
The PRIMES 2014 problem set

Dear PRIMES applicant!

This is the PRIMES 2014 problem set. Please send us your solu-
tions as part of your PRIMES application by December 1, 2014. For
complete rules, see http://web.mit.edu/primes/apply.shtml

Note that this set contains three sections: “General math problems”
(for all tracks) and two sections corresponding to the three research
tracks of PRIMES 2014 (“Advanced math” and “Computer science”).
Please solve as many problems as you can in the General math sec-
tion, and also in the section(s) corresponding to the track(s) for which
you are applying (Computer Science and Computational biology appli-
cants should solve the problems from the Computer Science section, in
additional to “General math”).

You can type the solutions or write them up by hand and then scan
them. Please attach your solutions to the application as a PDF (pre-
ferred), DOC, or JPG file. The name of the attached file must start
with your last name, for example, “smith-solutions.” Include your full
name in the heading of the file.

Please write not only answers, but also proofs (and partial solu-
tions/results/ideas if you cannot completely solve the problem). Be-
sides the admission process, your solutions will be used to decide which
projects would be most suitable for you if you are accepted to PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

Note that posting these problems on problem-solving web-
sites before the application deadline is not allowed. Applicants
who do so will be disqualified and may face integrity issues.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day, and think about them, on and
off, over some time (several days). We encourage you to apply if you
can solve at least 50% of the problems. 1

Enjoy!

1We note, however, that there will be many factors in the admission decision
besides your solutions of these problems.
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General math problems
Problem G1. Let n > 2 be an integer. Find explicitly a nonzero

polynomial P of degree 2n with integer coefficients and leading coef-
ficient 1 such that P (21/2 + 21/n) = 0. How many real roots does P
have?

Solution Let x = 21/2 + 21/n. Then 21/n = x−
√

2. So

(x−
√

2)n = 2.

Thus
((x−

√
2)n − 2)((x+

√
2)n − 2) = 0.

So we can take

P (x) = (x2 − 2)n − 4
∑
k

(
n

2k

)
2kxn−2k + 4.

It has 4 real roots if n is even and 2 real roots if n is odd.
Problem G2. Each minute, a drunkard walks one step to the right

with probability 1/3, two steps to the right with probability 1/3, and
one step to the left with probability 1/3. He is initially k steps to the
right from a cliff. What is the probability that he will fall off? (If he
is 0 steps away, he falls off.)

Solution. Let qk be this probability. Then qk = (qk+2 + qk+1 +
qk−1)/3, where q0 = 1. Also qk = qk, where q = q1 < 1. So 3q =
q3 + q2 + 1, which implies that q =

√
2 − 1. So the probability to fall

off is (
√

2− 1)k.
Problem G3. Does the equation

x3 + 2x− y2 = 1

have integer solutions?
Solution. No. x3 +2x is divisible by 3, so y2 = −1 modulo 3, which

is impossible.
Problem G4. John’s secret number is between 1 and 216, and you

can ask him “yes or no” questions, but he may lie in response to one of
the questions. Explain how to determine his number in 21 questions.

Solution. Question n, 1 ≤ n ≤ 15: Is the n-th binary digit of X
zero? Question 16. Have you lied on Questions 1-15? If “no”, it means
he did not lie (since he cannot lie twice), So we know the first 15 digits.
Then ask about the last digit three times, and the answer given at least
two times is correct, so we know the number.

If “yes” to question 16, then he lied on one of the questions 1-16.
Use binary search (4 questions) to determine where he lied. This will
tell us the first 15 digits, and we can use the 21st question (to which
he has to tell the truth since he already lied) to find the last digit.
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Problem G5. Let n be a fixed positive integer, and r a fixed positive
number. Show that the number of positive integer solutions of the
equation

1

x1

+ ...+
1

xn
= r

is finite.
Hint. Consider the smallest of the xi.
Solution. The proof is by induction in n. The case n = 1 is clear.

Let xn be the smallest of the xi. Then xn ≤ r/n, so there are finitely
many choices for x1. Now fix xn to be one of these values. We now
need to solve

1

x1

+ ...+
1

xn−1

= r − 1

xn
,

and there are finitely many solutions by the induction assumption.
Problem G6. A round table has n seats. How many ways are there

to seat k people at this table, so that no two of them sit next to each
other? (two seatings are viewed as the same if each person sits on the
same chair under both seatings).

Solution. There are n positions for the first person, and (k − 1)!
cyclic orderings. Given these, the gaps between the people are gi such
that gi ≥ 2 and g1+...+gk = n. Let ai = gi−1. Then ai+...+ak = n−k,
and ai ≥ 1. The number of solutions is

(
n−k−1
k−1

)
. Thus the number of

arrangements is the product of all these, i.e. N = n(n− k − 1)...(n−
2k + 1).

Problem G7. On a round table of diameter 2 feet there are 132
coins of diameter 1 inch. Show that one can put one more such coin
on the table without overlap with the other coins.

Solution. Suppose that this cannot be done, and the number of
coins is N . Enlarge each coin twice in diameter (keeping the same
center). These enlarged coins must completely cover the table with the
exception of the strip of width 1/2 inch along the edge. So the area
bound gives N ≥ 11.52 = 132.25.
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Advanced math problems
Problem M1.
A population starts with one amoeba. In each generation, each

amoeba either divides in two, with probability 1/2, or dies, with prob-
ability 1/2. Let pn be the probability that the population will survive
n generations.

(a) What is p4? (as a fraction).
(b) Find the limit a = limn→∞ npn.

(c) Show that pn = a
n

+ b log(n)
n2 +O( 1

n2 ) as n→∞, and find b.
Solution (sketch). (a) We have p0 = 1, and

1− pn+1 =
1

2
((1− pn)2 + 1),

so

pn+1 = pn −
p2
n

2
.

Thus p4 = 8463/32768.
(b) To find asymptotics of this sequence, consider the sequence xn =

C/n. Then n = C/xn, so xn+1 = C/(n + 1) = C/(C/xn + 1) =
xn/(1 + xn/C) = xn − x2

n/C + .... Thus, we see that our sequence
behaves like xn for C = 2, so pn is equivalent to 2/n, and the limit
equals a = 2.

(c) To find b, substitute the expression of (c) into the recursion. This
gives b = −2.

Problem M2. Let V (n) be the vector space over the field Q of ra-
tional numbers spanned by the numbers log(2), log(3), ..., log(n). What
is the dimension of V (100)? of V (n) for a general n?

Solution. The fundamental theorem of arithmetic implies that a
basis of V (n) is formed by log(p), where p runs over primes between
1 and n. So dimV (n) is the number of primes between 1 and n, and
dimV (100) = 25.

Problem M3. Compute the limit

L = lim
n→∞

(
n−1∏
k=1

cos
πk

2n

)1/n

.

Solution. We have

logL =
2

π

∫ π/2

0

log(cosu)du = log(1/2),

so L = 1/2.
Problem M4. Three points A,B,C are chosen at random (with

uniform distribution) and independently inside a circle with center O.
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(a) What is the probability q that O is inside the triangle ABC?
(b) What is the probability p that C is inside the triangle OAB?
(c) What is the probability r that the points O,A,B,C are vertices

of a convex 4-gon?
Solution. (a) Without loss of generality we may assume that the

angle coordinate of A is zero. Assume that the angle coordinate of B is
θ. We may assume that θ is between 0 and π. Then for O to be inside
ABC, the angle coordinate of C should be between π and π + θ. So

q =
1

π

∫ π

0

θ

2π
dθ =

1

4
.

(b) Assume the circle has unit radius. The chance is p = S/π, where
S is the average area of OAB. We may assume that A lies on the
positive half-axis. If the polar coordinates of A are (r1, 0) and of B are
(r2, θ) then the area of OAB is

S =
1

2
r1r2| sin θ|.

So

S =
1

π

∫ 1

0

r2
1dr1

∫ 1

0

r2
2dr2

∫ 2π

0

| sin θ|dθ =

1

9π

∫ 2π

0

| sin θ|dθ =
4

9π
.

So p = 4/9π2.
(c) It is r = 1− q − 3p = 3

4
− 4

3π2 .
Problem M5. (a) Find the number of matrices of size n by n over

the field of two elements which are conjugate to a diagonal matrix.
What is the answer for n = 4?

(b) What is the number of n by n matrices conjugate to a diagonal
matrix over any finite field Fq?

Solution. (a) Such a matrix is a projection of some rank k. The
centralizer of a projection of rank k is GLk(F2) × GLn−k(F2). So the
desired number is

N(n) = |GLn(F2)|
n∑
k=0

|GLk(F2)×GLn−k(F2)|−1 =
n∑
k=0

2k(n−k)
(
n

k

)
2

,

where
(
n
k

)
2

:= (2n−1)...(2n−k+1−1)
(2k−1)...(21−1)

. So N(4) = 1+8·15+16·35+8·15+1 =
802.

(b) The answer is

N =
∑

k1+...+kq=n,ki≥0

q
P

i<j kikj
n!q

k1!q...kq!q
,
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where n!q = (1 + q)(1 + q + q2)...(1 + q + q2 + ...+ qn−1).
Problem M6. At a banquet, a round table is served for an even

number n of guests, and there are cards on the plates with guest names.
However, the guests seat themselves without paying attention to the
cards.

(a) Show that the table can be rotated so that at least two guests
are seated according to the cards.

(b) Show that if n is any odd number, then statement (a) is false.
Solution. (a) Let ai be the assigned seat of the guest sitting at the

i-th position (both i and ai are residues modulo n). If ai − aj = i− j
for some i, j, then rotating the table by (i − ai)/n of the full circle,
we will get the guests i and j to sit at their assigned seats. So let’s
assume that ai − aj 6= i − j for any i 6= j. Then ai − i 6= aj − j, so
the function i 7→ ai − i must take all the possible values 0, 1, ..., n− 1.
But

∑
i(ai− i) = 0, as ai also take all possible values. So we would get

0 + 1 + ... + (n − 1) = n(n − 1)/2 = 0 modulo n. But this holds only
for odd n.

(b) One can define ai = 2i, then ai − i = i and (a) is false.
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