point is at the origin
and have lines of the form y = tx passing through the quadruple point. Then,
since the point (0, 0) is a quadruple point, we will be able to factor out x4 from
Q(x, y). Thus, the translated Q(x, y) will have terms of degree no less than 4.
Let us now work with these facts:

Q(x, y + pq) = y4(y + pq − ps) + a(y + pq)3x2 + b(y + pq)2x2

+c(y + pq)x2 + dx2 + e(y + pq)x4 + fx4 = 0.

Q(x, tx+ pq) = (tx)4(tx+ pq − ps) + a(tx+ pq)3x2 + b(tx+ pq)2x2

+c(tx+ pq)x2 + dx2 + e(tx+ pq)x4 + fx4 = 0.

From this, we will have 7 terms with degree in x less than 4: 3atp2qx
3, ap3qx

2,
2btpqx

3, bp2qx
2, ctx3, cpqx

2 and dx2. We thus have:

3atp2qx
3 + 2btpqx

3 + ctx3 = 0⇒ c = −(3ap2q + 2bpq), and

ap3qx
2 + bp2qx

2 + cpqx
2 + dx2 = 0⇒ ap3qx

2 + bp2qx
2−

(3ap2q + 2bpq)pqx
2 + dx2 = 0⇒

⇒ d = −(ap3q + bp2q − (3ap2q + 2bpq)pq) = 2ap3q + bp2q

(3)

This eliminates the unknown coefficients c and d from our original equation,
yielding a new form for our equation of Q(x, y):

Q(x, y) = (y − pq)4(y − ps) + ay3x2 + by2x2

−(3ap2q + 2bpq)yx2 + (2ap3q + bp2q)x2 + cyx4 + dx4 = 0.

We now have four unknown coefficients, so we can choose any 4 of the 5
nonsymmetric (and not perpendicular to the y-axis) edges of our domain to
obtain 4 points of Q that will allow us to set up a system of linear equations
to solve for a, b, c, and d. There is, however, another trick we can employ to
eliminate one more unknown coefficient and further simplify the computation.

This trick involves translating the domain so that the vertex on the y-axis lies
at the origin. There will then be two edges of the domain passing through the
origin, so we know that the homogenization of Q contains two points (where one
is the reflection of the other across the y-axis) where z=0 (point at infinity). Let
one of these points be (x0, y0, 0) (the other will be identical except for a sign
change for the x-coordinate, but this sign change is irrelevant since we have
already eliminated all terms with odd degrees in x).

If the homogenization of Q is Q(x, y, z), we have:

Q(x0, y0, 0) = (y0)5+a(y0)3(x0)2+c(y0)(x0)4 = 0⇒ c = −
(( y0

x0

)4
+a
( y0
x0

)2)
.

We know we can divide by x0 because the edges of the domain passing
through the origin are not perpendicular to the y-axis, indicating that x0 6= 0
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(see Figure 24). This manipulation yields a new form for Q, dependent upon
only 3 parameters:

Q(x, y) = (y − pq)4(y − ps) + ay3x2 + by2x2 − (3ap2q + 2bpq)yx2

+(2ap3q + bp2q)x2 −
(( y0

x0

)4
+ a
( y0
x0

)2)
yx4 + cx4 = 0.

We have now simplified our computation so that we can choose any 3 of 4
nonsymmetric edges of the domain (we have already used the edges perpendic-
ular to the y-axis and the ones passing through the origin). Using the poles
obtained from these edges, we can set up a system of linear equations to solve
for a, b, and c. The unused nonsymmetric edge can be used to obtain another
point of Q in order to verify that we do indeed have the correct equation of
Q(x, y) = 0 after solving the system of linear equations in three variables.

We now have our equation of the dual curve to the frozen boundary in
cartesian coordinates. Using the aforementioned parametrization technique as
well as Proposition 3.5, we can compute the dual curve of Q to obtain the desired
equation of the frozen boundary in parametric form.

6.2 A Frozen Boundary that is an n-tangent Curve

Let Ωn (n ≥ 3) be the set of considered domains with n-tangent frozen bound-
aries. Ωn can be defined recursively for various n. Figure 27 illustrates how we
will create tilable additions (shown in different colors) to reach a tilable domain
Ω′n ∈ Ωn for any n > 3. We will consider Ω′n reached when there are n distinct
upper segments (edges) of our construction (i. e. the number of additions we
have constructed is n− 3). Ωn will consist of all domains geometrically similar
to Ω′n. As seen in Figure 27, we can use induction, where Ω′3 is the base case and
a colored addition creates the inductive step from Ω′n to Ω′n+1, to prove that Ω′n
is tilable for any n ≥ 3. In fact, if we were to take away an addition away from
Ω3, we would reach Ω2. Repeating this step would result in Ω1, which would
just be a regular hexagon in the aforementioned set H. As with Ω3, Ωn will
contain all tilable domains because we can proportionally increase or decrease
tile size. Notice that another defining characteristic of any domain in any set
Ωn is that the sum of the lengths of the distinct upper segments (edges) is equal
to the length of the bottom side.
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Figure 27: Construction of a Domain Ω′n ∈ Ωn from a Domain Ω′3 ∈ Ω3

Let us now show that we can find an algorithm to compute the frozen bound-
ary contained in any domain of Ωn. As a start, we can consider domains of Ω2,
since we already have an algorithm for any hexagon of Ω1.

Any domain Ω′2 ∈ Ω2 will have 9 edges, meaning that the degree of the dual

to the frozen boundary will be 3 (Property 3). This yields
∑4

n=1 n = 10 terms
and thus 10 coefficients for which to solve. Translating the domain so that it
is symmetric with respect to the y-axis eliminates all terms with odd degrees
in x, leaving us with 6 terms and unknown coefficients. Using the fact that we
have a double and single point at x = 0, we can use only 1 unknown coefficient
rather than 4 to represent coefficients of terms with degree 0 in x. Dividing by
this 1 unknown coefficient, we will be left with only 2 unknown coefficients for
which to solve. We already have 3 nonsymmetric (and not perpendicular to the
y-axis) edges of Ω′2 to obtain 3 points of Q. We can use 2 of those points to
solve for a and b, or we can translate Ω′2 so that the vertex at the y-axis lies at
the origin, using the homogenization trick explained in the previous subsection.
This will allow us to express the coefficients of Q in only 1 unknown. We can
then use any 1 of 2 nonsymmetric edges (not perpendicular to the y-axis and
not passing through the origin) to obtain a point of Q that will allow us to solve
for the unknown coefficient. We then use the parametrization technique used
with domains in Ω3 and in Ω4 as well as Proposition 3.5 to solve for the frozen
boundary.

We will move on to any domain Ω′n ∈ Ωn, for any integer n > 4. We know
from the previous discussions that adding an addition to Ω′n will remove 1 edge
and add 4 to Ω′n+1. Thus, the number of edges increases by 3 with each increase
in n by 1, indicating that the degree of the dual curve to the frozen boundary
will also increase by 1 in degree (Property 3). Thus, for Ω′n, the degree of the

dual curve Qn(x, y) to the frozen boundary is n+ 1. We will thus have
∑i+2

i=1 i
unknown coefficients for which to solve.
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Let us try to represent Qn with the minimal amount of unknown coefficients
of terms. As we have done before, we can translate the domain so that it
is symmetric with respect to the y-axis, leaving only terms with even degrees
in x. We already know that we can represent terms with degree 0 in x as
a(y− pn)n(y− ps), where a is a coefficient, pn is the n-fold point on the y-axis,
and ps is the single point on the y-axis. Since we will have Qn = 0, we can divide
by a, leaving unknown coefficients only for terms with degrees in x greater than
0 (and still only even).

In order to further reduce the amount of unknown coefficients, we will group
our terms so that a term κ(i, j)xiyj ∈ Ti (i .e. group together all terms with
the same degree in x). Here, κ(i, j) is a function that yields the coefficient of a
term with variables xiyj . We will now prove the following:

Proposition 6.1. Using the fact that the equation Qn = 0 is rationally para-
metrizable, we can represent the coefficients of every term of every set Ti using
only two unknown ones. Furthermore, in the case where n + 1 is even, we can
represent the coefficients of Tn+1 using only one unknown, for κ(n + 1, 0)xn+1

is the only term of the set.

Proof. We will begin the proof by referring to the previously employed method
for eliminating unknown coefficients, using the aforementioned rational paramet-
rization technique (see Sections 5 and 6.1). From this, we know that the poly-
nomial Qn(x, tx+pn), when simplified, has no terms with degrees in x less than
n, for we can factor out xn due to the n-fold point now at the origin. We can
use this fact to eliminate coefficients of terms in each set Ti (other than Tn+1

(if it exists), which will now be excluded from further discussion until stated
otherwise, based on the statement of the proposition).

Let us now consider a set Ti. For Qn(x, tx+ pn), each term in Ti will have
variables xi(tx)r = trxi+r, for some exponent r. As we did in Equations 2
and 3, we can group all terms of Ti with the same exponents for t and x, set the
sum equal to 0, and eliminate one unknown coefficient for each grouping Gi,r

(only for terms with degrees i+ r in x less than n, as discussed in the previous
paragraph). Notice how for a different i, we will need a different exponent r of
t with the same exponent i + r of x. Thus, there will indeed be no two terms
from different Ti in the same grouping.

We will now count the amount of unknown coefficients left over after elim-
inating one per grouping. In a set Ti, the greatest possible exponent of y and
thus of t is (n+ 1)− i. However, because we can only group terms with degrees
in x less than n, (i+ r) < n⇒ r < (n− i) for any Gi,r, implying at most n− i
groupings per Ti (from r = 0 to r = n − i − 1). The lower degree bound for
terms in Ti and for groupings, however, is the same: κ(i, 0)xi ∈ Ti and terms in
Gi,0 have degree i. Because we have every exponent of y from 0 to (n + 1)− i
in Ti, there are (n + 2) − i unknown coefficients and n − i groupings per Ti,
implying that there are 2 unknown coefficients left over after we eliminate one
per grouping, as desired (we have excluded the special possibility that i = n+1,
which would make n− i impossibly negative).

32



Now that we have proved Proposition 6.1, we will count the total number of
unknown coefficients we have left over after eliminating as many as possible.

If the degree n + 1 of Qn is odd, we do not have to worry about the case
where the exponent i of x is equal to n+ 1 (all exponents of x are even). Since
there are n/2 even numbers greater than 0 (since x0 already represents the
quantity (y−pn)n(y−ps)) and less than n+ 1, we have n/2 sets Ti. 2 unknown
coefficients per Ti yields n total unknown coefficients. We have a total of 3n+ 3
edges of our domain (Property 3). We have used n + 1 edges perpendicular
to y-axis, leaving us with 2n + 2 edges. Accounting for each remaining edge’s
symmetric counterpart, we have 2n+2

2 = n + 1 edges to give us n + 1 poles
to set up n + 1 equations to solve for the n unknown coefficients. Since n is
even, we have a line that is tangent to the frozen boundary at an even amount
of points, meaning that we can translate our domain so that a vertex lies on
the origin. Then, we can use the homogenization technique used with Ω′4 ∈ Ω4

(Section 6.1) to simplify the problem to n equations with n−1 unknowns. Notice
that when n = 4, we will have 4 equations with 3 unknowns, the result achieved
in Section 6.1.

If the degree n + 1 of Qn is even, we apply a similar approach. There are
n−1
2 even numbers greater than 0 and less than n+ 1, yielding n− 1 unknown

coefficients. However, there is also the case where the exponent of x is n + 1.
Based on Proposition 6.1, this will add one more unknown coefficient to make
the total n. Using the same logic as in the last paragraph, we have n+ 1 edges
to give us n + 1 poles to set up n + 1 equations to solve for the n unknown
coefficients. Notice that when n = 3, we will have 4 equations with 3 unknowns,
the result achieved in Section 5.

An interesting note: for domains in any set Ωn, including Ω1 and its hexagons,
we have had one more equation than the number of unknowns for which to solve.
This indicates that any transposition of an edge (and the symmetric transpo-
sition of its symmetric counterpart for domains where n ≥ 2) that could give
one of these equation would destroy the tilability of the related domain. This
is because the supposed frozen boundary, determined from the algorithms with
an exclusion of the equation determined from the transposed edge, would not
be tangent to that edge. This violates Property 1.

7 Conclusion

The problem of explicitly computing the frozen boundary for any tilable domain
is a topic of great interest. It is interesting to note that in our computations,
Properties 1, 2, and 3 were the only ones necessary to yield a unique curve.
Other computations will require Property 4 in addition to the other 3 to create
this uniqueness. Nevertheless, the other 3 properties alone create fruitful al-
gorithms for the computation of the frozen boundaries contained in any of our
considered tilable domains.
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