
The PRIMES 2014 Computing Problem Set

Dear PRIMES applicant!

This is the PRIMES 2014 Computing Problem Set. Please send us
your solutions as part of your PRIMES application by December 1,
2013. For complete rules, see http://web.mit.edu/primes/apply.shtml

Note that this set contains two parts: “General Math problems” and
“Computer Science problems.” Please solve as many problems as you
can in both parts.

For the General Math problems, you can type the solutions or write
them up by hand and then scan them. Please attach your solutions
to the application as a PDF (preferred), DOC, or JPG file. The
name of the attached file must start with your last name, for exam-
ple, “smith-solutions.” Include your full name in the heading of the
file. Please write not only answers, but also proofs (and partial solu-
tions/results/ideas if you cannot completely solve the problem).

For the Computer Science problems, see instructions at the beginning
of that part.

Besides the admission process, your solutions will be used to decide
which projects would be most suitable for you if you are accepted to
PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

Note that posting these problems on problem-solving web-
sites before the application deadline is not allowed. Applicants
who do so will be disqualified, and their parents and recommenders
will be notified.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day. Instead, think about them, on
and off, over some time, perhaps several days. We encourage you to
apply if you can solve at least 50% of the problems. 1

Enjoy!

1We note, however, that there will be many factors in the admission decision
besides your solutions of these problems.

1



Math problems
Problem G1. Let n > 2 be an integer. Find explicitly a nonzero

polynomial P of degree 2n with integer coefficients and leading coef-
ficient 1 such that P (21/2 + 21/n) = 0. How many real roots does P
have?

Problem G2. Each minute, a drunkard walks one step to the right
with probability 1/3, two steps to the right with probability 1/3, and
one step to the left with probability 1/3. He is initially k steps to the
right from a cliff. What is the probability that he will fall off? (If he
is 0 steps away from the cliff, he falls off.)

Problem G3. Does the equation

x3 + 2x− y2 = 1

have integer solutions?
Problem G4. John’s secret number is between 1 and 216, and you

can ask him “yes or no” questions, but he may lie in response to one of
the questions. Explain how to determine his number in 21 questions.

Problem G5. Let n be a fixed positive integer, and r a fixed positive
number. Show that the number of positive integer solutions of the
equation

1

x1

+ ... +
1

xn

= r

is finite.
Hint. Consider the smallest of the xi.
Problem G6. A round table has n seats. How many ways are there

to seat k people at this table, so that no two of them sit next to each
other? (two seatings are viewed as the same if each person sits on the
same chair under both seatings).
Problem G7. On a round table of diameter 2 feet there are 132

coins of diameter 1 inch. Show that one can put one more such coin
on the table without overlap with the other coins.

2



Computer science problems.

About the problems. The theme of this year’s problems is cellular
automata. A cellular automaton is a virtual system that consists of a
grid of cells. Each cell has a state such as on or off, equivalently 0 or 1.
At any point in time a new state of a cell is determined from its currents
state and a state of its neighbors. For instance, on a two-dimensional
grid a rule may be “if the cell itself is off, and two of its neighbors
are on, then the cell gets the state on, otherwise it stays off.” An
automaton starts with an initial state (i.e. all cells get initial values),
and then proceeds changing its state according to the rules. The study
of patterns in automata behavior (Such as: Does it cycle through the
same states? Does the number of cells with on value increase?) is an
area of computer science and mathematics. Cellular automata have
applications in cryptography and in other areas of computing and are
used to model physical, biological, and even social processes. Probably
the most well-known cellular automaton is Conway’s game of life.

Recommended readings: Stephen Wolfram, A New Kind of Sci-
ence (Wolfram Media, 2002); Joel Schiff, Cellular Automata: A Dis-
crete View of the World (Wiley-Interscience, 2008).

What you need to do. For these problems we ask you to write a
program (or programs) to model cellular automata. You may use any
programming language you want. It is best to implement each problem
as a separate function so that we can run them separately. We will be
looking for the following in your submissions:

• Correct code that we can run. You need to send us all your code
files, including the header files for languages like C++. If you
are using standard libraries, make sure to include all ”import”
statements, as required by the language you are using. Make
sure to send the files under the correct names, including the file
extension (.java, .c, etc).
• Test data for your code that you have used (you can write it

in comment or in a separate file). Make sure to test your code
well – you don’t want it to fail our tests!
• Code documentation and instructions. In the beginning of each

file specify, in comments:
(1) Your name.
(2) Problem number(s) in the file. If you have a file with

“helper” functions, mark it as such.
(3) The programming language, including the version (Java 1.6

or 1.7, for instance), the development framework (such as
Visual Studio) that you used, unless you were using just

3

http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life


a plaintext editor (notepad, emacs, etc), and the platform
(such as Windows, Mac, Linux)

(4) Instructions for running your program (how to call indi-
vidual functions, pass the input (if any), etc), either in
comments in your program file or as a separate file, clearly
named. Your program may get input from the user (i.e.
it asks to enter some data and then reads it) or you may
store the data in specific variables within your program.
You need to clearly explain how to input or set the data.

(5) Some of your code may be commented out if it is not used
in the final run of your program. Make sure it is clear
what needs to be uncommented to run code for each of the
problems.

(6) All of your test data.
(7) If you were using sources other than the ones listed here

(i.e. textbooks, online resources, etc) for ideas for your
solutions, please clearly credit these contributions. This is
a courtesy to work of others and a part of ethics code for
scholars.

• Clear, understandable, and well-organized code. This includes:
(1) Clear separation between problems; comments that help

find individual problems and explain how to run the cor-
responding functions.

(2) Breaking down code into functions that are clearly named
and described (in comments), using meaningful names for
variables and function parameters. Your code should be as
self-explanatory as possible. While using comments helps,
naming a variable average is better that naming it x and
writing a comment “x represents the average”.

(3) Minimization of code repetition. Rather than using a copy-
paste approach, use functions for repeated code and reuse
these functions.

(4) Using well-chosen storage structures (use an array or a list
instead of ten variables, for instance) and well-chosen pro-
gramming constructs (use loops or recursion when you can,
rather than repeated code).

(5) While we are not asking for the fastest program (it’s better
to make it more readable), you should avoid unnecessary
overhead.

In this problem set we are considering a one-dimensional cellular
automaton. To simplify the problem, we consider a finite number of

4



cells ci, 1 ≤ i ≤ n, where n is the length of the automaton. The state
of a cell at a given moment is the symbol in it at that moment. All
possible symbols that can be in any cell of an automaton make up its
alphabet. We only consider automata with an alphabet that include all
or some of the symbols 0, 1, 2, 3.

Each automaton comes with a set of rules that determine the new
symbol in a cell based on its current symbol and the cell to its imme-
diate right (its right neighbor). The rightmost cell cn in an automaton
uses the leftmost cell c1 as its right neighbor (so you can think of an
automaton as a circle). Rules are of the form

a1 a2 → a3

which means that every cell ci that has a symbol a1 and whose right
neighbor ci+1 (or c1 if i = n) has a symbol a2 gets the value a3 as its
next state. For instance, the rule 0 2 → 1 means that every cell with
the state 0 whose right neighbor has the state 2 gets 1 as its next state.

If no rule for a pair of symbols is specified, the next state is set to 0.
An automaton starts with an initial state, i.e each of the cells con-

tains a symbol of the alphabet. The next automaton state is computed
by applying the rules to the current state of each cell and its right
neighbor to determine the new state for the cell. The state change
happens simultaneously for all cells of the automaton.

As an example, consider an automaton with n = 10, the alphabet
0, 1, and the following rules (only those with non-zero results are listed):

0 1→ 1,
1 0→ 1.

The remaining two cases (0 0 and 1 1) result in 0. Assume that the
initial state of the automaton is

0 1 1 0 1 1 0 1 1 0

Then the new state of c1 is 1 since the first rule is applicable. The new
state of c2 is 0 since 1 1 results in 0 by the convention (no rule is given
for it, so the result is 0), and so on. After computing the new state for
every cell, we get the following state of the automaton:

1 0 1 1 0 1 1 0 1 0

We compute the next automaton state by applying the rules to the
current state:

1 1 0 1 1 0 1 1 1 1

The process continues indefinitely.
And now to the problems:

5



Problem 1. Write and test a program that, given the initial au-
tomaton state and the rules

0 1→ 1,
1 0→ 1,

prints the next 20 automaton states (including the initial state), one
per line, starting from the initial state 0 1 1 0 1 1 0 1 1 0. The first
three states are given above, so you can use them for testing. Use any
format of printing that you would like.

What is the 20th state of the automaton, assuming that the initial
state is counted as the first one?

Problem 2. Some initial states may result in all cells becoming
zeros. For the automaton in problem 1, find three different initial
states that eventually lead to all zeros. You may use your program to
find them or just check them by hand. Explain how you found them.

Problem 3. Change your program (if needed) so that the number
of cells and the initial state of the automaton can be changed, either as
input to your program or in variables. Give clear instructions on how to
input data or which variable they are stored in. Test your program on
an automaton with the rules as in problem 1 and answer the following
questions:

(1) The length of the automaton is 5 and the initial state is 0 1 1 1 0.
What is the 50th state of the automaton?

(2) The length of the automaton is 7 and the initial state is 0 1 1 1 1 1 1.
What is the 50th state of the automaton?

Problem 4. Change your program (if needed) so that you set au-
tomata rules by reading them as input or by specifying them as vari-
ables. The format of the rules is 0 1 -> 1 (the arrow is a minus sign
followed by >). You may assume that the alphabet cannot have sym-
bols other than 0, 1, 2, 3. Recall that pairs of symbols for which no rule
is given result in 0. This convention allows you to provide fewer rules.
However, if it’s more convenient for you, you may require specifying
zeros as well.

(1) Try your program on the automaton with the rules

0 1→ 1,
1 0→ 1,
1 1→ 2,
0 2→ 2,
2 0→ 2,
2 2→ 1

6



The initial state is 0 1 2 2 1 0 1 2 1 0. What is the 50th state
of this automaton?

(2) Now try the following automaton:

0 1→ 3,
1 0→ 3,
1 1→ 2,
0 2→ 2,
2 0→ 2,
2 2→ 1
1 2→ 1,
2 1→ 2,
0 3→ 2,
3 0→ 1,

The initial state is 0 1 2 3 3 1 2 3 0 1. What is the 50th state
of this automaton?

Problem 5. Since our automata have a finite number of cells, they
eventually start repeating states. How many different possibilities of a
state does an automaton with the alphabet 0, 1 and the length 10 have?
What about an automaton with the alphabet 0, 1, 2 and the length 6?
Explain your answer.

Problem 6. While in theory a large number of different states is
possible, in practice many automata go into much shorter cycles. The
length of a cycle is defined as the number of different states in the
longest sequence of states between two occurrences of the same state.
For instance, the automaton with the rules

0 1→ 1,
1 1→ 1,

and the initial state 1 1 1 1 0 1 1 1 1 0 has a cycle of length 5. Note
that sometimes an automaton goes through a non-repeated sequence
of states before settling into a cycle.

Write a function that, given an automaton (i.e. the length, the rules,
and the initial state), determines the shortest cycle that appears within
the first 1000 rounds. Note that you will need to store all states that
the automaton passes through and compare every new state to each
of the ones you have already encountered. Think carefully about how
you are going to store states and how you are going to compare them.
Your program needs to do it efficiently, otherwise it would be too slow.

Sufficiently long automata may not go into a cycle within the first
1000 rounds. If there are no cycles, your program should print out “no
cycles”. You don’t need to print out all the states for this part, but it

7



would be a good idea to print them out while testing and debugging
your program on small examples.

(1) Try your program on the automaton with the rules (alphabet
0, 1, 2):

0 0→ 1,
0 1→ 2,
0 2→ 1,

The initial state is 0 0 1 0 1 0 1 0 1 0. Print out the length of
the cycle, or ‘no cycles” if there are no cycles.

(2) Now try the following automaton (zeros are included in the
rules, for easier checking):

0 0→ 2,
0 1→ 1,
0 2→ 2,
0 3→ 0,
1 0→ 0,
1 1→ 1
1 2→ 3,
1 3→ 1,
2 0→ 2,
2 1→ 0,
2 2→ 1,
2 3→ 3,
3 0→ 0,
3 1→ 1,
3 2→ 3,
3 3→ 2,

The initial state is 0 1 2 3 3 1 2 3 0 1. Print out the length of
the cycle, or “no cycles” if there are no cycles.

Problem 7. Consider all automata of length 4 (how many are
there?) and all their initial states (how many are there?). Write a pro-
gram that runs each of these automata with all possible initial states,
stores the length of the cycle (how many rounds do we need to simulate
to guarantee a repeated state?). You may be able to eliminate some
cases that are guaranteed to produce the same results as others. At
the end the program prints how many of these automata have cycles
of each encountered length, and for how many initial states. What
can you conclude about how common cycles are in cellular automata
of length 4?

8



Problem 8. Now consider larger cellular automata over the alpha-
bet 0, 1, 2, 3. You cannot try them all, but you can do a statistical
sampling. Randomly generate rules for automata over this alphabet
and an initial state of length 20. Run it for a specified number of
rounds (say, 1000) or until a cycle is detected, whichever comes first.
Why is it not feasible to run it until a state is guaranteed to be re-
peated? Record the length of the cycle, if one is discovered. Run 100
of such simulations (one automaton and one initial state each) and col-
lect the data. Write down your conclusions. How common are cycles
in such automata?

Problem 9. There are many cases and features of cellular automata
that are interesting to study. Come up with a question about cellular
automata that can be answered by a computer simulation, state your
hypothesis, test it, and write your conclusions.

9


